
CTA200
Computational Astrophysics

Harald Pfeiffer

Today:
1. Introduction
2. CITA’s Computing Network
3. Command Line 101
4. Remote connectivity
5. Version control systems
6. Emacs

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Goals of this course

❖ Introduce a variety of software tools that are essential
for effective use of computing in science
• Various useful programs and techniques
• Scripting to automate recurring tasks (shell, python)
• Visualization (2-D and 3-D)

❖ Survey of some of the computational techniques in astro-
physics
• Cosmic microwave background analysis
• Galaxy colissions (N-body codes)
• Black hole simulations
• ...

2
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Structure

❖ Course runs May 7-17

❖ 9:30-noon: Lectures
• with breaks
• questions/discussions encouraged -- you learn more, and it’s more fun

❖ Homework assignments (practical focus)
• May 8 due May 9
• May 9 due May 11
• May 11 due May 14
• May 14 due May 17

❖ One larger project
• begins next week, due May 24 or May 31 (tbd)

3
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Audience

❖ All interested U of T students

❖ Summer research students located at
• Canadian Institute of Theoretical Astrophysics (CITA)
• Department of Astronomy
• Dunlap Institute

❖ This is a formal U of T course (CTA200H1)
• U of T students can enroll to receive credit
- Instructor enrolls students manually -- contact me

• non U of T summer research students very welcome to audit

4
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Level & prerequisites

❖ No formal requirements

❖ Useful to have some programming experience
• e.g. Python

❖ Focus is on breadth, not exhaustive depth
• Introduce tools
• Show their uses
• Explain where to find more information
• ... so you remember when you have a certain task and know where to look

❖ New course
• Adjustments likely as we go along
• Your feedback is important: Tell me (as soon as possible) what works

for you, and what doesn’t. I do want to know

5
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Your instructor

❖ Harald Pfeiffer
• pfeiffer@cita.utoronto.ca
• MP1309 (diagonally across this floor)

❖ Research area: Simulate colliding black holes

6
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

The two-body problem

❖ at distance 10Gpc

❖ No electro-magnetic
emission
• gravitational radiation

7

(Courtesy J. Centrella, Goddard)

L
max

= 1023L� ⇠ L
universe

�
max

⇠ 104�
Moon

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Large BH spinning (note precession)

8
Movie by U of T undergraduate Patrick Fraser

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

One more movie...

9
Movie by U of T undergraduate Patrick Fraser

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Dimensions

❖ (8+8)Msun=(3x106+3x106)MEarth

❖ d=500km
❖ f=35Hz
❖ v=60,000 km/s 10

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Gravitational wave detectors
LIGO (USA)

GEO (Germany+UK)

VIRGO (Italy+France)

KAGRA in Japan funded
Probably: LIGO-India

11
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Small Survey of you

12
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Keyboard vs. Mouse

❖ GUIs are great for new users, or single use

❖ Serious deficiencies for scientific use
• Working in GUIs tends to be slow
• Difficult to automate
• Remote work difficult
- Long response-time to a machine elsewhere
- The other machine may not have your favorite software
• Reproduction of results difficult/impossible
- cut-and-paste numbers into spreadsheet
- manually process data & create graph (e.g. matlab or python)
- Every computation and data-processing should be reproducible

❖ GOALS: Efficient. Robust. Reproducible.

13
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Scientific computer networks: e.g. CITA

❖ Users sit at desktops
or just use laptops

❖ Same /home storage
accessible from all
machines (i.e. doesn’t
matter where one sits)

❖ More powerful servers
when desktop/laptops
too weak
• Kingcrab 16 cores, 64GB
• Prawn 12 cores, 130GB,

several GPUs

14

Already remote access

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

CITA II

❖ “desktop sub-net”

❖ “HPC sub-net”
• the heavy computing power
• separate /home storage
• must access through

“login nodes” (security)
- bubbles.cita.utoronto.ca
- ricky.cita.utoronto.ca

❖ Large storage-servers
visible from both sub-nets

15

Yet more remote access
separate /home directory

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

CITA III
❖ All access to CITA machines

from outside must go through
a “gateway” (security)
• Example:

your laptop
-> gw.cita.utoronto.ca
-> bubbles
-> tpb160

❖ ComputeCanada data-centres
• the very big guns
• same setup:
- first log into login-node
- then jump to desired machine

16
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

CITA III
❖ All access to CITA machines

from outside must go through
a “gateway” (security)
• Example:

your laptop
-> gw.cita.utoronto.ca
-> bubbles
-> tpb160

❖ ComputeCanada data-centres
• the very big guns
• same setup:
- first log into login-node
- then jump to desired machine

16

Bottom line:
Any scientific activity quickly escalates
into a multitude of machines in
different locations, with different
software configurations.

