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ABSTRACT
Numerical simulations of global three-dimensional (3D), self-gravitating discs with a gap
opened by an embedded planet are presented. The simulations are customized to examine
planetary gap stability. Previous results, obtained by Lin & Papaloizou from 2D disc models,
are reproduced in 3D. These include (i) the development of vortices associated with local
vortensity minima at gap edges and their merging on dynamical time-scales in weakly self-
gravitating discs, (ii) the increased number of vortices as the strength of self-gravity is increased
and their resisted merging, and (iii) suppression of the vortex instability and development of
global spiral arms associated with local vortensity maxima in massive discs. The vertical
structure of these disturbances is examined. In terms of the relative density perturbation,
the vortex disturbance has weak vertical dependence when self-gravity is neglected. Vortices
become more vertically stratified with increasing self-gravity. This effect is seen even when
the unperturbed region around the planet’s orbital radius has a Toomre stability parameter
∼10. The spiral modes display significant vertical structure at the gap edge, with the mid-
plane density enhancement being several times larger than that near the upper disc boundary.
However, for both instabilities the vertical Mach number is typically a few per cent, and on
average vertical motions near the gap edge do not dominate horizontal motions.

Key words: hydrodynamics – instabilities – methods: numerical – planet–disc interactions
– protoplanetary discs – planetary systems.

1 IN T RO D U C T I O N

Astrophysical discs may develop radial structure for several rea-
sons (Armitage 2011). It has been suggested that protoplanetary
discs contain ‘dead zones’ in which the magnetorotational instabil-
ity is inefficient, leading to a reduced accretion rate in this region
(Gammie 1996). Matter then accumulates at the radial boundary of
a dead zone and the actively accreting region, leading to a local
density bump.

Structure can also be induced by an external potential such as
an embedded satellite. A sufficiently massive planet opens a gap
in the disc (Lin & Papaloizou 1986), and the gap edges involve
radial structure with characteristic length-scales of the local disc
scale-height.

It is well established that localized radial structure in thin discs
can be dynamically unstable (Lovelace et al. 1999; Li et al. 2000,
2001). The evolution of radially structured discs may then be af-
fected by such instabilities. More specifically, a necessary condition
for instability is the existence of an extremum in the ratio of vor-
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ticity to surface density, or vortensity.1 Indeed, instabilities have
been demonstrated explicitly for dead-zone boundaries (Varnière &
Tagger 2006; Lyra et al. 2008, 2009b; Crespe, Gonzalez & Arena
2011) as well as planetary gap edges (Koller, Li & Lin 2003; Li et al.
2005; de Val-Borro et al. 2007; Lyra et al. 2009a; Lin & Papaloizou
2010).

These studies consider non-self-gravitating or weakly self-
gravitating discs. In fact, instabilities in structured astrophysical
discs can be traced back to Lovelace & Hohlfeld (1978), who consid-
ered self-gravitating particle discs. Sellwood & Kahn (1991) studied
a similar system, while self-gravitating gaseous discs were exam-
ined by Papaloizou & Lin (1989), Papaloizou & Savonije (1991) and
Meschiari & Laughlin (2008, who adopted disc profiles to mimic
planetary gaps).

Lin & Papaloizou (2011a,b) explored in more detail the role of
self-gravity on the stability of gaps self-consistently opened by a
planet. They performed a series of linear and non-linear calculations
for a range of disc masses. They found vortex formation in weakly
self-gravitating discs and global spiral arms in massive discs, but
both are associated with the gap edge.

1 This is modified by a factor involving the entropy for non-barotropic discs.
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The above studies have employed the razor-thin or two-
dimensional (2D) disc approximation. It is natural to extend these
models to 3D. However, note that non-axisymmetric instabilities
in pressure-supported thick discs, i.e. the Papaloizou–Pringle in-
stability (PPI), was originally studied in 3D (Papaloizou & Pringle
1984, 1985, 1987; Goldreich, Goodman & Narayan 1986). The
vortex-forming instability mentioned above is essentially the PPI
operating in a thin disc with the density bump being analogous to a
torus. Some early studies of slender tori also included self-gravity
(e.g. Goodman & Narayan 1988; Christodoulou & Narayan 1992).

Recently, 3D non-self-gravitating, rotationally supported global
discs have been simulated with a local density bump, either set as
an initial condition (Meheut et al. 2010; Meheut, Yu & Lai 2012b;
Meheut et al. 2012a) or self-consistently generated by a resistivity
jump in magnetic discs (Lyra & Mac Low 2012). The latter models
the dead-zone scenario. These simulations display vortex formation
similar to 2D discs. On the other hand, instabilities at planetary gap
edges in 3D self-gravitating discs have not yet been simulated.

In this work we extend the 2D self-gravitating disc models of
Lin & Papaloizou (2011a,b) to 3D. Because the instabilities are
associated with radial structure with comparable size to the disc
thickness, it is not obvious at first that 2D is a good approximation.
Thus, our priority in this first study is to verify results obtained
in Lin & Papaloizou (2011a,b) by simulating equivalent systems
in 3D. We also identify some 3D effects that set the direction for
future investigations.

This paper is organized as follows. After reviewing the main
2D results in the next subsection, we describe our 3D disc–planet
models in Section 2. Numerical methods are stated in Section 3.
We go through our simulations in Section 4 with additional result
analyses presented in Section 5. We summarize and conclude in
Section 6 with a discussion of several limitations of our simulations.

1.1 Gap stability in 2D

For discussion purposes here we consider a barotropic disc.2 For
a radially structured disc the quantity governing stability is the
vortensity profile

η ≡ κ2

2��
, (1)

where κ2 ≡ R−3d(R4�2)/dR is the square of the epicycle frequency,
� is the disc angular velocity and � is its surface density. Here R
is the cylindrical radius. If the disc is self-gravitating, the Toomre
parameter Q is also important,

Q ≡ csκ

πG�
= cs

πG

(
2�η

�

)1/2

, (2)

where cs is the sound speed. Q < 1 signifies local axisymmetric
gravitational instability (Toomre 1964). We remark that some stud-
ies of instabilities in structured discs employ values of κ2 marginally
above zero or even negative (e.g. Li et al. 2000, 2001), implying that
the classic Toomre instability may operate. Of course, if the disc is
strictly non-self-gravitating and κ2 > 0, then � can be rescaled so
that Q � 1, giving a self-consistent model.

The connection between Q and η results in the vortensity profile of
a planetary gap to resemble its Toomre parameter profile because of

2 Our locally isothermal numerical models are not strictly barotropic. How-
ever, the instabilities of interest are associated with localized structure and
we adopt sound-speed profiles that vary slowly in these regions. Hence we
can consider it to be isothermal and barotropic.

Figure 1. Typical structure of the outer edge of a planetary gap in terms of
the Toomre parameter Q. The horizontal axis is the displacement away from
the planet in units of its Hill radius (defined in Section 2.4).

vortensity generation and destruction across planet-induced shocks
(Lin & Papaloizou 2010). Extrema in Q and η nearly coincide at
the same radius. Fig. 1 shows a typical Toomre profile. Here we
focus on the outer disc where we find instabilities strongest in the
numerical simulations.

