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ABSTRACT
An algorithm for simulating self-gravitating cosmological astrophysical Ñuids is presented. The advan-

tages include a large dynamic range, parallelizability, high resolution per grid element, and fast execution
speed. The code is based on a Ðnite volume Ñux-conservative total variation diminishing (TVD) scheme
for the shock-capturing hydro and an iterative multigrid solver for the gravity. The grid is a time-
dependent Ðeld, whose motion is described by a generalized potential Ñow. Approximately constant mass
per cell can be obtained, which provides all the advantages of a Lagrangian scheme. The grid deforma-
tion combined with appropriate limiting and smoothing schemes guarantees a regular and well-behaved
grid geometry, in which nearest neighbor relationships remain constant. The full hydrodynamic Ñuid
equations are implemented in the curvilinear moving grid, which allows for arbitrary Ñuid Ñow relative
to the grid geometry. This combination retains all the advantages of the grid-based schemes including
high speed per Ñuid element and a rapid gravity solver.

The current implementation is described, and empirical simulation results are presented. Accurate
execution speed calculations are given in terms of Ñoating point operations per time step per grid cell.
This code is freely available to the community.
Subject headings : hydrodynamics È large-scale structure of universe È methods : numerical

1. INTRODUCTION

Astrophysical hydrodynamics is characterized by a large
range in density, temperature, and length scales, where
strong shocks often play an important role. This poses a
great challenge to attempts at simulating such processes
numerically. Traditionally, simulations have either been
carried out on a static mesh Ostriker, & Jameson(Cen,

or using Monte Carlo techniques by fol-1990 ; Cen 1992)
lowing particle trajectories in smooth particle hydrody-
namic (SPH) models & Katz(Evrard 1988 ; Hernquist 1989 ;

& WhiteNavarro 1993 ; Monaghan 1995).
There are two main difficulties in simulating astro-

physical Ñuids numerically. The Ðrst is the fact that often
the Ñows occur at very high Mach number, which leads to
frequent development of strong shock discontinuities. The
second difficulty is the large range in length scales involved
when gravitational clustering occurs. The mesh schemes can
often address the Ðrst problem very well through the use of
the total variation diminishing (TVD) paradigm, while the
particle methods have been primarily developed to address
the second problem. In this paper we will describe a code
that attempts to address both problems.

The advantages of mesh-based TVD approaches (Yee
include the implementation of modern hydrodynamic1989)

concepts based on the characteristic Ðeld decomposition.
The general family includes the piecewise parabolic mesh
(PPM) & Woodward and Harten schemes(Collella 1984)

which have been successfully applied to(Harten 1983),
cosmological hydrodynamics et al.(Ryu 1993 ; Bryan,
Norman, & Ostriker These provide for high-1995).
resolution capturing of shock fronts in one to two cells and
high-order accuracy away from extrema.

A Ðnite di†erence scheme is difficult to implement across
discontinuities, where the di†erential equation becomes ill
deÐned, and requires a mathematical treatment in terms of
internal boundaries. In order to obtain a meaningful con-
vergent result, the classical treatments added large amounts
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of artiÐcial viscosity and di†usion, which prevents the for-
mation of discontinuities on scales shorter than a cell size.
At the same time, such a large viscosity severely degrades
the resolution of the simulation. Modern shock-capturing
approaches contain two ingredients which distinguish them
from SPH methods. They express the Ñuid equations in
integral Ñux-conservative form. This is accomplished by
dividing space into a set of control volumes, in the simplest
case by a Cartesian cubical lattice. On the boundary
between volumes, one calculates the Ñux that passes
between cells. Whatever Ñux is taken out of one cell is
always added to its neighboring cell. Using this approach,
one automatically satisÐes the Rankine-Hugionot condi-
tions and is thus guaranteed the correct shock jump condi-
tions and shock propagation speed. The second ingredient
is a Ñux or slope limiter. This replaces the traditional artiÐ-
cial viscosity. By analyzing the characteristics of the hyper-
bolic PDE, one obtains constraints on the Ñux functions,
which causes them to remain well behaved in the presence
of discontinuities. This prevents instabilities and postshock
oscillations. The characteristic decomposition allows a
high-resolution capturing of discontinuities, often in two or
fewer cells. An alternate view point is to describe a Ñux
limiter as a strongly nonlinear viscosity scheme, which adds
just enough di†usion to prevent numerical instabilities.

The simplest way to implement these Ñux-conservative
high-resolution TVD schemes is in Ðxed regular Eulerian
coordinates that are uniform in space et al. In a(Ryu 1993).
Ðxed Eulerian mesh, a large fraction of the mass ends up in
a small fraction of the grid cells, which leads to a degrada-
tion in resolution. The advantages of such Eulerian
approaches include simplicity of implementation, high com-
putational speed per grid cell, straightforward data parallel
implementation on distributed memory computers, and
high resolution of shocks. Simulations are usually limited
by the amount of available memory.

Gravitational instability drives Ñuids to collapse to very
dense conÐgurations. The cores of clusters of galaxies are
overdense by 103È104 over the mean density of the
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universe. Often one is interested in the physical processes
occurring in these dense regions ; for example, the X-ray
properties. In many problems of astrophysical interest, the
physical processes occur on constant mass scales, which
argues in favor of constant mass resolution algorithms. The
simplest way of building a constant mass resolution scheme
is by utilizing a Lagrangian coordinate system, in which the
numerical control points are frozen into the Ñuid. An addi-
tional problem arises in such an approach. Any rotation in
the Ñuid tends to move cells that are initially close to each
other to large separations, which causes a rearrangement of
nearest neighbor relationships.

One popular approach, SPH, addresses this problem by
resampling the list of nearest neighbors at each time step.
Unfortunately, it is then no longer possible to maintain the
integral Ñux-conservative control volume and characteristic
TVD approach. In order to conserve mass, SPH further
interprets each numerical grid point to be a fuzzy particle of
constant mass. The density is then deÐned as a statistical
quantity that is estimated by calculating the distance to the
nearest 30È100 neighbors. ArtiÐcial viscosity is used to
prevent the formation of discontinuities. In each case, there
is a trade-o† between accuracy and resolution. By smooth-
ing over more neighbors, one obtains a more accurate esti-
mate of the density Ðeld, which is limited by the N1@2
Poisson noise, while also reducing resolution due to the
same smoothing. A similar e†ect holds for viscosity. An
additional problem arises when the list of nearest neighbors
is determined using a spherical search algorithm. The
nearest neighbor distribution could be highly anisotropic,
which further degrades the resolution. This issue has been
addressed by Martel and Shapiro in ASPH et al.(Shapiro

We conclude that SPH is a Monte Carlo approach,1996).
which is constrained by Poisson noise, viscosity, anisotropy,
and the cost of searching for nearest neighbors. Its primary
advantages include mass-based resolution, which allows a
high range in spatial resolution, and ease of implementation
in a very large range of problems, including problems with
vacuum regions and complicated equations of state. Its cost
is high computational e†ort and low resolution per particle.
Such simulations are usually CPU timeÈlimited on current
computers.

An alternate Lagrangian mesh approach has been devel-
oped by It forces the nearest neighbors toGnedin (1995).
remain Ðxed in time. If the grid becomes excessively dis-
torted, it reverts to an Eulerian scheme in the Ðxed coordi-
nate system.

SigniÐcant work on combining the advantages of these
approaches has been implemented by several authors.