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Unix/Linux command-line

❖ The interface to all your
computer’s powers

❖ Works by typing in
commands

17
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

some basic terminal commands
ls “list” show directory contents
cd “change directory” switch to different directory
pwd “print working directory” show current directory

cp copy copy file(s) from one directory to another
mv move move file(s), or rename file
rm remove delete file(s)

cat concatenate print file contents to screen
less show file, allowing for “up/down” movement
man manual show information what a Linux command
 does, and what options it takes

❖ Almost all commands take the filenames to act on
- cd /some/other/directory
- cp file.png /some/other/directory/
- cat Schedule.txt

18
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

directories (aka folders)

❖ Hierarchical structure
• root /

19
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Special directories

❖ / root directory of file-system
• leading / indicates path starting from root

❖ ~ home-directory of user
• often /User/USER or /home/USER
• “cd ~” returns you to your home-directory

❖ .. parent directory
• one level up

❖ no leading ‘/’ indicates
path relative to current
directory

20
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Options
❖ Commands take a plethora of options to customize what they do:
• Specified with ‘-’ followed by the letters that determine the option

• multiple options either with separate ‘ls -g -h’ or combined “ls -gh”

❖ Because there are only 52 letters, more complex commands use
long options. Two dashes, followed by a complete word.

21
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Finding information
❖ Which commands exist?
• Somewhat hard to find out.
• Set of commands fairly small.
• I’ll provide lists of useful commands.
• Watch others type. Google. Read a book.

❖ What options do commands take?
• “man” command displays help text
- “man ls” lists the manual for the ‘ls’ command

❖ Which sequence of commands to use to accomplish ‘XXX’?
• Now THAT’s an interesting question!
• We’ll do lots of this later this week. Pay attention
• Watch others type (e.g. summer students: watch your advisors)

22
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Trivia

❖ The program that reads and processes the typed input is called
“shell”

❖ There are several different shells
• most widely used are bash, tcsh
• They differ in arcane issues with customization, scripting, and variables
• Use bash, unless you have a reason to do otherwise

23
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Remote Execution

24
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Secure Shell ssh

25

❖ “ssh” allows to connect to other
Linux/Unix machines
• E.g. from home:

Note absence of
password and username

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

ssh without nice setup

❖ You must specify username manually:
- laptop$ ssh -L USER gw.cita.utoronto.ca
- gw$ ssh kingcrab

❖ You will be asked to enter passwords

❖ Having to type passwords & usernames is poison. Let’s set-up ssh
to do this for us.

26
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

public/private key authentication

❖ private key (“id_rsa”) is secret
• Available only on the machine where you type (your laptop, desktop)

❖ public key (“id_rsa.pub”) is not secret
• Place public key on machine were you want to log in (let’s say gw.cita)

❖ ssh -l USER gw.cita.utoronto.ca executes this sequence of steps:
• Our machine connects to gw.cita.
• gw.cita constructs a challenge, encrypts it with the public key, sends to

our machine
• Our machine uses the private key to decrypt the challenge, and sends it

back.
• Being able to decrypt the message indicates we posses the private key.

Thus we are who we say we are. Allow login.

27
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

ssh setup I

❖ keys stored in directory ~/.ssh
• subdirectory named .ssh in your home directory ~/
• files starting with dot . are hidden. To show them use option -a:
- ls -a

❖ Setup on the machine you type
• Generate ONCE a public/private key-pair “ssh-keygen”
• Accept defaults, but use a long passphrase.