As mentioned in Section 1, disc profiles with stationary points in
η (and therefore in Q for planetary gaps) can be dynamically unsta-
ble. The gap profile fulfils this requirement and has the following
stability properties (taken from Lin & Papaloizou 2011a,b).

(i) In weakly or non-self-gravitating discs, instability is associ-
ated with the vortensity minimum or min(Q), leading to local vortex
formation.

(ii) As the strength of self-gravity is increased, the vortex mode
shifts to higher azimuthal wavenumber m. This is partly due to the
stabilization effect of self-gravity on low m vortex modes.

(iii) The time-scale for vortex merging increases with the strength
of self-gravity. In non-self-gravitating discs, vortices merge on dy-
namical time-scales and the result is a single, azimuthally extended
vortex. Multi-vortex configurations can last much longer with in-
creased disc gravity. Merging eventually takes place but the resulting
vortex is azimuthally localized. In the moderately self-gravitating
case discussed in Lin & Papaloizou (2011a), a vortex pair persists
until the end of the simulation.

(iv) The vortex mode is suppressed with sufficiently strong self-
gravity and replaced by a global spiral instability associated with
the local vortensity maxima or max(Q). The instability can be phys-
ically understood as gravitational coupling between the gap edge
and the wider disc exterior to it.

We shall confirm the above in 3D disc models, except for the az-
imuthally localized, post-merger vortices in (iii). This requires very
long simulations with self-gravity (∼200 orbits in Lin & Papaloizou
2011a), which are currently impractical in 3D.

These instabilities also affect planetary migration, leading to
vortex–planet and spiral–planet interactions (Lin & Papaloizou
2010, 2011a,b, 2012). In order to focus on gap stability we will
not consider migration (and because of resolution limits in a 3D
simulation), but we can still measure disc–planet torques. In par-
ticular, we will confirm that spiral modes make the disc-on-planet
torques more positive with increasing instability strength.

2 D I S C – P L A N E T MO D E L S

We consider a 3D gas disc of mass Md with an embedded planet of
mass Mp, both rotating about a central star of mass M∗. To describe
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the system, we use both spherical polar coordinates r = (r, θ, φ)
and cylindrical coordinates r = (R, φ, z) centred on the star. The
frame is non-rotating. The disc is governed by the standard fluid
equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∂u
∂t

+ u · ∇u = − 1

ρ
∇p − ∇
eff, (4)

p = c2
s ρ, (5)

where ρ is the mass density, u is the velocity field, p is the pressure
and 
eff is an effective potential. Physical viscosity is not included
in this study (but artificial viscosity is employed in the numerical
simulations to treat shocks). The effect of viscosity on vortex modes
and spiral modes has been investigated previously (de Val-Borro
et al. 2007; Lin & Papaloizou 2011b). We do not expect its effect
to differ in 3D.

2.1 Equation of state

We adopt a modified isothermal equation of state (EOS) where the
sound speed cs depends on R and the planet position if present.
Without a planet, we set

cs = ciso ≡ H�k no planet, (6)

where H = hR is the disc scale-height with constant aspect ratio h
and �k =

√
GM∗/R3 is the Keplerian frequency. When a planet is

present, we set

cs =
HHp

√
�2

k + �2
kp(

H 7/2 + H
7/2
p

)2/7 with planet, (7)

where Hp = hpdp, �2
kp = GMp/d

3
p and dp =

√
|r − rp|2 + ε2

p is

the softened distance to the planet at position rp, where εp is the
softening length defined later. This EOS is taken from Pepliński,
Artymowicz & Mellema (2008) and is used here to increase the tem-
perature near to planet in order to reduce mass accumulation in this
region. The dimensionless parameter hp controls the temperature
increase at rp relative to that given by ciso.

2.2 Effective potential

The effective potential is as follows:


eff = 
∗ + 
p + 
 + 
i, (8)

where


∗ = −GM∗
r

(9)

is the stellar potential and


p = −GMp

dp
(10)

is the softened planet potential. 
 is the gravitational potential due
to the disc material and is given via the Poisson equation:

∇2
 = 4πGρ. (11)

In equation (8), 
i is the indirect potential due to the disc and the
planet,


i(r) =
∫

Gρ(r ′)
r ′3 r · r ′d3r ′ + GMp

|rp|3 r · rp. (12)

The indirect potential accounts for the acceleration of the coordi-
nate origin relative to the inertial frame. This term is included for
consistency but is unimportant for the instabilities of interest.

2.3 Initial disc

The physical disc occupies r ∈ [ri, ro], θ ∈ [θmin,π− θmin] and φ ∈
[0, 2π]. The vertical domain is such that tan (π/2 − θmin)/h = nH

scale-heights. The density field is initialized to

ρ(t = 0) = βρ0, (13)

where ρ0 is the density profile corresponding to a non-self-
gravitating disc,

ρ0(R, z) = �0√
2πH

(
R

ri

)−σ [
1 −

√
ri

R + hri

]

× exp

(
− 
∗

c2
iso

− 1

h2

)
, (14)

with fixed power-law index σ = 3/2. β is a function to account for
vertical self-gravity, such that the surface density of the initial disc is
the same as that corresponding to ρ0. We calculate β in Appendix A
with some approximations. Because of this, we always first evolve
the disc without a planet.

The constant �0 is chosen via the Keplerian Toomre parameter
Qo at the outer boundary:

Qo ≡ ciso�k

πG�

∣∣∣∣
R=ro

, (15)

� ≡
∫ zmax

zmin

ρ0 dz. (16)

Note that the integration for surface density � is taken over the
finite vertical domain being considered.

The disc is initialized with zero meridional velocity (ur = uθ =
0). The azimuthal velocity is set by centrifugal balance with stellar
gravity, pressure and self-gravity, but for the disc models being con-
sidered, which are thin and not very massive, the initial azimuthal
velocity is essentially Keplerian.

Our disc models are labelled by Q0 ∝ M−1
d . This gives an indi-

cation of the strength of self-gravity. Specifically it measures grav-
itational stability against local axisymmetric perturbations at the
outer disc boundary. All of our discs satisfy the Toomre criterion
for stability.

2.4 Planet configuration

In this work the planet is treated as a fixed external potential. Its
purpose is to create and maintain a structured disc. The planet is
held on a circular orbit, rp = (rp, π/2, φp) with φp(t) = �k(rp)t in
spherical coordinates. The softening length of the planet potential
is fixed to εp = 0.1rh, where rh = (q/3)1/3rp is the Hill radius and
q ≡ Mp/M∗. The EOS parameter is set to hp = 0.5.

3 N U M E R I C A L M E T H O D

We evolve the disc–planet system using the ZEUS-MP finite-difference
code in spherical coordinates (Hayes et al. 2006). The computational
domain is divided into (Nr, Nθ , Nφ) zones, logarithmically spaced in
radius and uniformly spaced in the angular coordinates. We assume
symmetry about the mid-plane, so the computational domain only
covers the upper plane (z > 0). Hydrodynamic boundary conditions
are outflow at ri, ro, reflecting at θmin and periodic in φ.
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ZEUS-MP was chosen for its ability to treat self-gravity on a spher-
ical grid with parallelization. It solves the discretized Poisson equa-
tion using a conjugate gradient method (for details, see Hayes et al.
2006). To supply boundary conditions to the solver, we approximate
the boundary potential using spherical harmonic expansion as de-
scribed in Boss (1980). The expansion in spherical harmonics Ylm

is truncated at lmax, mmax. We assume negligible contributions to the
disc potential beyond the physical disc boundaries.