& Collela developed a technique for localBerger (1989)
mesh reÐnement on regular meshes. Morgan, &Lohner,
Zienkiewicz and developed an unstruc-(1985) Xu (1997)
tured grid, which dynamically adds and removes nodes as
necessary. Fiedler & Mouschovias hereafter(1992, FM;

developed a moving mesh approach for cylindrically1993)
symmetric magnetohydrodynamics (MHD). &Fiedler
Trapp hereafter see also & Fiedler(1992, FT; Trapp 1995)
applied a general curvilinear transform to model two-
dimensional tornado dynamics. A review of many methods
classiÐed as node movement techniques is given by

Warsi, & Martin and Gottlieb,Thompson, (1985) Hawken,
& Hansen (1991).

The purpose of this paper is to present a method called
moving mesh hydro or MMH for short, with primary

emphasis on speed and simplicity for application to cosmo-
logical hydrodynamics. It presents a general framework
that can be extended and improved in the future. The essen-
tial concept is to formulate a high-resolution Ñux-
conservative scheme on a general moving curvilinear
coordinate system in the spirit of and As in theirFM FT.
work, we attempt to follow only the divergence of the Ñuid
Ñow but not its vorticity. Such a grid would resist any twist-
ing or shearing and would still maintain a constant mass
per grid cell. To describe this mathematically, we recall that
a general coordinate transformation has 3 degrees of
freedom. By requiring approximately constant mass per
control cell, we have imposed one constraint. The remain-
ing 2 degrees of freedom will be used to prevent the appear-
ance of vorticity in the grid motion. Caustics and
discontinuities are treated by applying compression limiters
and by smoothing the deformation transformation. This
guarantees the stability and regularity of the grid and
allows us to use the same neighbors, volumes, and Ñux
boundaries throughout the simulation. The features thus
include exact conservation form and resolution proportion-
al to density, which aims to combine the advantages of both
Eulerian and Lagrangian techniques. (The cosmological
energy equation is not exact but can be split into an exact
hyrodynamic form with gravitational source term.) It fea-
tures a low computational cost and high resolution per grid
cell. The current implementation is also quite memory effi-
cient and parallelizable, which allows it to make efficient use
of present technology.

A generic challenge to curvilinear methods is the compu-
tation of the optimal grid conÐguration. This is in general a
nonlinear global optimization problem and is sometimes
more complex than the solution of the hydrodynamic equa-
tions. solved this problem by di†erentiating the nonlin-FM
ear system with respect to time, thus obtaining a sparse
system of linear grid equations, and were able to further
reduce the computational cost by moving the grid at con-
stant velocity for 10 or more time steps at a time. They
achieve signiÐcantly larger dynamic range in two dimen-
sions (up to 108 in density) than the code described herein.
In the special case in which we wish to perform a simulation
at Ðxed mass resolution, a similar simpliÐcation can be
achieved by solving the linear time evolution of the grid
velocity. In this paper, we use a notion analogous to toFM:
express the smoothed velocity Ðeld equations by a local
linear elliptic di†erential operator. The fast multigrid
solvers solve this in linear time, with e†ective speeds that
are competitive with fast Fourier transforms. The costs over
a Ðxed Eulerian grid are thus the overhead for implement-
ing the curvilinear form of the equations as well as requiring
two applications of the Poisson solver.

We will proceed as follows. In we will develop the° 2
mathematical notation and machinery of the grid deforma-
tion. The technical details thereof are given in Appendix A.
In we describe the hydrodynamic aspects of the code,° 3
with mathematical review relegated to TheAppendix B.
cosmological aspects, including the units and code tests,
follow in Efficiency details are summarized in° 4. Appendix

The paper concludes with some speculations for theC.
future and the conclusion in °° and5 6.

2. FORMULATION

While the MMH algorithm is quite general and could be
applied to any three-dimensional simulation we(Pen 1995),
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will examine systems of conservation laws and in particular
the Newtonian Euler equation in detail. We will consider
only the case of cosmological interest, in which resolution
will attempt to remain constant in mass.

Consider a numerical grid of coordinates n 4 (m1, m2, m3).In order to determine the physical position of each lattice
point, one needs to specify the Cartesian coordinate x(n, t)
of each curvilinear coordinate. We will borrow most of the
notation from general relativity, which provides a concise
framework to describe general curvilinear coordinate trans-
formations. We will consider only the case with three spatial
dimensions where the metric is positive deÐnite, and the
underlying space is always Euclidean, i.e., the Riemann
tensor vanishes everywhere. Thus covariant derivatives
always commute, and all the nice properties of Ñat space
hold. The Ñat metric is just the Kronecker deltag

ij
\ d

ijfunction. The curvilinear metric is then

gab \ Lxi

Lma
Lxj

Lmb
d
ij

. (1)

Repeated indices obey the summation convention, which
means that they are dummy indices and should be summed
from 1 to 3. Latin indices denote Cartesian coordinate
labels xi, while Greek indices imply curvilinear coordinates
ma. A dot will imply partial di†erentiation for time. A
comma will denote a partial derivative.

In Cartesian conservation form, the Euler equations for
Ñuid dynamics are

Lo
Lt

] L
Lxi

ovi \ 0 ,

Lovi
Lt

] L
Lxj

G
ovivj ] Pdij

] 1
4nG

CLV
Lxk

LV
Lxl

A
dildjk[ 1
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dijd

kl

BDH
\ 0 ,

Le
Lt

] L
Lxi

C
(e] oV ] P)vi] 1

8nG
A
V

LV0
Lxi

[ V0
LV
Lxi

BD
\ 0 ,

(2)

where the energy density e is the sum of kinetic, thermal,
and gravitational energies, e\ o(v2] V )/2 ] P/(c[ 1),
and where we have assumed an ideal gas equation of state.
V is the Newtonian gravitational potential determined by
PoissonÏs equation +2V \ 4nGo, o is the matter density,
and P is the pressure.

In terms of a Ñux vector u, we can write asequation (2)

u5 [ L
i
F i[u]\ 0 , (3)

where u \ (o, ov1, ov2, ov3, e) is a Ðve-component column
vector, and F i is a 5] 3 matrix function whose components
can be read from We use the abbreviationequation (2).
L
i
4 L/Lxi.
A general time-dependent curvilinear coordinate trans-

formation then maps into a new Ñux-equation (3)
conservative system of equations

L
t
(Jgu) ] La[Jge

i
a(Fi [ ux5 i)]\ 0 , (4)

where is the inverse triad (dreibein). The detailed deriva-e
i
a

tion is shown in It is given as the matrixAppendix A.
inverse of the triad The volume elementeai \ Lxi/Lma. Jg 4

det is the determinant of the triad. Note that the partial(eai )derivative for time in is performed by holdingequation (3)
the Cartesian coordinates constant, while the partial deriv-
ative for time in is obtained by keeping theequation (4)
curvilinear coordinates constant. We now need to specify
the di†erential coordinate transformation tox5 4 Lx(n, t)/Lt
close the system (4).

As in we deÐne a coordinate transformationPen (1995),
that is a pure gradient

xi\ mkdki ] *xi , (5)

where

*xi 4
L/
Lml

dil (6)

for some deformation potential / to be deÐned later.
The triad is now explicitly symmetric

eai \ dai ] /,ab dbi (7)

since partial derivatives commute. In a cosmological sce-
nario, the initial conditions are almost smooth, and we can
set /\ 0 initially. During subsequent evolution, we will
impose a constraint below to require a continuous sequence
of nondegenerate triads. We are then assured that the triad
is positive deÐnite, from which it follows that

Lxa/Lma [ 0 (8)

(no summation). We draw several conclusions. The triad
has real eigenvalues, which implies that the local coordinate
transformation contains no rotation. It is a triaxial locally
conformal stretching of the curvilinear space onto the Car-
tesian space. From inequality (8), it follows that each Carte-
sian coordinate increases monotonically as a function of its
corresponding curvilinear coordinate. So x1 is always
monotonically increasing with m1. When projected down
one axis, the curvilinear maps never overlap themselves, as
we indeed observe in real simulations (see We thusFig. 13).
have a mathematically rigorous formulation, where in the
continuum limit any triaxial object in the curvilinear coor-
dinate system aligned with the principal axes of the triad
undergoes no rotation when mapped into Cartesian space.
This is a mathematical formulation of the statement that
nearest neighbor relationships are invariant of the deforma-
tion potential /. Further properties of the curvilinear coor-
dinate system are given in Note that theseAppendix A.
results rely on the implementation of a compression limiter
described below.