28

your private key

your public key

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

ssh setup II

❖ public key needs to be copied onto target machine, and
there needs to be placed into the file ~/.ssh/authorized_keys:

laptop$ scp .ssh/id_rsa.pub USER@gw.cita.utoronto.ca: (1)
laptop$ ssh USER@gw.cita.utoronto.ca (2)
[USER@gw ~]$ cat id_rsa.pub >> .ssh/authorized_keys (3)

(1) copy file to gw.cita.utoronto.ca (scp = secure copy)
 --- may have to specify USER@ to indicate username at gw.cita
 --- notice ‘:’ at end of command. This indicates that the string
 before is a computer name.

 --- requires password
(2) log into gw.cita yourself (requires password)
(3) append id_rsa.pub to the end of .ssh/authorized_keys
 --- “>>” appends to the file given afterwards (more on Thursday)
 --- append instead of overwrite to allow multiple public-keys

29
Tuesday, May 7, 13

mailto:USER@gw.cita.utoronto.ca
mailto:USER@gw.cita.utoronto.ca
mailto:USER@gw.cita.utoronto.ca
mailto:USER@gw.cita.utoronto.ca

Harald Pfeiffer CTA200H1 (2013)

ssh setup III

❖ Done!

❖ Place public key into every machine where you want to log into.

❖ Create public/private keypair only for machines were you type
• often only 2 private keys: One for laptop, one for desktop

30
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Version Control

31
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

What is Version Control

❖ It’s a system where users can commit “snapshots” of their work:
• homework, papers being written, code being developed, data, ...

❖ The system keeps logs of all commits,
and allows to retrieve any previous commit

❖ The system handles multiple users working on the same
repository
• User A pushes his changes into the repository
• User B pulls the changes into his working copy

32
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Main uses

33

❖ Personal:
• Backup
• Safety against mistakes (can undo changes)
• Convenient way to synchronize across computers

❖ Collaborative
• Joint code development, or writing of manuscripts
• version control takes care to merge all changes together

Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

git - setup

❖ git is a version control system
• next few pages with examples follow

https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html

❖ minimal setup (do this once)
• git config --global user.name "Your Name Comes Here"
• git config --global user.email you@yourdomain.example.com

❖ some more useful configurations (do this once)
• git config --global color.ui true # Colors!
• git config --global push.default tracking # 'git push' only pushes the current branch
• git config --global blame.date short # Make 'git blame' readable
• git config --global merge.conflictstyle diff3

 # Conficts show 3 versions: <<<<< yours |||| original ====== theirs >>>>>>

34
Tuesday, May 7, 13

https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
https://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
mailto:you@yourdomain.example.com
mailto:you@yourdomain.example.com

Harald Pfeiffer CTA200H1 (2013)

git - Personal repository

❖ Create a repository
• mkdir Project
• cd Project
• git init

❖ Adding files
• emacs File1.txt & # create a file
• git status # shows all uncommitted changes
• git add File1.txt # schedule changes to this file to be committed
• git commit # commit changes into repo (be sure to enter

 # a clear description of what the changes are)

35
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

❖ Making changes
• emacs File1.txt # modify file
• echo “2 3 4 5” > numbers.txt # create a second file
• git status # shows non-committed changes

36
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

❖ Committing changes
• git add numbers.txt # can pick which changes to commit
• git commit # commits only numbers.txt
• git status
• git add File1.txt # commit change
• git commit # to File1.txt

❖ Checking the repository
• git log

37
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Basic git workflow

❖ Fundamental cycle:
• Edit
• git status
• git add
• git commit

❖ RULE: Commit often!
• what’s committed is saved.

