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ABSTRACT

Numerical calculations of the linear Rossby wave instability (RWI) in global three-dimensional (3D) disks are
presented. The linearized fluid equations are solved for vertically stratified, radially structured disks with either
a locally isothermal or polytropic equation of state, by decomposing the vertical dependence of the perturbed
hydrodynamic quantities into Hermite and Gegenbauer polynomials, respectively. It is confirmed that the RWI
operates in 3D. For perturbations with vertical dependence assumed above, there is little difference in growth rates
between 3D and two-dimensional (2D) calculations. Comparison between 2D and 3D solutions of this type suggests
the RWI is predominantly a 2D instability and that 3D effects, such as vertical motion, can be interpreted as a
perturbative consequence of the dominant 2D flow. The vertical flow around corotation, where vortex formation
is expected, is examined. In locally isothermal disks, the expected vortex center remains in approximate vertical
hydrostatic equilibrium. For polytropic disks, the vortex center has positive vertical velocity, whose magnitude
increases with decreasing polytropic index n.
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1. INTRODUCTION

Theoretical modeling of protoplanetary disks leads to com-
plex structures that are unlikely to be described by smooth ra-
dial profiles (Terquem 2008; Armitage 2011). However, radially
structured disks may develop the Rossby wave instability (RWI;
Lovelace et al. 1999; Li et al. 2000), which leads to vortex for-
mation in the nonlinear regime (Li et al. 2001). Thus, the RWI
may play a role in the evolution of protoplanetary disks.

The disk RWI is a dynamical instability associated with
the presence of extrema in the ratio of vorticity to surface
density, or vortensity.1 The instability results from wave cou-
pling across such an extremum. Its physics is similar to the
Papaloizou–Pringle instability (PPI; Papaloizou & Pringle 1984,
1985, 1987; Goldreich et al. 1986; Narayan et al. 1987) which
operates in pressure-supported, thick tori. The RWI operates in
thin, centrifugally supported disks with non-power-law rotation
profiles, and is insensitive to radial boundary conditions.

The relevance of the RWI in protoplanetary disks has been
demonstrated in two situations. Variability in the efficiency
of turbulent angular momentum transport by the magneto-
rotational instability (Balbus & Hawley 1991) can result in
the existence of “dead zones” (Gammie 1996), in which the
turbulent viscosity is small. The radial boundary between a
dead zone and the actively accreting region is prone to the
RWI (Varnière & Tagger 2006; Lyra et al. 2008, 2009; Crespe
et al. 2011), with observable consequences (Regály et al. 2012).
In addition to hydrodynamic angular momentum transport, the
RWI may also assist planet formation by concentrating solids
into anti-cyclonic vortices (Barge & Sommeria 1995).

Another origin of the RWI in protoplanetary disks, which
motivated this study, is disk–planet interaction (Goldreich &
Tremaine 1979, 1980). A sufficiently massive planet leads to gap
opening (Lin & Papaloizou 1986), while low-mass protoplanets
may open gaps provided the disk viscosity is sufficiently small

1 This quantity is modified by a factor involving the disk entropy, if the latter
is not constant.

(Muto et al. 2010; Dong et al. 2011). Vortensity jumps across
planet-induced shocks lead to the necessary disk profile for the
RWI to develop around gap edges (Koller et al. 2003; Li et al.
2005; de Val-Borro et al. 2007). Subsequent vortex formation
significantly affects disk–planet torques and migration (Ou et al.
2007; Li et al. 2009; Yu et al. 2010; Lin & Papaloizou 2010).

The above studies of the RWI have all employed the razor-
thin-disk approximation (but note that the PPI was originally
analyzed in three dimensions (3D)). Yu & Li (2009) have
examined the RWI with a toroidal magnetic field in a 3D but
unstratified disk. Meheut et al. (2010) first demonstrated the
RWI in nonlinear hydrodynamic simulations of 3D stratified
disks (later with improved resolution in Meheut et al. 2012a),
while Umurhan (2010) analyzed the RWI in approximate 3D
disk models.

Recently, Meheut et al. (2012b) calculated linear RWI modes
in a three-dimensional, globally isothermal disk, which dis-
played vertical motion. In this paper, we compute linear RWI
modes in 3D disks across a range of parameter values, includ-
ing different equations of state. Our focus here is on how these
affect the vertical flow in the corotation region, where vortex
formation is known to occur (Li et al. 2001).

This paper is organized as follows. In Section 2, we list
the governing equations and describe our disk models. We
derive the linearized fluid equations in Section 3 and describe
our numerical methods in Section 4. Results are presented in
Section 5 for locally isothermal disks and in Section 6 for
polytropic disks. In Section 7, we briefly examine a linear mode
qualitatively different from those above, found in a disk model
involving κ2 < 0 (taken from Meheut et al. 2010), where κ is
the epicycle frequency. We summarize and discuss our results
in Section 8, including limitations of our calculations.