The goal of astrophysical hydrodynamics has often been
to maintain constant resolution in mass coordinates. The
mass per unit curvilinear coordinate volume is given by

and its evolution by the Ðrst component ofJg o \ Jg u0,
equation (4) :

LJgo
Lt

] L
Lma
C
Jgoe

i
a
A
vi[ L/5

Lml
dli
BD

\ 0 . (9)

If we desire the mass per volume element to be constant in
time, we set the Ðrst term in to zero and obtainequation (9)
the linear elliptic evolution equation for the deformation
potential as in Pen (1995) :

Lk(oJge
i
k dilLl/

5 )\ &4 Lk(oJge
i
k vi) . (10)

We note that is linear in the deformationequation (10)
potential The additional elliptic equation increases the/5 .
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cost of the simulation by about a factor of 2, since we now
have to solve two elliptic equations (the other being for the
gravitational potential) instead of one. The evolution of the
deformation potential does not need to be very accurate
because the order of accuracy of the hydrodynamic calcu-
lation does not depend on the choice of background
geometry.

We solve for the gravitational potential using PoissonÏs
equation

Lk(JggklLl V ) \ 4nG(o [ o6 )Jg (11)

using the multigrid algorithm described in isPen (1995). o6
the mean comic density.

In a real simulation, we need to discretize the continuum
equations. In order to maintain the good properties, we
require that the local grid be smooth ; i.e., that the triad and
therefore the deformation potential do not change too
much between adjacent cells. This is achieved through
smoothing and compression limiters.

Smoothing is implemented by Ðrst smoothing the right-
hand side of and then smoothing the timeequation (10)
derivative of the deformation potential before actually
updating it. We solve for a smoothed diver-equation (10)
gence Ðeld and smooth before generating the deformation
potential.

To prevent excessive compression and the associated
computational cost, we add a compression limiter as
described in In some cases it is also desirable toPen (1995).
introduce an expansion limiter to maintain a minimal
length resolution independent of density. To incorporate
these crucial requirements, we introduce an auxiliary vari-
able */ from which / will be derived as follows :

Lk(eik dilLl */) \ S(&] C] E)

/5 \ S */ . (12)

We deÐne the compression limiter C and expansion limiter
E as

C(/)4 4
Cm

m
j0

[ H
Am

m
j0

[ 1
BD2

,

E(/, &)4 [ 2H(Jg [ v
m
) o& o , (13)

where H is the Heaviside function, is the maximalm
m

B 1/20
compression factor, is the minimum eigenvalue of thej0triad We choose a typical expansion volume limiteki . v

m
\

10. The smoothing operator S is simplest to implement by
smoothing over nearest neighbors in curvilinear coordi-
nates. We see that the Ðnal deformation potential / is
always smooth on scales that are smoothed by S. We found
it empirically sufficient to use a single Jacobi relaxation
iteration in m space for S. Equations and di†er from(12) (13)
previous implementations by being locally(FM, FT)
deÐned.

This completes our description of the analytical formula-
tion.

3. RELAXING TVD

One of the simplest high-resolution TVD schemes to
implement is the relaxing TVD method & Jin(Xin 1994).
For completeness, the full algorithm is described in

It has the advantage of requiring no nonlinearAppendix B.
characteristic Ðeld decomposition and no complex
Riemann solvers. Furthermore, it is not dimensionally split,

which is a desirable attribute in an algorithm such as ours in
which the grid can become strongly skewed. There is also
no need to explicitly evaluate the Ñux Jacobian eigen-
vectors.

We note that the Ñux limiter is applied to the hydrody-
namic quantities but not the gravitational terms that are
elliptic source terms.

3.1. Hydrodynamic Tests
We now have a complete framework to test the adaptive

mesh hydrodynamics. First, we test the accuracy of the rel-
axing TVD scheme using the Sod shock tube test. The test is
performed as follows : we start with a horizontal tube of gas
and a membrane dividing the gas into a chamber on the left
and one on the right. The initial state on the right is labeled
using a subscript 1 and is deÐned by some density and
pressure and it is taken to be at rest with respect to(o1, p1),the tube. The state on the left of the membrane is labeled
using the subscript 4 and is given as The solution(o4, p4).depends on the ratios of pressures and densities &(Landau
Lifshitz 1987, p. and we consider the case in which371),

At an initial time the membrane isp4[ p1, o4[ o1. t0,destroyed. This results in a shock wave propagating into the
right-hand side, whose state we will describe using the sub-
script 2, and a rarefaction fan penetrating the left-hand side.
The initial discontinuity propagates rightward, and we
denote the region between the contact and the rarefaction
fan with a subscript 3. We deÐne the shock speed to be Itv

s
.

follows that the velocity and pressure on both sides of the
contact are equal and constant and wev2\ v3, p2\ p3,solve for the postshock pressure using the assumption ofp2self-similarity and the shock jump conditions

p1
p4

\ p1
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C
1 [ c[ 1

2
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Ap2
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[ 1
B

]
S 2/c
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. (14)

The sound speed We can then solve for thec
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\ (cp
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i
)1@2.

remaining quantities :
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We choose the following parameters as initial conditions :

Ao1
p1

B
\
A0.4
0.01
B

,
Ao4
p4

B
\
A2
1
B

(16)

which are identical to the ones chosen in et al.Shapiro
to allow for easy comparison.(1995)

shows the result of the Sod shock tube test usingFigure 1
the relaxing scheme in a Ðxed grid. The plot has been res-
caled such that the shock position occurs at x \ 1. To
quantify the resolution, we note that there are 98.38 cells
between the initial contact surface at x \ 0 and the shock
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FIG. 1.ÈSod shock tube test on a Ðxed grid. The crosses in the upper
plot are the numerically computed density points, and the boxes are the
numerical velocity Ðeld. In the bottom graph, the crosses are the pressure
Ðeld, and the boxes are the temperature. The solid lines show the exact
solution.

front. The relaxing scheme is indeed well behaved and pro-
vides nonoscillatory shock jump conditions. We also see
that the contact surface has been signiÐcantly di†used. This
is inevitable whenever one attempts to advect a contact
discontinuity for 70 cells across an Eulerian grid. While
some contact steepeners have been proposed in the liter-
ature they cannot restore information which(Harten 1983),
has been inherently lost. They work well when all contacts
are well resolved but su†er from problems either when the
time steps are short or if more dynamical processes occur.
Furthermore, since contact discontinuities are not evolu-
tionary and arise only from singular initial data, we should
consider it safe to ignore any di†usion across such a surface.

The shock front itself is accurately resolved within two
cells, which is comparable to most modern Ñux-

FIG. 2.ÈSod shock tube test on the moving mesh. The notation is
identical to that of We see a slight postshock Ñuctuation from theFig. 1.
curvilinear transformation explained in the text.

FIG. 3.ÈSedov Taylor explosion with energy input E\ 44,577 at t \ 0
shown at time The grid points are projected along all angles, andt

f
\ 13.

the mesh contains one grid space per unit distance, with one point per
computational grid cell. The shock widths are about two grid cells. The
solid line is the exact solution.

conservative hydrodynamic shock capturing schemes.
While the classical di†usion schemes trade o† shock width
against postshock oscillations and stability, the TVD
schemes have no free parameters for artiÐcial viscosity. We
also see the correct complete absence of oscillations about
the contact discontinuity.