38
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

git GUI’s

❖ Some git command-line knowledge is useful when working
remotely
• check out a source-code repository on a supercomputer

❖ For local work, GUI’s are an excellent tool to navigate a
repository
• gitk -- standard, comes with git
• gitx -- OS-X variant of gitk, looks nicer
• SmartGitHg -- Harald’s favourite
- Very powerful and well-thought out GUI
- Commerical, but free non-commercial license
- http://www.syntevo.com/smartgithg/index.html

39
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Advanced: Branches
❖ A repository can have multiple branches of your project
• git branch crazy_idea # make a branch (no changes yet)
• git checkout crazy_idea # switch to branch

• emacs File1.txt # modify
• git add File1.txt
• git commit # as always

❖ You can switch between different branches
• git checkout master # back to ‘master’ branch (i.e. the main branch)
• emacs File1.txt # modify
• git add File1.txt
• git commit # as always

❖ Where are we?
• git branch # shows all branches, active one with *

40
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Advanced: Branches II

❖ Merging often just works
• git checkout master # make sure we’re on that branch where we
• git merge crazy_idea # merge crazy_idea back into master

• gitk (or SmartGit) # look at commit history

❖ crazy_idea completed, remove branch
• git branch -d crazy_idea

• Note: This deletes only the ‘tag’ crazy_idea, without it, we cannot switch
back onto crazy_idea branch, and cannot edit it further. All intermediate
commits still there. (check with SmartGit)

41
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Conflicts

❖ Ok, let’s be nasty
• git branch conflict # create branch called ‘conflict’, but do NOT switch
• emacs File1.txt # change some line inside the file
• git add File1.txt
• git commit

• git checkout conflict
• emacs File1.txt # change same line as above
• git add File1.txt
• git commit

❖ Let’s try to merge
• git checkout master
• git merge conflict
• OUCH

42
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Conflict resolution

❖ Use “git status” and “git diff” to find offending file(s)

❖ Edit by hand, and choose what the correct text should be.
• emacs File1.txt
• git add File1.txt
• git commit

43
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Collaborative use: github

❖ Your local git repository can track a remote repository

❖ The remote repository can be anywhere
• CITA, your second computer, a friends computer, on a git hosting site...
• You must be able to access the computer that hosts the remote

repository. This can be tricky to setup.

❖ Quite simple: Track a repository on github
• git clone git@github.com:CITA/CTA200.git # creates CTA200/
• cd CTA200
• ls
• git log

❖ CTA200 is a repository we will be using for this course
• Class notes, assignments

44
Tuesday, May 7, 13

mailto:git@github.com
mailto:git@github.com

Harald Pfeiffer CTA200H1 (2013)

Collaborative work
❖ e.g. add “solutions” to HW1
• cd CTA200
• cd Students
• mkdir PfeifferHarald
• cd PfeifferHarald
• mkdir HW1
• cd HW1
• emacs Solution.txt
• git status
• git diff
• git add Solution.txt
• git commit

❖ NB: Homework sets are NOT collaborative -- you are expected
to do your homework alone, just to submit it into the repository.

45
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Local vs. remote repository	

❖ The local clone of the remote repository is a complete “first
class” repository itself. After the initial “clone”, we have NOT
referred to the remote repository at all.

❖ Pull changes from the remote repository (i.e. changes from your
colleagues)
• git pull --rebase

❖ Push changes to github
• git pull --rebase # check for changes to remote repo.
• git push

46
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Some notes

❖ Many git commands require you to have all your local changes
committed:
• git checkout other_branch # if not committed, couldn’t switch back
• git pull --rebase # if not committed, couldn’t revert conflict

• No problem if you follow the rule to Commit often

❖ Coloring and display of
git branch is NOT standard.
• You won’t see this today.
• We’ll cover this on Thursday

with more bash-details

47
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

.gitignore

❖ Some files should NOT be committed into a repository, because
they are created automatically:
• Backup files ending in \sim
• Helper files of OSX (.DS_Store)

❖ If one places a file “.gitignore” inside a git repository and lists
certain files there, they will be ignored by git

48
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Emacs

49
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Emacs
❖ A very powerful text-editor

❖ Just knowing 5% of it will make you much more efficient

❖ To start in separate window,
• emacs &

❖ To start in the present terminal,
• emacs -nw

❖ In either case, you can add filenames on the command line
• emacs machines.txt

50
Tuesday, May 7, 13

Harald Pfeiffer CTA200H1 (2013)

Tutorial, Reference card

❖ The built-in emacs tutorial is excellent. DO IT.

❖ There are also a variety of reference cards for emacs around,
which list the keyboard shortcuts. One of them is in the github
repository under
• CTA200/LectureNotes/Lecture01/refcard.pdf

51
Tuesday, May 7, 13