2. GOVERNING EQUATIONS, DISK MODELS
AND ASSUMPTIONS

We consider a three-dimensional, inviscid, non-self-
gravitating disk orbiting a star of mass M∗ and adopt (r, φ, z)
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cylindrical polar coordinates centered on the star. The frame
is non-rotating. The governing equations are the 3D Euler
equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v

∂t
+ v · ∇v = − 1

ρ
∇P − ∇Φ∗, (2)

P = P (r, ρ), (3)

where ρ is the density, P is the pressure, v is the velocity field,
and Φ∗ is the gravitational potential due to the central star.
Equation (3) is an equation of state (EOS), specified later, such
that the pressure may be calculated without an energy equation.

We assume the disk is geometrically thin so that Φ∗ may be
approximated as

Φ∗(r, z) = − GM∗√
r2 + z2

� −GM∗
r

(
1 − z2

2r2

)
. (4)

This approximation is adopted so that the resulting equilibrium
density field has a convenient functional form suitable for the
application of orthogonal polynomials (see Section 4). This
greatly simplifies the numerical problem. Henceforth, we use
the approximate potential for self-consistency.

The unperturbed disk is steady, axisymmetric with no merid-
ional velocity (∂t = ∂φ = vr = vz = 0). The disk is stratified
with ρ = ρ(r, z) set by vertical hydrostatic balance. The az-
imuthal velocity is vφ = rΩ, where Ω is the angular speed. vφ

is set by radial balance between pressure, stellar gravity, and
centrifugal forces. Because the disk is thin, the angular velocity
is close to Keplerian, i.e., Ω � Ωk ≡ (GM∗/r3)1/2.

To introduce radial structure, we choose the unperturbed
surface density profile to be

Σ(r) ≡
∫ ∞

−∞
ρdz = Σ0

(
r

r0

)−α

×
{

1 + (A − 1) exp

[
− (r − r0)2

2Δr2

]}
(5)

(Li et al. 2000). Equation (5) corresponds to a Gaussian surface
density bump centered at r = r0, width Δr , and amplitude A, on
top of a background power-law profile with index −α. Since disk
self-gravity is ignored, the surface density scale Σ0 is arbitrary.

To specify the 3D disk structure, we choose the EOS to
be either locally isothermal or polytropic. These are described
below.

2.1. Locally Isothermal Disks

For locally isothermal disks, the pressure is calculated as

P = c2
s (r)ρ, (6)

where cs(r) is the sound speed given by cs = HΩk and H (r) is
the disk scale height. The unperturbed density is

ρ(r, z) = Σ(r)√
2πH (r)

exp

[
− z2

2H 2(r)

]
. (7)

In the numerical calculations, we will choose H (r) = hr with
h being a constant aspect ratio, since this is a typical model

for protoplanetary disks.2 The exponential decay means the gas
density becomes negligible after a few scale heights. Thus, the
vertical domain can be taken to be z ∈ [−∞,∞], even though
we have made the thin-disk approximation.

2.1.1. Approximate Equilibrium

For simplicity, we set the azimuthal velocity to

v2
φ = r

ρ

∂P

∂r

∣∣∣∣
z=0

+ r
∂Φ∗
∂r

∣∣∣∣
z=0

. (8)

Away from the midplane, the deviation from exact radial balance
is proportional to h2 
 1 for a thin disk (Tanaka et al. 2002).
We adopt Equation (8) to allow us to apply standard solution
methods.

To test whether or not the precise form of Ω affects our
results, we also considered setting ρ → Σ in Equation (8),
which gives the velocity profile vφ,2D for a razor-thin disk. For
our fiducial calculation, growth rates differ by ∼1% between
adopting Equation (8) or vφ,2D, and we observe the same flow
structure.

In fact, locally isothermal disks generally have differential
rotation in z, i.e., Ω = Ω(r, z), unless the disk is also globally
isothermal. It is therefore important to note that in assuming
Equation (8), we have artificially suppressed baroclinic effects.
We discuss some justification for this in Section 8.4 and
Appendix A. Although the chosen basic state is not in exact
equilibrium, setting Ω = Ω(r) greatly simplifies the linear equa-
tions as the only vertical dependence of the basic state is through
the exponential factor in ρ. It allows us to address the specific
question of whether or not vertical density stratification has
any effect on the RWI, without the complication of baroclinic
instabilities (Knobloch & Spruit 1986; Umurhan 2012).