We now examine the moving mesh in one dimension.
shows the same shock tube problem given byFigure 2

formula (16) run using the full three-dimensional moving

FIG. 4.ÈSame as but on the moving mesh. Angular anisotropy isFig. 3
reÑected in the width of the line, which we see has decreased compared to
the Ðxed mesh. The shock is not less than one-half Cartesian unit wide.
Since the mesh compresses by at most 4 times across the shock, the average
density is 2, and we would expect twice the shock resolution of Fig. 3.
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FIG. 5.ÈMesh geometry at midplane for Sedov Taylor simulation. The
expansion limiter prevents the cells from expanding more than a factor of
10 in volume.

mesh code with slab symmetry. The mesh is chosen with
approximately constant mass per grid cell, and in this run
we have approximately 83 grid cells between the initial
membrane (x \ 0) and the shock front (x \ 1). The solution
is still well behaved, and the shock front is also resolved in
two cells. We see a little overshoot just after the shock front.
TVD is applied to the curvilinear characteristic Ðelds, and
the solution has no overshoot when plotted in curvilinear
coordinates. In the Cartesian frame, it can appear as if over-
shoots did form. This could be circumvented by trans-
forming to a Cartesian frame before applying the limiters.
But the motivation behind MMH was the success of SPH in
tracking physics on constant mass scales ; we argue that
applying TVD in curvilinear frames might even be physi-
cally better motivated than its application in Cartesian
space. The moving mesh relaxing TVD indeed appears to be
a viable and accurate algorithm at least for these rather
trivial test samples.

A much more challenging and comprehensive test of the
(gravity-free) moving mesh hydrodynamic code is a Sedov
Taylor blast solution. It requires a large dynamic range
since the exact solution piles up most of material just
behind the shock front. We set up a box with constant
density and a large supply of thermal energy in theE0center at t \ 0. As the solution evolves, it tends toward the
self-similar Sedov-Taylor solution The evolution(Shu 1992).
of the shock radius is & Lif-R(t)\ b(E0 t2/o1)1@5 (Landau
shitz 1987, p. where b B 1.15 for a c\ 5/3 gas. In404),
our test case, we choose the ambient density ando1\ 1

The outside pressure is 10~3, which is ourE0\ 44,577.
numerical approximation to 0.

In we show the full three-dimensional solutionFigure 3
on a Ðxed mesh projected onto the radial coordinate. Each
grid cell is plotted as one point. The scatter is due to the
anisotropy of the Cartesian grid, which occurs since the thin
shock layer is not fully resolved, and the resolution is a
function of the angular coordinate. The resolution is neces-
sarily di†erent along diagonal directions. At this resolution,

we see that even the shock jump condition, which would
imply a postshock density of 4, is not well resolved. This
implies that the shock amplitude will be a strong function of
resolution. When we examine the performance on the
moving mesh in we see that the mesh postshockFigure 4,
compresses by a factor of 4, which raises the resolution by
that amount. In the interior, however, the mesh expands
drastically, and we signiÐcantly degrade resolution, as can
be seen by the scatter at smaller radii. shows theFigure 5
mesh at the end of the blast wave simulation.

4. COSMOLOGICAL HYDRODYNAMICS

We can preserve the exact time-invariant conservation
form of the Ñuid equations in a Friedman-Robertson-
Walker (FRW) expanding background by using the expan-
sion changing to comoving variables q \ ax and a new
timescale (Gnedin 1995)

dq\ dt
a2 . (17)

Using this variable, NewtonÏs laws apply directly, and in
particular objects travel on straight trajectories unless acted
upon by another force. The cosmological expansion
appears by the gravitational coupling term becoming pro-
portional to the scale factor times NewtonÏs constant, aG.
We will call the new time coordinate q the Newtonian time
frame. To further Ðx our units, we deÐne the scale factor
today a0\ 1.

The scale factor a \ t2@3 is given in a Ñat universe as

a \ 9
q2 (18)

where [O \ q \ 0, and the proper time t \ [8/q3. In a
curved universe,

a \ 9
q2] 9i

, (19)

where is related to the curvature scale.i \ ()0[ 1)/)0Again, we obtain an abrupt end to the Newtonian time for a
hyperbolic universe, where the gravitational interaction
becomes inÐnitely strong at q\ ([i)1@2/3. More curious is
the fact that in a closed universe, the Newto-equation (19),
nian time extends across the full real number line, and in
fact the turnaround occurs at q\ 0, after which the gravita-
tional interaction weakens again.

Unfortunately, the case with any cosmological constant
Press, & Turner has no exact solution for)" (Carroll, 1992)

the scale factor a, so we integrate the Friedman equation

Ada
dq
B2\ 4a3

9
C
1 ] a3)"

)0
[ a

)0] )" [ 1
)0

D
(20)

to third order in the Taylor expansion at each time step.
The various values of are given at todayÏs epoch where)

ia0\ 1.
We can qualitatively understand a closed universe with

small initial perturbations. Initially, the perturbations grow,
become nonlinear, shock heat, and form into clusters, pan-
cakes, and Ðlaments. This process peaks at turnaround
q\ 0. After turnaround, the physical processes are domi-
nated by hydrodynamic interactions, with gravity becoming
less and less important in the evolution of the gas, which
redistributes itself into pressure equilibrium. The Ðnal dis-
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tribution is determined by the gas entropy distribution at
turnaround, with the gas at low entropy condensing into
high-density regions, and gas at high entropy distributed
tenuously spread over a larger volume. Paradoxically, the
regions of low entropy are the voids at turnaround, which
will become high-density regions. The cluster outskirts have
the high entropy and will Ðll most of space. The cluster
cores are in between and will expand from the compressed
conÐguration.

Using the Newtonian time q, maintains theequation (2)
identical hydrodynamic interaction, but with a time-
dependent gravitational source term

Lo
Lq

] L
Lxi

ovi \ 0

Lovi
Lq

] L
Lxj

G
ovivj ] Pdij[ ao6 V

] a
4nG

CLV
Lxk

LV
Lxl

A
dildjk[ 1

2
dijdkl

BDH
\ 0

Le
Lq

] L
Lxi

[(e] oV ] P)vi]\ [aoviV,i

+2V \ 4nG(o [ o6 ) . (21)

In this paper we discuss only cosmologies made that consist
of ideal gas. The application to combined gasÈdark matter
Ñuids is given in We note that for a gasÈdarkPen (1996).
matter mixture, the momentum of the gas is not conserved
but rather contains a source term from the gravitational
interaction of the dark matter. In the actual code, the
momentum and energy equations in (21) contain the gravi-
tational terms in nonÈÑux-conservative form on the right-
hand side.

In a numerical code, we have several choices about units.
In order to keep quantities close to unity, we use units in
which the grid spacing which deÐnes the conver-*x

g
\ 1,

sion factor for length We further simplify ourx
l
\ L x

g
.

units by choosing 6nG4 1. For density, we deÐne the mean
density of the Ñuid to be 1, so the average mass per cell for
each Ñuid is So(g)1@2T \ 1. This Ðxes the mass unit m

l
\

in terms of the critical density whereMm
g

ocrit\ 3H02/8nG,
is the Hubble ““ constant ÏÏ with units ofM \)

b
ocrit L 3. H0inverse time. is the gas fraction in units of the critical)

bdensity. The time unit has already been completely Ðxed
and is given by wheret

l
\T t

g
,

T \
S )

b
L 3

6nG)0M
. (22)

The comoving quantities (subscript c) are related to the
lab values (subscript l) by the scaling

o
c
\ a3o

l
, (23)

o6 \ 1
6nG

, (24)

v
c
\ a(v

l
[ v

h
) , (25)
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h
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x
l
, (26)

e
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\ a5e

l
, (27)

V
c
\ aV

l
, (28)

x
c
\ ax

l
, (29)

P
c
\ a5P

l
. (30)

We note that the exact conservation of energy is lost, while
momentum is still conserved. The latter is retained, since
FRW maintains space translation invariance, but time
translation invariance has been explicitly destroyed.