3.1 Simulation set-up

Computational units are such that G = M∗ = 1. The radial range
of the disc is (ri, ro) = (1, 25). The vertical extent is nH = 2 scale-
heights. The grid resolution is (Nr, Nθ , Nφ) = (256, 32, 512). We
quote time in units of P0 = 2π/�k(rp). Between 0 ≤ t < 10P0

the disc is evolved without a planet and (lmax, mmax) = (48, 0). The
planet is introduced at t = 10P0 and its mass smoothly increased
from zero to its full value between 10P0 ≤ t ≤ 20P0. For t > 10P0

we set (lmax, mmax) = (16, 10).
The unstable modes of interest are associated with vortensity

extrema at gap edges, so these features need to be resolved. Nu-
merical diffusivity, e.g. due to low resolution or grid choice, may
inhibit such instabilities. For example, in their 2D studies of vortex
generation at gap edges, de Val-Borro et al. (2007) did not find
instability in Cartesian simulations.

Test runs with half the resolution in each coordinate also produce
vortex and spiral modes, but with reduced growth rate. While the
resolution adopted here can confirm these instabilities operate in
3D, it may be inadequate to probe secondary instabilities on longer
time-scales (see Section 6.3).

We set mmax = 10 for the boundary potential as a compromise
between accounting for the non-axisymmetry of unstable modes and
computation time. We typically find vortex modes with azimuthal
wavenumber m = 3–6. We tested a run (Case 3) with mmax =
12 and obtained similar results. However with mmax = 0, vortex
merging proceeds soon after their formation, whereas it is resisted
with mmax = 10 (consistent with high-resolution 2D results). The
global spiral modes have m = 2, so large mmax is not crucial. Indeed,
tests with mmax = 4 also yield the spiral instability.

4 R ESU LTS

Our simulations are summarized in Table 1. If the stellar mass is
taken to be M∗ = M then q = 10−3 corresponds to a Jupiter-mass
planet. The planetary masses considered here are larger than our
previous 2D investigations (Lin & Papaloizou 2011a,b) in order to
achieve higher instability growth rates and shorten the computation
time. We will examine gap stability as a function of Q0.

Table 1. Simulation parameters. Qp is the Keplerian
Toomre parameter evaluated at rp. Case 0 was ran with-
out self-gravity.

Case h 103q Q0, Qp Md/M∗ Mode

0 0.07 2 ∞ 0.021 Vortex
1 0.07 2 8.0, 14.8 0.021 Vortex
2 0.07 2 4.0, 7.40 0.042 Vortex
3 0.07 2 3.0, 5.54 0.056 Vortex
4 0.05 1 4.0, 7.39 0.030 Vortex
5 0.05 1 3.0, 5.54 0.040 Vortex
6 0.05 1 1.7, 3.14 0.070 Spiral
7 0.05 1 1.5, 2.77 0.080 Spiral

Figure 2. Gap profile opened by a giant planet in a non-self-gravitating disc
(solid, Case 0) and a self-gravitating disc (dotted, Case 1). The azimuthally
averaged relative density perturbation in the mid-plane is shown. Profiles
for other cases are similar.

4.1 Vortex modes in weakly self-gravitating discs

We first compare Cases 0 and 1. The set-up for these runs is iden-
tical except that the disc potential is neglected in Case 0, which
corresponds to the standard approach to model disc–planet systems
(e.g. D’Angelo & Lubow 2010). Case 1 is the self-gravitating ver-
sion of Case 0. We show below that, even with a minimum Toomre
parameter of Q0 = 8, disc self-gravity affects the evolution of the
vortex instability.

Fig. 2 shows the mid-plane gap profile at t = 25P0 in terms of
the relative density perturbation. The snapshot is taken before in-
stabilities develop. Case 1 has a slightly deeper gap and steeper gap
edges than Case 0. This is because in a self-gravitating calculation
such as Case 1, fluid bound to the planet adds to its mass. For both
runs, the mass in the planet’s Hill sphere is ∼0.02Mp.

4.1.1 Development of instability

Fig. 3 shows the evolution of the gap. It is clear that the vortex
instability can develop in 3D with or without self-gravity. At t =
30P0, two vortices are visible in Case 0, while three vortices are
seen in Case 1 (in both cases there may be another vortex coinciding
with the outer planetary wake).

For the weakly self-gravitating discs considered here, vortex
modes with the same m have been excited, but without self-gravity
vortices merge soon after formation. (In Case 0, the overdensity at
the outer gap edge just ahead of the planet appears to be a merging
vortex pair, rather than a single vortex from the instability.) At t =
40P0, only a vortex pair remains in Case 0 while merging is delayed
in Case 1 with a three-vortex configuration.

The differences between self-gravitating and non-self-gravitating
simulations shown in Fig. 3 are similar to those seen in 2D simula-
tions (Lyra et al. 2009b; Lin & Papaloizou 2011a). Lin & Papaloizou
demonstrated that self gravity sets a minimal inter vortex distance
so that merging is resisted in the rϕ plane. However, at this level of
self-gravity merging is only delayed. The final state for both cases
is a single vortex circulating the gap edge.

4.1.2 Effect of self-gravity on vortex vertical structure

Here we compare the final vortex in Cases 0 and 1. Fig. 4 shows
their vertical structure in the Rz plane. The snapshots correspond to
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Figure 3. Development of the vortex instability in the non-self-gravitating Case 0 (top) and the weakly self-gravitating Case 1 (bottom). The mid-plane relative
density perturbation is shown. White lines at intermediate azimuths correspond to the vortex centroid in Fig. 4, while the azimuthal range marked by the lines
was set for averaging in Fig. 5.

Figure 4. Vertical structure of a vortex in a non-self-gravitating disc (top,
Case 0) and a weakly self-gravitating disc (bottom, Case 1). Contours show
the relative density perturbation and the arrows are mass flux vectors ρu
projected on to this plane. The snapshots correspond to the vortex centroids
marked by white lines at intermediate azimuths in Fig. 3 (right-hand panel).

the vortex centroid, marked by white lines at intermediate azimuths
in the right-hand panel of Fig. 3. Without self-gravity the vortex
instability produces predominantly columnar disturbances in the
relative density perturbation W.

Case 0 is consistent with recent linear calculations of the vor-
tex instability in non-self-gravitating 3D discs, which show that W
has essentially no vertical dependence at the radius where vortex-
formation is expected (Lin 2012; Meheut et al. 2012b). In Fig. 4
the Case 0 vortex does show very weak vertical dependence near
the upper boundary. This is likely due to the finite vertical domain
adopted in our model.3

By contrast, the self-gravitating vortex in Case 1 clearly display
stratification in the relative density perturbation. The vortex is more
concentrated towards the mid-plane. With self-gravity, density en-
hancement in the vortex can be ∼50 per cent higher than without.