2.2. Polytropic Disks

In order to set up a more self-consistent basic state, that
is, Ω = Ω(r) and a finite vertical domain, we also consider
polytropic disks, for which

P = Kρ1+ 1
n , (9)

where K is a constant and n is the polytropic index. Vertical
hydrostatic equilibrium implies

ρ(r, z) =
[

GM∗H 2(r)

2K(1 + n)r3

]n [
1 − z2

H 2(r)

]n

≡ ρ0(r)

[
1 − z2

H 2(r)

]n

. (10)

Here, z = H is the disk surface where ρ(r,H ) = 0. Thus, when
discussing polytropic disks H is referred to as the disk thickness.

The function H (r) and midplane density ρ0(r) are calculated
through

Σ(r) = ρ0(r)H (r)In, (11)

where In ≡ ∫ 1
−1(1 − x2)ndx, with ρ0(r) related to H (r) by

Equation (10) and Σ(r) given by Equation (5). We can therefore
write

H (r) = H0

[
Σ(r)

AΣ0

] 1
2n+1

(
r

r0

) 3n
2n+1

, (12)

2 This choice also enables us to compare the locally isothermal disk with a
polytropic disk with constant aspect ratio.
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where H0 = H (r0) is the disk thickness at the bump radius. We
parameterize it by writing H0 = hr0 so that h is the aspect ratio
at r0. Note that a surface density enhancement by a factor A
corresponds to an enhancement of the disk thickness by a factor
A1/(2n+1).

For a polytropic disk, the azimuthal velocity is strictly
independent of z (e.g., Papaloizou & Pringle 1984). It is given
by

v2
φ(r) = r

∂

∂r
Φ∗(r,H ) = GM∗

r

(
1 − 3H 2

2r2
+

H

r

dH

dr

)
, (13)

where the second equality follows from the approximation for
the stellar potential in a thin disk (Equation (4)).

Of course, given H (r) one can obtain the azimuthal velocity
vφ,e corresponding to the exact gravitational potential of a point
mass. For our fiducial setup, the difference in growth rate is
<4% between using vφ,e and using vφ above, and we observe
no difference in flow structure. However, we will use vφ so that
the equilibrium density and velocity fields are self-consistent
and in exact balance with the same potential.

3. LINEARIZED EQUATIONS

In this section, we derive the governing equation for small
disturbances in the disk. As described above, the basic state is
ρ = ρ(r, z) and v = (0, rΩ, 0), with Ω = Ω(r). The perturbed
state is assumed to have the form

ρ → ρ + Re[δρ(r, z) exp i(σ t + mφ)], (14)

P → P + Re[δP (r, z) exp i(σ t + mφ)], (15)

v → v + Re[δv(r, z) exp i(σ t + mφ)], (16)

where σ = σR + iγ is a complex frequency (σR, γ being real)
and m is the azimuthal wavenumber taken to be a positive
integer. We will omit writing “Re” below, with the understanding
that physical solutions correspond to real parts of the complex
perturbations.

For the locally isothermal EOS, the linearized momentum
equations give

δvr = − ic2
s

D

(
σ̄

∂W

∂r
+

2mΩW

r

)
, (17)

δvφ = c2
s

D

(
κ2

2Ω
∂W

∂r
+

σ̄mW

r

)
, (18)

δvz = ic2
s

σ̄

∂W

∂z
, (19)

where W ≡ δρ/ρ is the relative density perturbation, σ̄ ≡
σ + mΩ(r) is the shifted frequency, D ≡ κ2 − σ̄ 2, and

κ2 = 1

r3

∂

∂r
(r4Ω2) (20)

is the square of the epicycle frequency. Corresponding equations
for the polytropic disk are very similar, and are readily obtained
by setting cs to unity and replacing W → S ≡ δP/ρ, where S
is the enthalpy perturbation.

Inserting the perturbed velocity field into the linearized
continuity equation,

iσ̄ δρ +
1

r

∂

∂r
(rρδvr ) +

im

r
ρδvφ +

∂

∂z
(ρδvz) = 0, (21)

yields, for locally isothermal disks:

rδρ = ∂

∂r

(
rρc2

s

D

∂W

∂r

)
+

2mW

σ̄

∂

∂r

(
c2
s ρΩ
D

)

−
(

m2c2
s ρ

rD

)
W − rc2

s

σ̄ 2

∂

∂z

(
ρ

∂W

∂z

)
, (22)

and for polytropic disks:

rδρ = ∂

∂r

(
rρ

D

∂S

∂r

)
+

2mS

σ̄

∂

∂r

(
ρΩ
D

)

−
(

m2ρ

rD

)
S − r

σ̄ 2

∂

∂z

(
ρ

∂S

∂z

)
. (23)

We remark that Equation (22) is in fact valid for locally
isothermal disks with any fixed sound-speed profile cs(r),
assuming the equilibrium azimuthal velocity is independent of
z (Appendix A). Also note that Equation (23) is actually valid
for any barotropic EOS , i.e., whenever P = P (ρ). The 3D
problem is to solve Equations (22) and (23), which will generally
describe disturbances depending on (r, φ, z) and motion in all
three directions.