4.1. Energy Conservation
In the presence of gravity in an expanding universe, the

hydrodynamic energy e in has a gravitationalequation (21)
source term. By integrating the energy equation in formula
(21) over space and time and applying the continuity equa-
tion, we obtain the Layzer-Irvine equation (Peebles 1981) :

e(t
f
) ] g(t

f
) \ e(t

i
) ] g(t

i
) [ a(t

f
)
P
ti

tf e(t)a5 (t)
a(t)2 dt , (31)

where g 4 a / oV d3x/2 is the gravitational binding energy.
We see that the sum of potential and kinetic energies is
negative, with the source term being the path-dependent
quantity under the integral sign in Typicallyequation (31).
this path-dependent term contributes 20% of the magnitude
of the potential energy. We deÐne the dimensionless Layzer-
Irvine energy conservation ratio as in et al.Ryu (1993) :

R4
[Me(t

f
) [ e(t

i
) [ g(t

i
) ] a(t

f
) /

ti
tf [e(t)a5 (t)/a(t)2]dtN

g(t
f
)

.

(32)

This quantity should be unity if energy is exactly conserved.
Throughout the run we can monitor this quantity R, which
gives us some indication about the errors in the simulation.
For the CDM power spectrum et al. where(Bardeen 1986),
most of the power is at small scales that are truncated at the
grid scale, an evolution of the test case spectrum results in
RB 1.3, which implies a substantial energy error. This error
is easily understood since numerical di†usion always
smooths out the density Ðeld, thereby lowering the magni-
tude of the gravitational binding energy. The error
decreases to RB 1.1 when we compute on a moving mesh.
Since the primary contribution of power comes from small
scales, and since the grid is smoothed, the moving mesh
cannot in fact resolve the di†usion problem arising on the
small scales at which the grid does not follow the Ñuid at all.

For grid-based schemes, a signiÐcant source of error
arises owing to artiÐcial di†usion. Even though the TVD
schemes in principle have no explicit di†usion or viscosity,
the TVD limiter modiÐes the upwind mass Ñux (eq. [9]).
The moving mesh reduces the mass Ñux over a Cartesian
Eulerian grid, and in principle the mass Ñux is identically
zero for potential Ñows. In this case, the limiter introduces
no di†usion at all. In practice, though, the grid compression
limiter causes the grid to break away from the(eq. [13])
Ñuid Ñow. Furthermore, the grid only tracks the Ñuid only
to Ðrst-order accuracy, which leads to some variation in
mass (typically a few percent). Another major e†ect is the
generation of vorticity. In a pure vorticity equilibrium with
no potential Ñow, the mass in each volume element is con-
stant, but each of the directional Ñuxes is nonzero. Only the
sum is zero. In this case, the Ñux limiter will kick in, which
attempts to reduce extrema.
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Since the energy conservation, or in our case the Layzer-
Irvine energy is a global quantity, we need to look(eq. [32]),
for local error estimators in order to assess the uncertainty
in the physically observable quantities such as X-ray lumi-
nosity, mass functions, etc. For this purpose, we can add a
term in the equation of motion that has the same magnitude
as the energy error, from which we can gauge the propaga-
tion of errors. Instead of funneling all the di†usion error
into the gravitational binding energy, we divert all of it into
thermal energy errors. The physical interpretation would be
as follows : A gravitationally bound object, say a cluster of
galaxies, moves through the grid. As a result of the motion,
the cluster di†uses, which results in an increase in its core
radius. This decreases the gravitational binding energy and
thereby violates the virial theorem. The cluster expands
even further to reach a new equilibrium. The alternative
scenario would be to decrease the thermal energy at the
same time. The thermal energy is the only Galilean invari-
ant that we can use, since kinetic energy depends on the
frame. Furthermore, we know that momentum is funda-
mentally conserved, and since the main purpose of cosmo-
logical gasdynamics is to calculate the di†erence between
gas and dark matter accurately, we want to resist touching
the momentum equation.

The limiter in the continuity can be rep-equation (9)
resented as a di†usive Ñux vector Da such that the contin-
uity equation becomes

L
t
(oJg) ] La[Da ] e

i
aoJg(vi [ *x5 i)]\ 0 . (33)

When we integrate the energy equation over space, we
obtain a source term as a function of Da

L
t

AP
eJg d3m

B
\ [a

P
ovie

i
a V,aJg d3m

\ a
P

[V L
t
(oJg) [ V D,aa ]d3m . (34)

We can therefore add the (positive value) of the second term
in to the right-hand side of the energy equa-equation (34)
tion in display (21) to cancel its e†ect in Withequation (34).
this prescription, the only source for energy errors is due to
time discretization, and we indeed observe that R\ 1 for
short time steps using a Ðxed grid. For the cosmological
runs at maximal Courant time step, the error in R is typi-
cally a few percent.

We measured the energy error using each of these two
schemes for the pancake test described below. The result is
shown in Since the parameter R inFigure 6. equation (32)
contains kinetic energy divided by potential energy, we
would expect di†usion to always increase R, which is indeed
what is observed. The top line with crosses shows the
energy error for the standard Ðxed mesh code without any
corrections. Since the di†usion error is Ðrst order in space
owing to upwind limiting, we expect the error to decrease
linearly with resolution, as indeed it does. Even when the
time step is reduced by a factor of 50, that error changes by
less than 10%. Time discretization does not contribute sig-
niÐcantly. The story changes when we implement the energy
compensator The solid line with open triangles(eq. [34]).
shows an immediate decrease in the energy error. The error
now arises primarily from time discretization, and by
reducing the time step by a factor of 50 in the bottom line
with open squares, the error also decreases by that amount.
Our current energy compensation scheme is Ðrst order

FIG. 6.ÈLayzer-Irvine energy error for the pancake test. The vertical
coordinate R is deÐned in the text and is proportional to the kinetic energy
divided by the potential energy. Solid lines are for Ðxed mesh calculations.
Open symbols have the energy compensation scheme built in. The boxed
symbols on the bottom solid line are run using a Ðxed mesh with energy
compensation and a time step that is 1/50th of the usual time step.

accurate in time. On a moving mesh, the energy com-
pensation has little or no e†ect, as we can see from the
dotted lines. Energy is already much better conserved since
the mass Ñuxes and therefore the limiter di†usion terms are
signiÐcantly smaller.

When we perform a run both with and without the source
term in we compare the thermal energies atequation (34),
the end of the run, from which we learn which cells have a
large error and which do not. This is demonstrated in the
pancake test described below. Empirically we Ðnd that
energy conservation is always good whenever the power is
well resolved in mass units.

4.2. T ime Step
We have three factors that determine the time step, and

we choose the smallest of the three. First, we have the
Courant condition which requires that the maximaltcfl,characteristic travels less than 1/(3)1@2 grid cells in one time
step for a three-dimensional unsplit code. In practice, we
choose as half of that value. For cold or high Machtcflnumber Ñows, the moving coordinate system lowers the
characteristic speeds in the curvilinear frame, where at zero
temperature and potential Ñow, the characteristics would be
stationary in the curvilinear frame. Nevertheless, there is
still a time step constraint, which is related to the divergence
of the velocity Ðeld. It has dimensions of inverse time, and
we deÐne as 1/8 of the inverse of the smallest eigenvalue oft

zthe matrix Lvi/Lxj. The last timescale is determined by the
cosmic expansion. We require that *a/a \ 1/50 between
gravitational time steps, thus setting t

c
.