In Fig. 5 we plot vertical velocities averaged over the vortices.
The non-self-gravitating case typically involves positive vertical
velocity (also seen in Meheut et al. 2012b). Perhaps not surprisingly,
the self-gravitating case has as strong overdensity near the mid-
plane to provide vertical acceleration, so on average the vertical
velocity is negative. The precise values in Fig. 5 depend on the
averaging procedure but the contrast in sgn(uz) between the two
cases is robust (even when we consider the point in the Rφ plane
where density perturbation is largest and do not perform an average).
The quantity 〈u2

z/c
2
iso〉1/2 behaves similarly in both cases.

Although there is vertical motion, it is worth noting that the
vertical Mach number is only a few per cent. Fig. 3 also indicates
that the flow is horizontal on average. This suggests approximate
vertical hydrostatic balance. If self-gravity is included, then just

3 Linear calculations of vertically isothermal discs usually assume an atmo-
sphere of infinite extent.
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Figure 5. Average vertical velocity uz, normalized by the sound speed, in
a non-self-gravitating vortex (Case 0, solid) and a self-gravitating vortex
(Case 1, dotted). The radial range for the average is taken over r − rp ∈ [4,
6.5]rh for Case 0 and r − rp ∈ [4, 6]rh for Case 1, since the latter vortex is
slightly smaller (see Fig. 4). The azimuthal range is that marked by white
lines in Fig. 3 (right-hand panel).

like in the set-up of the initial disc, the additional vertical force will
enhance the mid-plane density. Hence, we observe a more stratified
vortex in Case 1.

4.2 Vortex modes with moderate self-gravity

Cases 2–5 are all self-gravitating and develop the vortex instabil-
ity. Cases 2 and 3 are continuations of Case 1 to more massive
discs. Cases 4 and 5 are identical runs except a Jupiter-mass planet
(q = 10−3) and a thinner disc (h = 0.05) are adopted.

We compare the relative density perturbation between Cases 2
and 3 in Fig. 6. The snapshots are taken at z = H but are very
similar to razor-thin disc simulations (Li et al. 2009; Yu et al. 2010;
Lin & Papaloizou 2011a). In both Cases the m = 5 vortex mode
is excited (cf. m = 3–4 in Case 1). At t = 30P0, vortices are just
beginning to emerge in Case 3, whereas distinct blobs can already
be identified in Case 2, with larger overdensities than vortices in
Case 3. This indicates a stronger instability with decreasing strength

Figure 6. Development of the vortex instability at gap edges in moderately
self-gravitating discs. The relative density perturbation is shown for Case 2
(top) and Case 3 (bottom) at z = H. The planet position is marked by the
cross. Horizontal lines in the plot for Q0 = 3 and t = 50P0 indicate azimuths
taken in Fig. 7.

Figure 7. Vertical structure of a vortex in the moderately self-gravitating
Case 3. The relative density perturbation are overlaid by the mass flux
vectors ρu projected on to this plane. The slices are taken at t = 50P0 and
azimuths (φ − φp)/π = 0.86 (top), 0.81 (middle) and 0.76 (bottom). These
correspond to the horizontal lines marked in Fig. 6.

of self-gravity. Vortex merging ensues in Case 2 but does not occur
in Case 3 within the simulation time-scale (unlike Case 1).

For razor-thin discs, Lin & Papaloizou (2011a) have shown that
self-gravity has a stabilizing effect against vortex modes with low
m. This contributes to favouring higher m modes and hence more
vortices with increasing self-gravity. Fig. 6, together with results
for Case 1, shows that this effect persists in 3D. Resisted merging,
seen in 2D models, also occurs in 3D. Because this is due to vortices
executing mutual horseshoe turns, only horizontal self-gravitational
forces are important. We do not expect the vertical dimension to
significantly affect vortex–vortex gravitational interaction.

4.2.1 A 3D vortex in Case 3

Here we examine the vortex in Case 3 marked by horizontal white
lines in Fig. 6. Note that no merging has occurred. The vortex is
radially located about rv ∼ rp+5rh. It has azimuthal and radial sizes
�φv ∼ 9h and �rv ∼ 2.5H , respectively. Its mass is Mv ∼ 8.4 ×
10−4 M∗.4 The corresponding Hill radius of the vortex rhv ∼ 0.9H

is smaller than its horizontal size but is comparable to its vertical
size at the vortex centroid.

Fig. 7 shows the vertical structure of the vortex described above.
As expected it is more stratified than in weakly self-gravitating discs

4 Since no merging has occurred, Mv can also be estimated by the mass
contained in an annulus about rv in the unperturbed disc divided by m = 5.
This gives 8 × 10−4M∗ if the annulus width is 2rh.
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Figure 8. Vertical velocities uz, normalized by the sound speed, for the
vortex in the self-gravitating Case 3 shown in Fig. 6. The velocities are
all radially averaged over r − rp ∈ [4.0, 5.5]rh. The solid line is also
averaged over the vortex azimuthal extent. Azimuthal slices ahead of the
vortex (dotted), at the centroid (dashed) and behind the vortex (dash–dotted)
are also shown.

(Fig. 4), especially at the vortex centroid where the overdensity is
maximum. The initial Keplerian Toomre parameter at r = rv is Q =
4.3. A density enhancement by a factor of �2 easily gives Q � 2,
so that self-gravity in the perturbed state is dynamically important.

Ahead and behind the vortex centroid, the flow field is mostly
horizontal (top and bottom panels in Fig. 7). It corresponds to the
motion of an anticyclonic disc vortex common in 2D simulations (Li
et al. 2001). In this plane, vertical motions only become significant
compared to uR close to the vortex centroid (middle panel). We
plot the average uz for the vortex in Fig. 8. Azimuthal slices at
the vortex centroid, behind it and ahead of it, are also shown. The
average vertical velocity is positive (solid line). This is qualitatively
different to the merged vortex in the weakly self-gravitating Case 1
(Fig. 4). We have examined other vortices but could not identify a
‘typical’ vertical flow structure (cf. anticyclonic horizontal flow is
generic). Although the vertical velocities appear to display a range
of behaviour, the vertical Mach number is still very small.

We also find that the vortices have height-dependent azimuthal
structure. Fig. 9 shows several slices in the φz plane. The choice
of radii for these plots was based on the vortex described above
(corresponding to the right vortex in the figure). The vortices are
more columnar closer to the gap edge (r − rp = 4rh, top slice).
Moving away from the gap edge, the vortices develop front–back
asymmetry and are thinner with increasing height (r − rp = 5.5rh).

The increased 3D structure away from the gap edge could be
related to density waves emitted by the vortex (Paardekooper, Lesur
& Papaloizou 2010). Back-reaction of these waves on the vortex
vertical structure, if any, is expected to be weaker on the side of the
vortex adjacent to the low-density gap edge (top slice in Fig. 9).

The perturbed azimuthal velocities away from the vortex cen-
troids again follow the expected anticyclonic motion in the hor-
izontal plane (being positive interior and negative exterior to the
centroid). However, unlike the previous Rz plots, here the vertical
velocities can often be comparable or larger than the perturbed az-
imuthal velocities (e.g. r − rp = 5.5rh, bottom panel). Of course,
the total azimuthal velocity is supersonic and therefore much larger
than vertical velocities. As remarked above, the vortices do not share
the same structure. For example, the left vortex centroid involves
negative vertical velocity while uz > 0 for the right vortex (r − rp =
4.75rh, middle panel).

