Type III migration in a low viscosity disc

Min-Kai Lin John Papaloizou

mkl23@cam.ac.uk, minkailin@hotmail.com DAMTP University of Cambridge

KIAA, Beijing, December 13, 2009

- Introduction: type III migration
- Numerical methods, first results and motivation
- Type III migration in an inviscid disc:
 - Formation of vortensity rings
 - Linear stability
 - Non-linear outcome and role in type III
- Summary

Introduction

- ▶ 405 exo-planets discovered (27 November 2009).
- First 'hot Jupiter' around 51 Pegasi, orbital period 4 days (Mayor & Queloz 1995). Fomalhaut b with semi-major axis 115AU.
- Formation difficult in situ, so invoke *migration*: interaction of planet with gaseous disc (Goldreich & Tremaine 1979; Lin & Papaloizou 1986).

M-K. Lin, DAMTP

Physics of type III migration

Consider a migrating Saturn-mass planets with partial gap, so there is flow of material across co-orbital radius.

- Fluid element orbital radius changes from
 - $a x_s \rightarrow a + x_s \Rightarrow$ torque on planet:

$$\Gamma_3 = 2\pi a^2 \dot{a} \Sigma_e \Omega x_s.$$

Consider a migrating Saturn-mass planets with partial gap, so there is flow of material across co-orbital radius.

Fluid element orbital radius changes from $a - x_s \rightarrow a + x_s \Rightarrow$ torque on planet:

$$\Gamma_3 = 2\pi a^2 \dot{a} \Sigma_e \Omega x_s.$$

• Migration rate for $M_p + M_r + M_h$:

$$\dot{a} = \frac{2\Gamma_{\rm L}}{\Omega a(\underbrace{M_p + M_{\rm r}}_{M'_p} - \delta m)} \tag{1}$$

where Γ_L is the total Lindblad torque and

$$\delta m = 4\pi \Sigma_e a x_s - M_h = 4\pi a x_s (\Sigma_e - \Sigma_g)$$

is the density-defined co-orbital mass deficit.

M-K. Lin, DAMTP

Co-orbital mass deficit:

larger $\delta m \Rightarrow$ faster migration.

- ▶ Horse-shoe width: x_s , separating co-orbital and circulating region. Take $x_s = 2.5r_h$ for result analysis $(r_h \equiv (M_p/3M_*)^{1/3}a)$. Can show $x_s \leq 2.3r_h$ in particle dynamics limit.
- Vortensity: $\eta \equiv \omega/\Sigma$, important for stability properties and η^{-1} also used to define δm (Masset & Papaloizou 2003).
- Modelling assumptions: steady, slow migration ($\tau_{\rm lib}/\tau_{\rm mig} \ll 1$), horse-shoe material moves with planet.

Numerics

Standard numerical setup for disc-planet interaction. 2D disc in polar co-ordinates centered on primary but non-rotating. Units $G = M_* = 1$.

> Hydrodynamic equations with local isothermal equation of state:

$$\begin{split} \frac{\partial \Sigma}{\partial t} + \nabla \cdot (\Sigma \mathbf{v}) &= 0, \\ \frac{\partial v_r}{\partial t} + \mathbf{v} \cdot \nabla v_r - \frac{v_{\phi}^2}{r} &= -\frac{1}{\Sigma} \frac{\partial P}{\partial r} - \frac{\partial \Phi}{\partial r} + \frac{f_r}{\Sigma}, \\ \frac{\partial v_{\phi}}{\partial t} + \mathbf{v} \cdot \nabla v_{\phi} + \frac{v_{\phi} v_r}{r} &= -\frac{1}{\Sigma r} \frac{\partial P}{\partial \phi} - \frac{1}{r} \frac{\partial \Phi}{\partial \phi} + \frac{f_{\phi}}{\Sigma}, \\ P &= c_s^2(r) \Sigma. \end{split}$$

Viscous forces $f \propto \nu = \nu_0 \times 10^{-5}$, temperature $c_s^2 = h^2/r$, h = H/r. Φ is total potential including primary, planet (softening $\epsilon = 0.6H$), indirect terms but no self-gravity.

 Method: FARGO code (Masset 2000), finite difference for hydrodynamics, RK5 for planet motion.

M-K. Lin, DAMTP

Type III migration as a function of visocisty

Discs: uniform density $\Sigma = 7 \times 10^{-4}$, aspect ratio h = 0.05 and different uniform kinematic viscosities. Note $\nu = 10^{-5}$ equivalent to $\alpha_{SS} = 4 \times 10^{-3}$ at r = 1.

Planet: Saturn mass $M_p = 2.8 \times 10^{-4}$ initially at r = 2.