In practice, a simulation is always dominated by the
cosmological expansion initially, but most of the CPUt

ctime is spent in the Ðnal nonlinear clustering stages where
and are typically closely balanced.tcfl t

z
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4.3. Cosmological Tests

The gravitational pancake as described in et al.Ryu
was tested. We set up a convergent wave at z\ 21(1993)

that collapses at z\ 1. The test was run on a Ðxed grid of
1024 cells and then run using Ðxed and moving meshes on
64 cells. In we see an underresolved pancake on theFigure 7
Ðxed mesh. For such a structure, the e†ect of energy com-
pensation is signiÐcant, and the discrepancy between the
compensated and uncompensated energy solutions gives a
good estimate of the mass di†usion and gravitational error.
When we run the simulation on a moving mesh in Figure 8,
we obtain a much better resolution of the pancake core, if
we use the central density as an indicator of resolution. In
fact, using the compression limiter the 64 cellm

m
\ 1/30,

moving mesh outperforms the 1024 cell Ðxed mesh. We
further notice that the energy compensation has only a
small e†ect on the solution, which again is due to the fact
that mass di†usion is a lesser problem in our moving coor-
dinates.

An intriguing challenge is to collapse a pancake along a
diagonal axis in two dimensions at an angle h \ tan~1 (1/
2). The path of each vertex in the central pancake region is
such that it does not intersect its nearest neighbor or any of
the diagonal neighbors. This tests the code with a strong
shock in a highly distorted and oblique geometry. Note that
in this conÐguration the discretized elliptic equations are no
longer diagonally dominant, which is a further test for the
potential solvers. We set up a run using a 642 mesh with a
maximal compression limiter Despite these chal-m

m
\ 1/30.

lenges, the code performs optimally for the high-density
regions as shown in See for a visual-Figure 9. Figure 10
ization of the mesh on which was computed.Figure 9

We also compare the results from our code to the stan-
dard test suite in et al. The density Ðeld for aKang (1994).
64 h~1 Mpc box with a CDM normalization is givenp8\ 1
on an initial 643 grid linearly interpolated to 1283. It is then

FIG. 7.ÈCosmological pancake test on a Ðxed mesh with 64 grid
points. The open squares are run without energy compensation, while the
crosses have both energy compensation and a shortened time step. The
solid line is the solution obtained on a Ðxed grid with 1024 points.

FIG. 8.ÈCosmological pancake test on a moving mesh with 64 grid
points. The open squares are run without energy compensation, while the
crosses have energy compensation using the same time step. The solid line
is the solution obtained on a grid with 1024 points. On a moving mesh, the
energy compensation does not make a signiÐcant di†erence. The maximal
limiter using this value, the moving mesh achieves a higherm

m
\ 1/30 ;

central density and resolution than the 1024 Ðxed mesh.

evolved to the present (z\ 0) using a suite of di†erent
codes. We compare convergence of the Ðnal result binned
into 163 cells. For the Ðxed mesh case, we see in Figure 11
that the result agrees very well with the Harten TVD
scheme implemented by et al. Agreement inRyu (1993).

FIG. 9.ÈPancake aligned on a tan~1 (1/2) angle to a 642 grid. The
horizontal axis is on grid units. The crosses represent grid cells rotated into
the plane perpendicular to the pancake. The solid line is the rescaled
solution from the 1024 cell Ðxed mesh. Owing to projection e†ects, the
spacing between cells that appear adjacent in projection is 1/(5)1@2 of the
actual perpendicular nearest neighbor distance. If we estimate the shock
width as four cross spacings, we would have an e†ective shock width and
resolution of 1.8 grid units.
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FIG. 10.ÈMesh on which was computed. We see that in theFig. 9
densest regions, the grid is highly oblique. The numerical grid neighbors
are no longer the nearest physical neighbors. Despite such extreme grid
distortions, the solution remains well behaved.

temperature as a function of density (the lower right graph)
is poor in the low-density regions, which are all unshocked
and thus should have very low temperature. Since the
current TVD scheme does not incorporate any entropy
variables, entropy is not conserved, and a gas at very low
temperature may experience sporadic heating and cooling.
As we compare the moving mesh to the et al.Kang (1994)
simulations in we obtain the expected result : TheFigure 12,
agreement degrades in the low-density regions at which the
grid expands and the resolution degrades. The increased
resolution in the high-density regions is not visible when
rebinned to such a course grid. We lose some additional
resolution because the comparison is performed by
mapping the moving mesh cells as constant density cloud-
in-cell particles on a Ðxed 643 grid, which introduces addi-
tional smoothing in the density Ðeld.

A slice of the 1283 mesh is shown in Only everyFigure 13.
other grid line is represented in the graph. The pancakes are
well represented, and the grid regularity is apparent. In the
magniÐed view in the highest density region isFigure 14,
compression limited at The grid reverts to am

m
\ 0.1.

regular Cartesian frame with normal orientation in these
regions. Since the grid equations are Galilean invariant, the
high-compression region is allowed to move with a bulk
motion to follow the Ñuid.

FIG. 11.ÈCosmological comparison for the 1283 Ðxed mesh. The Ðnal simulation output is compared to the Ryu et al. code, which uses a very similar
algorithm. The output is binned to 163 cells. For each cell, the various simulation densities and temperatures are correlated and plotted. At low temperatures,
the methods di†er because Ryu et al. use an entropy-conserving scheme that lowers temperature in the low-density regions. The most relevant comparison is
the o-o plot, where excellent agreement is found. The error bars are the top and bottom quartiles of each bin. This graph veriÐes that the code is accurate on
large scales.
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FIG. 12.ÈCosmological comparison for the 1283 moving mesh. Each curvilinear cell was mapped cloud-in-cell onto a 643 grid, which was then rebinned
to 163. The o-o plot reÑects the loss of resolution of MMH in the low-density regions. The gross agreement remains.

5. FUTURE WORK

Possible algorithmic improvement for the future includes
the following :

1. Implementing isolated (nonperiodic) boundary condi-
tions, such that the code could be used for noncosmological
applications.

2. Incorporating truly three-dimensional Ñux limiters,
especially the local extrema diminishing (LED) scheme,
which would reduce the mass di†usion problem.

3. It might be possible to implement a rigorously mass-
conserving coordinate system, in which the net mass Ñux is
explicitly set to zero. In such a system, no mass di†usion
could possibly occur, and the Layzer-Irvine energy would
be explicitly conserved. The Ñux limiter would now have to
be applied directly to the deformation potential. It is not
entirely clear that this can be performed using only local
operators.

4. Implementing higher accuracy hydrodynamics solvers,
including essentially nonoscillatory (ENO) and piecewise
parabolic mesh (PPM) algorithms.

6. CONCLUSIONS

We have presented a simple hydrodynamical algorithm
that combines the advantages of grid-based Ðnite volume
Ñux-conservative schemes with the dynamic range of SPH
Monte Carlo Lagrangian schemes. The essential ingredients
are a coordinate grid that tracks the potential Ñow of the
Ñuid and a fast multigrid gravity solver. By tracking the

potential Ñow, the mass per volume element remains con-
stant, which gives a resolution that is roughly constant in
mass coordinates. Furthermore, by following potential Ñow
and smoothing the grid and using limiters, the grid
geometry stays regular. The curvilinear transformation
maintains nearest neighbor relations even for typical
cosmological density contrasts of 104 and in the presence of
vorticity in the Ñuid itself. The full curvilinear Eulerian
equations of motion are solved on the grid, such that even
on a nonoptimal or incorrect grid second-orderÈaccurate
computation of hydrodynamic quantities would be assured.
On each grid volume, the averaged conserved quantities
(density, momenta, and energy) are stored, and at each time
step, the Ñux between these control volumes is computed to
second-order accuracy using the relaxing TVD algorithm.
The equations in explicit Ñux-conservative form guarantee
compliance with the Rankine-Hugionot shock jump condi-
tions.