Figure 9. Azimuthal vortex structures in the self-gravitating Case 3 at
t = 50P0. The background flow is from left to right. The relative density
perturbations are overlaid by the perturbed mass flux vectors ρ(u − R�k φ̂)
projected on to this plane. The slices are taken at radii (r − rp)/rh = 4.0
(top), 4.75 (middle) and 5.5 (bottom). These correspond to the flow just
interior, at, and just exterior to the vortex centroid on the right.

4.2.2 Cases 4 and 5

Cases 4 and 5 are additional examples of the vortex instability in
3D discs with smaller h (=0.05) than the above runs (with h =
0.07). However, initial Toomre profile is nearly independent of h,
so the strength of self-gravity is unchanged. We also used a smaller
planetary mass, q = 10−3 so the ratio q/h3 = 8 is not significantly
larger than Cases 2 and 3 (q/h3 = 5.8). We checked that prior to
instability, the outer gap edge profiles of these cases are similar.

We found that the instability grows slower with h = 0.05 as
vortices become identifiable at t = 35P0, compared to t = 30P0 for
Cases 2 and 3. A decrease in growth rate with sound speed (which is
proportional to h) was already noted in 2D (Li et al. 2000). Thus, the
effect of sound speed on the vortex instability remains unchanged
by the 3D geometry.

Fig. 10 shows several snapshots of Cases 4 and 5 at t = 50P0

near the upper disc boundary. As before, high in the atmosphere
the density enhancement is weaker with increasing self-gravity.
Consistent with 2D simulations, the more self-gravitating Case 5
develops the m = 6 vortex mode, whereas m = 5 vortices develop
in Case 4 with weaker self-gravity. Merging is strongly resisted in
these runs. In fact, Case 5 was extended to t = 135P0 and only one
vortex pair merged.

4.3 Edge-spiral modes in massive discs

Lin & Papaloizou (2011a,b) found that as the strength of self-gravity
is increased, instability eventually shifts from localized vortices to
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Figure 10. Vortex instability in Case 4 (left) and Case 5 (right). The relative
density perturbation near the upper vertical boundary. These runs are similar
to Cases 2 and 3, except a colder disc is employed (h = 0.05) and a smaller
planetary mass is used to open the gap q = 10−3.

low-m global spirals extending from the outer gap edge to the outer
disc. The vortex instability is suppressed because they are associated
with vortensity minima (which we will check in Section 5.2). Lin
& Papaloizou (2011a) give a simple energy argument which shows
that such association is not possible for sufficiently strong self-
gravity. Association with vortensity maximum is favoured instead.
These are the spiral instabilities. Lin & Papaloizou called them
edge modes since they can still be considered associated with the
gap edge.

We begin to observe edge modes in our 3D models when Q0 = 1.7
(Case 6).5 Its evolution is depicted in Fig. 11. A m = 2–3 disturbance
develops at the outer gap edge at t = 35P0 and induces spiral density
waves in the exterior disc through self-gravity. Interaction between
the edge disturbance and the wider disc leads to the global spiral
pattern seen at t = 40P0 and 45P0. This coupling is necessary for
instability. The edge mode is associated with a local max(Q) just
inside the unperturbed outer gap edge. In Case 6, max(Q) ∼ 8 so a
local gravitational instability is not possible. However, we can still
consider the global edge mode as being composed of two parts: an
edge disturbance where density perturbation is largest and the spiral
arm it induces.

Comparison between the two heights in Fig. 11 shows that edge
modes are significantly vertically stratified. Most of the density
perturbation is confined near the mid-plane. Unlike vortex modes
the spirals appear transient. Their amplitudes are much reduced by
t = 50P0, but are still visible. This is likely a radial boundary effect.
The transition to a low-density annulus towards the outer disc edge
is a result of the standard outflow boundary condition applied there.
While the linear edge mode instability is insensitive to boundary
conditions, its long-term evolution is affected. The outer disc edge
can reflect waves back to gap edge to stabilize it, causing saturation
(Lin & Papaloizou 2011b).

4.3.1 Vertical structure of an edge mode

Several vertical cuts of the edge mode in Case 6 are shown in
Fig. 12. The slices are taken at azimuths marked by white lines in
Fig. 11. The top three plots are associated with the edge disturbance,

5 Note that the transition from vortex to spiral modes with decreasing Q0 is
not abrupt. It is possible to have a mixture.

while the bottom plot is taken at the transition between the edge
disturbance and its spiral arm extending to the outer disc.

Fig. 12 shows that the horizontal flow in the edge disturbance
differs significantly from the vortex mode. If the second plot is
considered the ‘centroid’, then the inward (outward) flow ahead
(behind) it is in the opposite sense to anticyclonic motion associated
with a vortex mode. The centroid is the most stratified region. Its
mid-plane overdensity ∼3.37 corresponds to a Toomre Q ∼ 1 in the
centroid, but we do not observe fragmentation.

As we move away from the centroid in the decreasing φ direction,
the edge mode decreases in amplitude but occupies more of the
vertical domain. The bottom plot in Fig 12 shows a radial split: the
columnar disturbance in R − rp ∈ [5.8, 6.5]rh is the beginning of
the spiral wave excited by the edge disturbance. The spiral arm is
fully three dimensional.

In Fig. 13 we plot the average vertical velocity inside an edge
disturbance of the spiral mode. A simulation with Q0 = 1.5 (Case 7)
is also plotted for comparison (its mid-plane density perturbation
is shown in Fig. 14). The flow is typically downwards towards the
mid-plane. This is expected because of strong vertical self-gravity,
as these are massive discs and the mid-plane density enhancement is
large. Note that uz approaches zero again beyond z/H ∼ 1.5 because
of the imposed reflective upper boundary.

5 A D D I T I O NA L R E S U LT S A NA LY S I S

In this section we examine some secondary quantities derived from
the hydrodynamic simulations above. To keep this discussion con-
cise, we will use selected simulations from above for illustration.

5.1 Three-dimensionality

A simple measure of three-dimensionality of the flow is to
compare vertical to horizontal motion. Since we are interested in
non-axisymmetric perturbations to the gap edge, we first Fourier
transform the meridional momentum densities

(vRm, vzm) ≡
∫ 2π

0
ρ × (uR, uz) exp (−imφ) dφ. (17)

We define the three-dimensionality as �m(z/H), where

�2
m ≡ 〈|vzm|2〉

〈|vzm|2〉 + 〈|vRm|2〉 , (18)

and 〈·〉 denotes a radial average. Admittedly, this is a crude measure,
and exact values of �m vary somewhat with details of the average.
However, we have experimented with different averaging domains
and found that the features described below are robust.

The top panel in Fig. 15 shows �m for Cases 1–3 at t = 40P0. The
radial average is taken over r − rp ∈ [3, 7]rh. These are all vortex
modes (see Figs 3 and 6). The flow becomes increasingly three
dimensional away from the mid-plane but �m = O(10−1) is small.
In an averaged sense the flow is mostly horizontal. At the end of the
simulation for Case 1, an azimuthally extended vortex dominates
the flow, for which we measured �1 ∼ 0.2–0.3. Thus, although
vertical motion can become an appreciable fraction of horizontal
motion, the former never dominates.