M-K. Lin, DAMTP

Type III migration in a low viscosity disc

M-K. Lin, DAMTP

Type III migration in a low viscosity disc

Vortensity rings: formation via shocks

Vortensity generated as fluid elements U-turn during its horse-shoe orbit.

We need:

Vortensity jump across isothermal shock:

$$\left[\frac{\omega}{\Sigma}\right] = -\frac{(M^2-1)^2}{\Sigma M^4} \frac{\partial v_{\perp}}{\partial S} - \left(\frac{M^2-1}{\Sigma M^2 v_{\perp}}\right) \frac{\partial c_s^2}{\partial S}.$$

RHS is pre-shock. $M = v_{\perp}/c_s$, S is distance along shock (increasing radius). Additional baroclinic term compared to Li et al. (2005) but has negligible effect ($c_s^2 \propto 1/r$).

- Flow field: shearing-box geometry, velocity field from zero-pressure momentum equations, density field from vortensity conservation following a particle.
- Shock location : generalised Papaloizou et al. (2004)

$$rac{dy_s}{dx} = rac{\hat{v}_y^2 - 1}{\hat{v}_x \hat{v}_y - \sqrt{\hat{v}_x^2 + \hat{v}_y^2 - 1}}.$$

$$\hat{v} \equiv v/c_s$$

Theoretical jumps

- ▶ Vortensity generation near shock tip (horse-shoe orbits), vortensity destruction further away (circulating region). Variation in flow properties on scales of $r_h \simeq H$.
- Variation in disc profiles on scale-heights enables shear instability ⇒ vortices in non-linear stage (Lovelace et al. 1999, Li et al. 2001).

Idea: linear stability analysis of inviscid disc but use simulation vortensity profile as basic state: axisymmetric, v_r = 0. Basic state checked explicitly.

• Governing equation for isothermal perturbations $\propto \exp i(\sigma t + m\phi)$:

$$\frac{d}{dr}\left(\frac{\Sigma}{\kappa^2 - \bar{\sigma}^2}\frac{dW}{dr}\right) + \left\{\frac{m}{\bar{\sigma}}\frac{d}{dr}\left[\frac{\kappa^2}{r\eta(\kappa^2 - \bar{\sigma}^2)}\right] - \frac{r\Sigma}{h^2} - \frac{m^2\Sigma}{r^2(\kappa^2 - \bar{\sigma}^2)}\right\}W = 0$$

 $W = \delta \Sigma / \Sigma; \ \kappa^2 = 2 \Sigma \eta \Omega; \ \bar{\sigma} = \sigma + m \Omega(r).$

> Self-excited modes in inviscid disc with sharp vortensity profiles.

- ▶ Disturbance focused around vortensity minimum (gap edge), exponential decays either side joined by vortensity term at co-rotation r₀. More extreme minimum ⇒ more localised.
- Waves beyond the Lindblad resonances $(\kappa^2 \bar{\sigma}^2 = 0)$ but amplitude not large compared to co-rotation.

Recall co-orbital mass deficit

$$\delta m = 4\pi a x_s (\Sigma_e - \Sigma_g)$$

• Instability can increase δm by increasing Σ_e but not Σ_g (co-rotational modes are localised) \Rightarrow favouring type III. When vortex flows across co-orbital region, Σ_g increases and migration may stall.

Recall co-orbital mass deficit

$$\delta m = 4\pi a x_s (\Sigma_e - \Sigma_g)$$

- ▶ Instability can increase δm by increasing Σ_e but not Σ_g (co-rotational modes are localised) \Rightarrow favouring type III. When vortex flows across co-orbital region, Σ_g increases and migration may stall.
- Can expect interaction when δm of order planet mass.

Growth rate indepdent of density scale. Higher density just means less time needed for vortex to grow sufficiently large for interaction.

Vortex-driven migration in other discs

 $c_s^2 = T \propto h^2$. Lower temperature \Rightarrow stronger shocks \Rightarrow profile more unstable \Rightarrow shorter time-scale to vortex-planet interaction.

Require disc profile to be sufficiently extreme and have enough mass to trigger vortex-planet interaction, but the extent of migration during one episode is the same.

M-K. Lin, DAMTP

Type III migration in a low viscosity disc

- Migration in low viscosity/inviscid discs is non-smooth due to shear instabilities associated with gap edge (vortensity minima). Effects appear at ν = O(10⁻⁶) or α_{SS} = O(10⁻⁴).
- Provided an over-all picture of vortex-planet interaction: formation of unstable basic state via shocks, linear stability analysis and hydrodynamic simulations.
- Instability favours type III migration by increasing the co-orbital mass deficit. Vortex-planet interaction when $\delta m/M_p \sim 4$ —5. Associated disruption of co-orbital vortensity structure, unlike previous notion of type III migration where flow-through does not affect co-orbital region.