Gravitational force terms lead to violation of energy con-
servation in the presence of numerical di†usion. We have
provided a compensation scheme that nearly conserves the
total energy even in the presence of such di†usion. By
running a simulation with and without this compensation,
we can obtain a good estimator of the local errors.

The code runs very efficiently in terms of both memory
and Ñoating point operations. The current code parallelizes
on symmetric multiprocessor shared memory and vector
machines. In we give accurate estimates ofAppendix C
computational e†ort in terms of Ñoating point operations.
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FIG. 13.ÈA layer of the 1283 mesh of the CDM simulation projected onto the x-y plane. For clarity, only every other grid line is plotted. The salient
feature is the regularity of the grid. Even in projection, the grid never overlaps itself. This is guaranteed by the compression limiters since each curvilinear line
is a monotonically increasing function of its corresponding Cartesian coordinate.

We have performed a large test suite on the code and
have demonstrated the advantages for many cosmological
problems. On a Ðxed grid the algorithm performance
approaches that of other state-of-the-art hydrodynamic
schemes, and that accuracy is retained when the mesh
deforms strongly. The coding is relatively short and the
algorithms simple.

The code is freely available to anyone for nonproÐt use.
Please contact the author for more details.

We are grateful to J. P. Ostriker for all his support and
ideas as well as N. Gnedin, G. Xu, and D. Spergel for helpful
discussions. This work was supported in part by the NSF
HPCC initiative under grant ASC93-18185. Computing
was supported in part by the National Center for Super-
computing Applications.
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FIG. 14.ÈMagniÐed view of a portion of All grid lines are plotted. The highest density regions are compression limited at In this state,Fig. 13. m
m

\ 0.1.
the absence of rotation in the coordinate system is apparent. The empty channel running across the graph is the grid periodicity boundary. The lighter lines
on the lower part are the periodic image of the top region of the mesh.

APPENDIX A

CURVILINEAR COORDINATES

Here we review some of the curvilinear transformations used in the paper.

A1. CURVILINEAR CONSERVATION LAWS

In this section we derive We wish to apply a general coordinate transformation to an equation of the formequation (4).

Lu
Lt
K
x
] LFi[u]

Lxi
\ 0 , (A1)

where u \ u(t, x) and the partial derivative with time holds x Ðxed. We express the time-dependent coordinate transformation
as x \ x(n, t). Applying the chain rule, we obtain
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where a dot indicates the partial derivative with respect to time keeping m Ðxed. Expanding the determinant by KramerÏs rule,
we recall that which eliminates the third and fourth terms in We note that the triad is aL

t
(g)1@2 \ (g)1@2e

i
a L

t
eai , equation (A2). e

i
a

one-index contravariant vector. Some algebra shows that the quantity

1

Jg
La(Jge

i
a) (A3)

is a scalar under coordinate transformations. In Euclidean space, expression (A3) vanishes everywhere. Thus, this scalar is
zero in all coordinates, and the last term in is also identically zero. Q.E.D.equation (A2)

A2. EIGENVALUES

We recall that the triad is symmetric and positive deÐnite. In the course of the computation, its eigenvalues will beeaineeded, which are computed as follows Standard Mathematical Tables and Formulae(CRC 1991) :

1. Let A
ij
\ eak daid

kj
.

2. Let t \ trace (A
ij
), B

ij
\ A

ij
[ t/3.

3. Let m\ 2(a/3)1@2, b \ [oB o.a \B112 ]B122 ]B132 ]B11 B22 ] B222 ]B232 ,
4. Let h \ cos~1 (3b/am)/3, r1\ cos (h), r2\ cos (h ] 2n/3), r3 \ cos (h] 4n/3).
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5. The eigenvalues are given by in decreasing order.j
i
\ r

i
] t/3

The eigenvalues are of course real and positive. The eigenvalues of the inverse triad are the reciprocals of the eigenvalues of
the triad.

Another set of eigenvalues that are needed to implement the relaxing TVD algorithm are the eigenvalues of the Jacobian in
in curvilinear coordinates. As in the magnitude of the largest eigenvalue is given as whereequation (4) Yee (1989), max(ja),

ja \ c
S

;
i/1

3
(e

i
a)2] o e

i
a(vi[ x5 i) o (A4)

and c2\ LP/Lo is the sound speed.

A3. SPHERICAL SYMMETRY

Assuming spherical symmetry in N dimensions, some exact relations between the metric and the deformation potential
exist. We deÐne a parameter j \ r2, and let a prime denote di†erentiation with respect to j. The volume element is given as

Jg \ (1 ] 2/@)N~1(1] 2/@] 4j/A) (A5)

for an N-dimensional space. We see in particular that in one dimension, i.e., planar symmetry of three dimensions, equation
becomes a linear equation. For the next formulae, we will assume that N \ 3.(A5)

If we prescribe the volume element, which corresponds to the grid density, we wish to solve for the deformation potential. It
is given by the following formula :

/\
P
0

r CA
3
P
0

u
v2Jg dv

B1@3 [ u
D
du . (A6)

In the case that (g)1@2 is constant, simpliÐes toequation (A6)

/\ r2
2

(Jg1@6[ 1) . (A7)

We see that the deformation potential is in general an inverted parabola around density minima and a parabola around
density peaks.

For small Ñuctuations in density, let us enforce and set We wish to approximateoJg \ 1, o 4 1 ] do, dJg 4 [do.
For small Ñuctuations, we obtain +2/\ [do, and the deformation potentialJg \ o 1 ] /, ab oB 1 ] +2/] O(/2).

/\ [4nGV is proportional to the gravitational potential. We have recovered the Zeldovich approximation with our
displacement Ansatz in linear theory.

While the decomposition into potential Ñow and displacement is unique for small density Ñuctuations (apart from bound-
ary conditions), the Ansatz is a particular choice in strongly curvilinear coordinates. It generalizes the notion of(eq. [6])
potential Ñow by deÐning a frame through the symmetric triad in which no net rotation of the coordinate system occurs. The
change is described by a displacement and stretching of coordinate space alone. We call this rotation-free moving frame the
generalized potential Ñow for strongly compressed gases.

APPENDIX B

RELAXING TVD

The method is most easily illustrated in 1] 1 dimensions. Consider a conservation equation of the form

u5 ] L
x
F[u]\ 0 . (B1)

We replace that equation by another system

u5 ] L
x
cv\ 0 v5 ] L

x
cu \ [ 1

v
(v[ F[u]) , (B2)

where c(x, t) is a free parameter called the freezing speed. is a linear advection equation with a nonlinear sti†Equation (B2)
source term. The essence is to apply Strang splitting on these two pieces. A TVD Ñux/slope limiter is applied to the linear
advection equation, while an implicit backward Euler step enforces the source term. & Jin showed this algorithm toXin (1994)
be TVD under the constraint that c be greater than the characteristic speed LF/Lu. One can now take the limit as v] 0, which
results in a relaxed algorithm. Time integration is implemented using a second-order Runge-Kutta method.