�m for Cases 4–7 are shown in the bottom panel of Fig. 15. The
radial average is performed over r − rp ∈ [2, 6]rh because the global
spirals in Cases 6 and 7 significantly protrude the gap edge. The
snapshot is taken at t = 50P0 for Cases 4 and 5, at t = 40P0 for Case 6
and at t = 30P0, so that the vortices and spirals have comparable
overdensities at the gap edge. It also reflects the fact that spiral
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Figure 11. Case 6: development of the edge mode instability at the gap edge of a Jovian mass planet. The relative density perturbation in the mid-plane
(bottom) and in the atmosphere (top) is shown at times (left to right) t = 35P0, 40P0, 45P0 and 50P0. White lines indicate azimuthal cuts taken in Fig. 12.

modes are more unstable than vortex modes and develop earlier
(Lin & Papaloizou 2011b). �m ∼ 0.2 is again not particularly large,
but the spiral modes are distinctly more three dimensional than
vortex modes. This is likely due to additional vertical acceleration
provided by the strong self-gravity in those cases.

5.2 Vortensity field

A fundamental distinction between the linear vortex and edge mode
instability is their association with local vortensity minimum and
maximum, respectively. In this section we compare vortensity fields
of discs with vortex modes (Case 2) and edge modes (Case 7). More
specifically, we examine the relative perturbation to the vertical
component of vortensity:

�ηz ≡ ηz − ηz(t = 0)

ηz(t = 0)
, (19)

where

ηz ≡ ẑ · ∇ × u
ρ

. (20)

Fig. 16 compares �ηz in the mid-plane when vortices and spirals
develop. For planetary gaps, vortensity maxima and minima are
both located near the gap edges with characteristic separation of the
local scale-height. The vortensity ring at the inner gap edge (r −
rp � −2rh) remains well defined. The vortex instability is associated
with the local vortensity minimum near the outer gap edge – seen
as localized closed contour lines centred about r − rp ∼ 4rh. The
vortensity ring at r − rp ∼ +2rh becomes distorted as a consequence
of large-scale vortex formation just exterior to it. By contrast, the
edge-spiral mode is associated with the local vortensity maximum.
Their development inherently disrupts the vortensity rings. This is
seen in the right-hand panel as the outer ring is broken up.

The vertical structures also differ. Fig. 17 compares �ηz at az-
imuths coinciding with a vortex or the edge disturbance of the spiral
mode. Both instabilities involve �ηz < 0. It is clear that the spi-
ral mode has stronger vertical dependence. Its region of �ηz < 0

becomes thinner away from the mid-plane. In the vortex case this
region remains about the same width and �ηz is approximately
uniform within it. While min(�ηz) is of comparable magnitude, the
vortensity ring at r − rp = 2rh is much weaker and thinner in the
spiral case (�ηz being a factor of ∼4 smaller than the vortex case).

5.3 Disc–planet torques

The presence of non-axisymmetric disturbances at gap edges is
expected to significantly affect disc–planet torques. It has been
confirmed in 2D simulations that both vortex and spiral modes lead
to oscillatory torques of either sign (Li et al. 2005; Lin & Papaloizou
2011b). In this section we measure the disc-on-planet torques in
several of the above simulations to confirm the main features found
in 2D.

We calculate the specific torque acting on the planet due to a
mass element as

dT (r) = rp × rGρ(r)d3r
d3

p

f (r, rp), (21)

f (r, rp) ≡ 1 − exp

(
−1

2

∣∣∣∣ r − rp

εcrh

∣∣∣∣
2
)

. (22)

The tapering function f reduces contributions from close to the
planet, thereby reducing numerical artefacts arising from this region
because of the diverging potential and limited resolution. We set
the parameter εc = 1 so that tapering does not significantly reduce
contributions from the instabilities, since they develop at �2rh away
from the planet’s orbital radius.

Fig. 18 shows the disc-on-planet torques in Cases 3 and 5, which
develop the m = 5 and 6 vortex modes, respectively. These plots
are qualitatively similar to 2D simulations (e.g. Li et al. 2005). The
torques oscillate on orbital time-scales and its instantaneous values
can be of either sign. However, upon averaging over the simulation
we find that the total torques are negative in both cases. This means
that inward migration is still favoured.
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Figure 12. Vertical structure of the spiral instability at the gap edge in
Case 6. The relative density perturbations are overlaid by the mass flux
vectors ρu projected on to this plane. The slices are taken at t = 40P0 and
azimuths marked by white lines in Fig. 11 (with decreasing φ from top to
bottom).

We extended Case 5 to t = 135P0 and found that the vortices
have similar overdensities as at t = 50P0. However, Fig. 18 shows
that the torque oscillation amplitudes decrease towards the end of
Case 5 compared to t ∈ [40, 80]P0. At t = 50P0 the vortices are
located in r − rp ∈ [3.5, 5.5]rh but by t = 135P0 they are located
in r − rp ∈ [4, 6]rh. Given that t ∈ [40, 80]P0 is only 20P0 to 50P0

after the planet potential has been fully introduced, gap formation
is probably ongoing during this time. We expect torque amplitudes
to be larger during gap formation since the vortices lie closer to the
planet.

Next we examine disc–planet torques in the presence of the spiral
modes. The top panel of Fig. 19 shows the instantaneous disc-on-
planet torques. Contributions from the inner disc (r < rp) and outer
disc (r > rp) are plotted separately for comparison with fig. 18(b)
in Lin & Papaloizou (2011b), which is similar to the present plot.
Large oscillations in the outer torque due to edge mode spirals cause
the total torque to be positive or negative at a given instant.

Unlike the vortex modes, Fig. 19 shows that spiral modes can
lead to a positive running-time-averaged torques (bottom panel).

Figure 13. Average vertical velocity of the edge disturbance in Case 6
(solid) and Case 7 (dotted). The average is taken over r − rp ∈ [2.5, 5.5]rh.
The azimuthal range is indicated by white lines in Fig. 12 for Case 6 (first
and third azimuth in the clockwise direction) and in Fig. 14 for Case 7.

Figure 14. The m = 2 edge mode in Case 7. The colour bar range is
the same as in Fig. 11. White lines indicate the azimuthal range taken for
averaging in Fig. 13 (dotted line). The relative density perturbation of the
edge disturbance in the Rz plane is very similar to Case 6 (Fig. 12).

The average torques become more positive with time after spiral
modes develop, and with increasing self-gravity (which increases
the instability strength). This was also observed in high-resolution
2D simulations in Lin & Papaloizou (2011b). There it was suggested
that the creation of large ‘voids’ in between spiral arms decreases the
time-averaged density in the planet-induced wakes, thereby reduc-
ing associated torque magnitudes. Since the outer planetary wake
normally provides a negative torque, the spiral modes make the total
torque more positive. The similarity between 2D and 3D results in-
dicates that outward migration induced by spiral modes, which was
seen in 2D by Lin & Papaloizou (2011b, 2012), will also operate in
3D.