To solve the linear part of we decouple the equations through a change of variables andequation (B2), w1\ u ] v
The linear equationw2\ u [ v.

w5 ] L
x
cw\ 0 (B3)

is discretized in space using a monotone upstream-centered scheme for conservation laws (MUSCL) scheme.
We consider the conserved averaged quantities w to be deÐned at integer grid cells xn. Then we need to deÐne the Ñuxes at

cell boundaries, F4 cw at xn`1@2. We then have The remaining trick is to deÐne the Ñux FL
x
cw \F(xn`1@2) [F(xn~1@2).

at half-cells.
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The Ðrst-order upwind deÐnition is simply F(xn`1@2) \ cw(xn), assuming Ñow is to the right. There are two second-order
choices : (A) [cw(xn) ] cw(xn`1)]/2 and (B) (3/2)cw(xn) [ (1/2)cw(xn~1). We generalize the choices as F(xn`1@2) \ cw(xn) ] *w,
where

*w
`

\ cw(xn`1) [ cw(xn)
2

*w~\ cw(xn) [ cw(xn~1)
2

. (B4)

DeÐne the limiter minmod (a, b) \ [sign (a) ] sign (b)] min ( o a o, o b o )/2. It chooses the argument with smaller absolute
magnitude if the magnitudes have the same sign and returns zero otherwise. The choice is the*w\minmod(*w

`
, *w~)

simplest of TVD MUSCL choices, which we use in our code. Near extrema of the Ñux vector, the second-order scheme reverts
to a Ðrst-order upwind scheme.

The geometric interpretation is quite simple. We start with the Ðrst-order upwind Ñux and correct it using either left or right
values, choosing the one that demands a smaller correction. If we are at an extremum, the two corrections have opposite sign,
and we do not correct at all. This approach is called a Ñux limiter. For a description of the mathematical justiÐcation, see, for
example, We have also implemented the whole range of TVD limiters according to of which theYee (1989). Hirsch (1990),
so-called superbee is the least di†usive.

In the limit of a relaxed scheme in which v\ 0, we operate with the constraint that v\ F[u] at the beginning of each partial
step, and v becomes merely an auxiliary vector to calculate Ñux limiters. The advantage of the relaxed scheme is that it
requires no knowledge of the eigenvectors or eigenvalues of the Ñux functionÈonly an estimate for the lower bound of the
maximum eigenvalue. Since the curvilinear equations of motion are rather complex, this is of computational(eq. [4])
advantage. It is also quite simple to implement. The time step is limited by the freezing speed c, and we obtain simple
expressions to compute the correct time step.

In several spatial dimensions, the simplest generalization is to apply the freezing advection to each dimension. To illustrate
in two dimensions, we start with

u5 ] L
x
F] L

y
G\ 0 , (B5)

which we convert into the relaxing equation

u5 ] L
x
cv] L

y
cw\ 0 v5 ] L

x
cu\ [ 1

v
(v[ F[u]) w5 ] L

y
cu \ [ 1

v
(w[ G[u]) . (B6)

The limiter is then applied to each pair (u, v) and (u, w). By applying the Runge-Kutta time integrator to the whole system,
the algorithm is not dimensionally split. One should note, however, that the slope limiter is in fact dimensionally split. This
could be circumvented by using a local extrema diminishing (LED) limiter on the whole set of linear advection equations (A6).
We have not implemented this method, since it has a large operation count and program complexity. In the current numerical
experiments, no direct problems with the directional slope limiter have been observed.

While not as rigorous or accurate as the Harten or PPM scheme when applied to the full three-dimensional system, the
relaxed scheme o†ers simplicity and robustness. For a description of curvilinear TVD schemes, see & HartenYee (1987).

APPENDIX C

PERFORMANCE ISSUES

C1. MEMORY

The code is extremely memory friendly. The minimal required storage count for arrays of size N3 is seven : Ðve for the
hydrodynamic arrays, one for the deformation potential /, one for the time derivative of the deformation potential and one/5 ,
for the gravitational potential V . In principle, the last two could be stored in the same array since they are not in principle
needed simultaneously. Some additional storage of order N3/2 would be required for the multigrid scheme.

In practice, we use 10 arrays in the current implementation. The gravitational potential is stored twice, which allows us to
interpolate linearly from the previous two time steps as an initial guess to the multigrid gravity solver. An extra array is used
to store do(g)1@2\ (o [ 1)g1@2.

The program allocates up to Ðve more arrays for special purposes. An additional array is needed for computing N-body
particles to second-order accuracy, which is used to store the deformation potential of a previous time step. Four more arrays
are needed to implement the gravitational energy conservation scheme.

All the temporary arrays that are needed for the Runge-Kutta scheme and the relaxation to proceed efficiently without
recomputation of old values are stored in two-dimensional arrays.

C2. PARALLELIZATION

All operations except for the gravity solver are explicitly performed on a regular grid and would thus parallelize straightfor-
wardly on any kind of parallel or vector machine with no load imbalance issues. The parallel multigrid algorithm has been
investigated in detail in the literature and can in principle be performed efficiently on a parallel machine.

The current code runs in parallel on a shared memory SGI Power Challenge with 150 MHz R8000 processors. In order to
maintain simplicity and storage efficiency for the temporary two-dimensional arrays, most parallelization is done at the
second level of loops. On a machine with eight processors, we obtain a speed up of six.
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C3. OPERATION COUNT

The most direct objective measure of computation speed is the Ñoating point count. For the moving mesh, this count is
independent of clustering or deformation and thus is an accurate predictor of the execution time. The actual sustained Ñoating
point speed of each machine depends on many parameters, including compiler version and many compiler Ðne-tuning
options.

Let us deÐne the basic operating cost C as the number of Ñoating operations per cell per Courant step. This is an objective
measure of any numerical code and depends only on the physical parameters and grid resolution. The code currently takes
two hydrodynamic and one gravity time step in each Courant time interval. It also calls the multigrid solver 4 times, twice for
the deformation potential and twice for the gravitational potential. The gravitational solver is called twice in a row to provide
a minimal gravitational error. Errors in the deformation potential do not enter directly in any other error estimates, and it is
thus not crucial to solve the deformation potential accurately.

We thus have where is the cost per cell per time step for the curvilinear relaxing TVD hydro, andC\ 31@2(2C
H

] 4C
M
), C

His the cost per cell of the multigrid solver. In we computed the asymptotic cost of for a grid of inÐniteC
M

Pen (1995) C
M
a \ 918

size. The actual count obtained for a 643 grid using the Ñoating point counter on a Cray C90 is The discrepancyC
M

\ 1419.
arises in part because the estimate of was based on computing a metric tensor, and the sum of relaxation sweeps over allC

M
a

subgrids. To test the compiler count on these operations alone, we obtain a value of 1285 from the hardware counter. While
there are certain neglected costs, in particular that of edge e†ects and other costs that are of O(N2), the discrepancy is much
larger than they could account for. We have no explanation for the di†erence. When the relaxation routine alone is timed, the
hardware counter obtains 52 additions, 33 multiplications, and one division, while a direct source statement count yields 41
additions, 26 multiplications, and one division. On the SGI compiler version 6.0.2, we have analyzed the generated assembly
code, which obtained a 15% higher Ñoating point count than the original source code. This was possibly due to algebraic
rearrangements that may have improved instruction scheduling. In addition, the cost of prolongation and projection oper-
ators, as well as operations which force a volume-weighted zero sum, was neglected. These may account for the remaining 134
operations.

For the hydrodynamic calculations, we have only the hardware count data available. Using a 643 run, we obtain C
H

B
2622. For comparison, Zeus-3D has a equivalent cost of on a Ðxed grid This yields a total operationC

H
B 850 (Fiedler 1997).

count CB 19,000, of which half arises from the hydrodynamics and half from the multigrid solver. On a single CPU of a Cray
C90 the code achieves about 300 MÑop on 2563 runs out of a theoretical peak of 1 GÑop, which is 30% of peak. The vector
lengths for the multigrid relaxation are half the box widths, which means we Ðll the vector length using a 2563 mesh. On an
SGI power challenge R8000, the code currently achieves 48 MÑop out of a theoretical peak speed of 300 MÑop on a 643 run.
Cache misses account for about 23% of the computing time on the SGI.
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