6 SU M M A RY A N D D I S C U S S I O N

We have performed customized numerical simulations of 3D self-
gravitating discs, in which an embedded satellite or planet has
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Figure 15. Three-dimensionality of the non-axisymmetric flow near the
outer gap edge. Top: Cases 1–3 (vortex modes). Bottom: Cases 4 and 5 (vor-
tex modes) and Cases 6 and 7 (spiral modes). The azimuthal wavenumber
m is chosen to match the number of vortices or large-scale spirals observed.

Figure 16. Relative perturbation to the vertical component of vortensity at
the mid-plane in a disc with the vortex instability (left, Case 2 at t = 40P0)
and the spiral instability (right, Case 7 at t = 30P0). Negative perturbations
in the region r − rp ∈ [2, 6]rh are outlined by white lines. Dotted horizontal
lines indicate azimuthal cuts taken in Fig. 17.

opened a gap. We explicitly verified in 3D the main results on
gap stability previously obtained from 2D calculations (Koller et al.
2003; Li et al. 2005; de Val-Borro et al. 2007; Meschiari & Laughlin
2008), in particular those by Lin & Papaloizou (2011a,b).

Planetary gaps are potentially unstable because of the existence
of vortensity extrema generated by planet-induced shocks. Disc–
satellite interaction also occurs in other systems such as stars in
black hole accretion discs (Baruteau, Cuadra & Lin 2011; Kocsis,
Yunes & Loeb 2011; McKernan et al. 2011). Furthermore, gaps
opened by satellites are just one type of structured disc. Other
examples include dead-zone boundaries mentioned in Section 1
and transition discs (Regály et al. 2012).

Figure 17. Relative vertical vortensity perturbation associated with the vor-
tex instability (top) and spiral instability (bottom). The slices are taken at
azimuths shown by white dotted lines in Fig. 16. Negative perturbations in
the region r − rp ∈ [2, 5.5]rh are outlined by white lines.

Figure 18. Instantaneous disc-on-planet torques in simulations where the
vortex mode develops. Top: Case 3. Bottom: Case 5. Note that Case 5 has
been extended to t = 135P0.

Thus, although we were motivated by previous works on plan-
etary gap stability, and hence considered disc–planet systems, we
expect our results to be applicable to discs with radial structure of
other origin, provided that the vortensity profiles involve stationary
points and therefore prone to the same instabilities.

6.1 Confirmed 2D results

We demonstrated the development of the vortex instability at the
outer gap edge opened by a giant planet in 3D discs. We first con-
sidered a non-self-gravitating disc, in which a few vortices develop
then quickly merge. The quasi-steady state is a single azimuthally
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Figure 19. Disc-on-planet torques in the presence of spiral modes asso-
ciated with the outer gap edge. Top: total torque (solid), torque from the
inner disc (dotted) and from the outer disc (dashed) in Case 7. Bottom:
time-averaged torques in Case 6 (solid) and Case 7 (dotted).

extended vortex at the gap edge. This evolution is similar to the 2D
simulation in de Val-Borro et al. (2007).

We also showed that the effect of self-gravity on the vortex insta-
bility observed in 2D (Lyra et al. 2009b; Lin & Papaloizou 2011a)
persists in 3D. We observe more vortices as the strength of self-
gravity is increased by increasing the density scale. These vortices
resist merging on dynamical time-scales. In our disc models with
Q0 = 3, the multi-vortex configuration lasts until the end of the
simulations.

As expected from 2D linear theory (Lin & Papaloizou 2011b),
vortex modes are suppressed in our massive disc models. Instead,
a global spiral instability develops which is associated with the
local vortensity maximum just inside the outer gap edge. These are
distinct from vortex modes since self-gravity is essential.

Our limited numerical resolution does not permit accurate disc–
planet torque measurements, but the qualitative effect of the vortex
and spiral instabilities, previously studied in 2D, has been repro-
duced in 3D – oscillatory torques of either sign and the tendency
for spiral modes to provide on average a positive torque. The simi-
larity to 2D results is not surprising since for giant planets rh � H,
so the razor-thin disc approximation is expected to be valid as far
as disc–planet interaction is concerned. Furthermore, vertical self-
gravity increases the mid-plane density while reducing that in the
atmosphere (Appendix A), so that given a fixed temperature profile
the 2D approximation is even better for self-gravitating discs.

It is worth mentioning here that in shearing sheet simulations,
Mamatsashvili & Rice (2009) found self-gravity to favour vortices
of smaller scale. They initialized a local patch of an unstructured disc
with random velocity perturbations. Their gravito-turbulent discs
are dominated by small vortices limited by the local Jeans length
(which is smaller than the scale-height). Without self-gravity, they
merge to form larger vortices. These observations are similar to the
above results for the vortex mode. However, the set-ups are quite
different as we consider radially structured, laminar global discs.
Our large-scale vortices develop from a linear instability and have
horizontal sizes of a few scale-heights. Thus, confirmation of the

above results in 3D is only valid for the edge instabilities considered
in this paper.

6.2 3D effects

In our simulations the dominant 3D effect is vertical self-gravity
on the density field. In the non-self-gravitating limit, the relative
density perturbation associated with a vortex is columnar with weak
vertical dependence. This is consistent with 3D linear and non-linear
simulations (Meheut et al. 2010, 2012a,b; Lin 2012).

As the strength of self-gravity is increased, vortices become more
vertically stratified – they are condensed towards the mid-plane.
For moderately self-gravitating discs, the vortex mid-plane density
enhancement can be twice that near the upper boundary. The spiral
modes display significant vertical structure near the gap edge, while
the density waves they launch in the outer disc are columnar. The
latter is probably due to the chosen EOS (see below).

The effect of vertical self-gravity on the vortex mode is seen even
in our least massive disc model with Q0 = 8. One can consider an
initially smooth disc which is justified to be non-self-gravitating.
However, this approximation may become less good with the cre-
ation of a vortensity minimum, because it can also be a local mini-
mum in the Toomre Q (equation 2). That is, the Toomre parameter
is decreased with the development of local radial structure (such as
a density bump). The non-self-gravitating approximation worsens
further when the vortex instability associated with min(η) develops,
because the vortices are regions of enhanced density, especially if
they merge into a single large vortex. Thus, the non-self-gravitating
approximation is not guaranteed to hold in the perturbed state even
if it does in the initial disc.

It is interesting to note that linear calculations of the vortex in-
stability in vertically isothermal, non-self-gravitating discs show
that the vertical velocity vanishes at the vortex centroid (Lin 2012;
Meheut et al. 2012b), but this is not observed in non-linear cal-
culations (Meheut et al. 2012b, and in the present simulations).
This contrasts to their anticyclonic horizontal flow, which can be
computed in linear theory and seen in hydrodynamic simulations
(Li et al. 2000, 2001). This suggests that vertical motions in this
case may be associated with secondary processes (e.g. Goodman,
Narayan & Goldreich 1987).

Although we observe somewhat complicated vertical flow for
both vortex and spiral instabilities, the vertical Mach number is at
most a few per cent in magnitude. Also, the magnitude of vertical
motion is at most ∼20 per cent of the radial motion on average. This
suggests that the disturbances at the gap edge are roughly two di-
mensional in the present disc models. This would be consistent with
early studies which find that instabilities associated with corota-
tion singularities are two dimensional (Papaloizou & Pringle 1985;
Goldreich et al. 1986). Recent 3D linear calculations also find that,
even with a vertical temperature gradient, the vortex mode (without
self-gravity) is largely 2D near the vortensity minimum (Lin 2012).

6.3 Caveats and outlooks

In order to provide 3D examples of previous 2D results, a range of
disc models had to be simulated, each for many dynamical time-
scales with full self-gravity. To maintain reasonable computational
cost, numerical resolution in the rφ plane is much reduced compared
to razor-thin disc simulations (∼4–6 cells per H compared to ∼16
in 2D). Despite this, our plots in the rφ plane closely resemble those
obtained from 2D simulations.
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On the other hand, the low resolutions adopted here are unlikely
to capture elliptic instabilities which may destroy vortices in 3D
(Lesur & Papaloizou 2009, 2010). This might not be a serious issue
when the condition for the vortex instability is maintained (by a
planet in the present context). Also, the vortex grows on dynamical
time-scales whereas the elliptic instability takes much longer (Lesur
& Papaloizou 2009). The initial development of vortices is not
expected to be suppressed by the elliptic instability (as found by
Meheut et al. 2012b).

The vortex instability produces smaller vortices with increasing
self-gravity. According to Lesur & Papaloizou (2009), vortices with
small aspect ratios (�4) are strongly unstable in 3D, but note that
their model is a local patch of a smooth disc without self-gravity,
whereas we considered a gap edge in a global self-gravitating disc.

Inclusion of self-gravity may change the stability properties of
vortices. In particular, we found that a vortex can flatten some-
what under its own weight. Lithwick (2009) suggested that vertical
gravity helps to stabilize vortices in 3D. Vertical self-gravity can
enhance this effect. Lithwick found in local 3D simulations that
‘tall’ vortices are unstable, whereas ‘short’ vortices survive as in
2D (Godon & Livio 1999). We may expect the more stratified vor-
tices formed in self-gravitating discs to be more stable than those in
non-self-gravitating discs (Barranco & Marcus 2005). The elliptic
instability is also weakened by stratification (Lesur & Papaloizou
2009), so vertical self-gravity may also be stabilizing in this respect.

We have adopted the locally isothermal EOS for simplicity and
direct comparison with previous 2D results. This EOS limits the 3D
structure of density waves compared to thermally stratified discs
(e.g. Lin, Papaloizou & Savonije 1990; Lubow & Ogilvie 1998;
Ogilvie & Lubow 1999), which can cause refraction of waves out
of the mid-plane. The locally isothermal EOS represents the limit
of efficient cooling (Boss 1998). This might apply in optically thin
regions of a disc,6 but is violated if high densities develop, such as
self-gravitating clumps (Pickett et al. 2000). Our edge instabilities
only reach moderate overdensities. Nevertheless, enhanced vertical
stratification of the edge disturbances observed in our simulations
is likely exaggerated by the EOS. Clearly, it is necessary to extend
models of edge instabilities in self-gravitating discs to include an
appropriate energy equation.

Another important issue is vertical boundary conditions. We sim-
ulated a thin disc and imposed a reflecting upper boundary to
prevent mass loss from above. This set-up may enhance the two-
dimensionality of the problem. The vortex instability tends to in-
volve the entire column of fluid, especially in the weak self-gravity
regime. It is therefore a global instability in z. We suspect that the
spiral mode is less affected by vertical boundary conditions because
the instability tends to concentrate material at the mid-plane. Future
simulations will consider varying the vertical domain size and upper
disc boundary conditions.

Our torque measurements indicate that migration will be signif-
icantly affected by the vortex and spiral instabilities. Preliminary
3D simulations with a freely migrating planet have been performed.
We recover the vortex–planet scattering and the spiral-induced out-
ward migration described by Lin & Papaloizou (2010, 2012). The
disc–planet torque is determined by the density field, and the above
instabilities have density perturbations that either have weak verti-
cal dependence or concentrated at the mid-plane. Thus, we believe
that, at present, 2D simulations are more advantageous for stud-

6 For example, Cossins, Lodato & Clarke (2010) find optical depths τ < 0.2
beyond ∼100 au in their models of protoplanetary discs.

ies focusing on migration, because high resolution is feasible and
needed.
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A P P E N D I X A : MO D I F I C ATI O N TO V E RT I C A L
STRUCTU R E BY SELF-GRAVITY

We describe a simple procedure to set up the vertical structure of a
locally isothermal, self-gravitating disc. We imagine that setting up
a non-self-gravitating disc then slowly switches on the vertical force
due to self-gravity. We expect the mid-plane density to increase at
the expense of gas density higher in the atmosphere. It is assumed
that the temperature profile remains unchanged.

Vertical hydrostatic equilibrium between gas pressure, stellar
gravity and self-gravity reads

c2
iso(R)

∂ ln ρ

∂z
= −∂
∗

∂z
− ∂


∂z
. (A1)

Assuming a smooth radial density profile, we use the plane-parallel
atmosphere approximation for the disc potential, i.e.

∂2


∂z2
= 4πGρ. (A2)

Next, we write the density field as

ρ(R, z) = ρN(R, z) × β(z; R), (A3)

where ρN is the density field corresponding to the non-self-
gravitating disc:

c2
iso(R)

∂ ln ρN

∂z
= −∂
∗

∂z
, (A4)

ρN = �(R)√
2πH (R)

exp (−z2/2H 2)

≡ ρN0(R) exp (−z2/2H 2), (A5)

where ρN0 = ρN(R, z = 0) is the mid-plane density. The explicit
expression for ρN above assumes a thin disc. The function β de-

scribes the modification to the local density in order to be consistent
with self-gravity. By construction, its governing equation is

c2
iso(R)

∂2 ln β

∂z2
= −4πGρNβ. (A6)

Let

χ = ln β − z2/2H 2, (A7)

ξ =
(

4πGρN0

c2
iso

)1/2

z, (A8)

then the governing equation can be written in dimensionless form

∂2χ

∂ξ 2
= −K − exp χ,

K ≡ c2
iso

4πGρN0H 2
. (A9)

Note that K(R) is proportional to the local Keplerian Toomre param-
eter. Equation (A9) can be further reduced to a first-order differen-
tial equation, but this is unnecessary because we pursue a numerical
solution at the end. Appropriate boundary conditions are

χ (z = 0) = ln β0, (A10)

∂χ

∂ξ

∣∣∣∣
z=0

= 0. (A11)

β0(R) is the mid-plane density enhancement. To determine its value,
we impose the surface density before and after modification by self-
gravity to remain the same. Then we require

F (β0) ≡
√

2K

π

∫ n/
√

K

0
exp χ (ξ ; β0) dξ − erf

(
n√
2

)

= 0, (A12)

where n is the number of scale-heights of the non-self-gravitating
disc we originally considered. At a given cylindrical radius R, we
solve equation (A12) using Newton–Raphson iteration. Each itera-
tion involves integrating the governing ordinary differential equa-
tion for χ (equation A9). At the end of the iteration, we have β(z;
R) and the mid-plane enhancement β0(R).

We comment that the procedure outlined above can be extended
to polytropic discs. In this case, there is an additional unknown
– the new disc thickness after adjustment by self-gravity and an
additional constraint – the density should vanish at the new disc
surface.
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