3.1. Relation to the Two-dimensional Problem

We define the two-dimensional (2D) problem as solving
Equations (22) and (23) subject to ∂z = 0. Denoting the
corresponding solutions as W2D(r), S2D(r) and inserting them
into the governing equations yields, after vertical integration,

rδΣ = d

dr

(
rΣc2

s

D

dW2D

dr

)
+

2mW2D

σ̄

d

dr

(
c2
s ΣΩ
D

)

−
(

m2c2
s

rD

)
ΣW2D (24)

for locally isothermal disks and

rδΣ = d

dr

(
rΣ
D

dS2D

dr

)
+

2mS2D

σ̄

d

dr

(
ΣΩ
D

)

−
(

m2Σ
rD

)
S2D (25)

for polytropic disks, where δΣ = ∫ ∞
−∞ δρdz is the surface den-

sity perturbation. Note that W2D = δΣ/Σ is the relative surface
density perturbation, and S2D = δΠ/Σ where δΠ is the pertur-
bation to the vertically integrated pressure (Π = ∫ ∞

−∞ Pdz).
Solutions to Equations (24) and (25) describe disturbances
which only depend on (r, φ) and there is no vertical motion.

As defined here, the 2D problem and the 3D problem involve
the same background disk, which is three dimensional. However,
the governing equation for linear disturbances in razor-thin disks
have the same form as Equations (24) and (25) when the razor-
thin disk has a locally isothermal or barotropic EOS in the form
Π = c2

s (r)Σ or Π = Π(Σ), respectively.
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3.2. Corotation Singularity and the RWI

Inspection of the 2D equations, Equations (24) and (25),
reveals a potential singularity when σ̄ (rc) = 0, where rc is
the corotation radius defined by

σR + mΩ(rc) = 0. (26)

This corotation singularity can be rendered ineffective if rc also
satisfies

d

dr

(
c2
s

η

)∣∣∣∣
rc

= 0 for locally isothermal disks, (27)

d

dr

(
1

η

)∣∣∣∣
rc

= 0 for polytropic disks, (28)

where

η ≡ κ2

2ΩΣ
(29)

is the vortensity. The quantity η/c2
s can be seen as a generalized

vortensity (Li et al. 2000), but for convenience we will simply
use “vortensity” in the discussion below. Thus, there can
exist 2D neutral disturbances with corotation at a vortensity
extremum, for which the 2D linear operator is real and regular
everywhere.

Strictly speaking, corotation singularities only concern neu-
tral disturbances (γ = 0). In practice, we are interested in
growing solutions (γ < 0) so such singularities do not arise in
the numerical computation. Nevertheless, the discussion above
is important because the growth rates we find are typically
|γ | 
 Ω(r0). Furthermore, association of rc with a vortensity
extremum forms the basis of the RWI.

In studies employing razor-thin disks, the RWI has the largest
disturbance amplitude in the corotation region where |σ̄ 2| 
 κ2.
It can be shown that such modes can only be unstable if
vortensity extrema exist in the disk (e.g., Lin & Papaloizou
2010). Indeed, the RWI is found to have with corotation radius
rc close to a vortensity minimum (Lovelace et al. 1999; Li et al.
2000; Lin & Papaloizou 2011a).

It is precisely linear modes with the above properties which
we wish to explore in 3D. However, we do not expect such
modes to have significant z-dependence in their relative density
or enthalpy perturbation around corotation. From the linearized
vertical equation of motion, we see that

δvz ∝ 1

σ̄

∂X

∂z
,

where X is W or S depending on the EOS. Near corotation
where |σ̄ | is small, |∂zX| should be almost negligible. Otherwise,
even small vertical gradients in density or enthalpy perturbation
will cause significant vertical motion, and linearization becomes
invalid.

4. NUMERICAL PROCEDURE

In principle, one could attempt a numerical solution to the
partial differential equations (PDEs) above, for example, by
finite differencing in the (r, z) plane. However, since one of our
goals is to assess 3D effects, it is more useful to have a numerical
scheme that automatically separates out the 2D problem from
the full 3D problem.

We begin by making the coordinate transformation

(r̂ , ẑ) ≡ (r, z/H ), (30)

(
∂

∂r
,

∂

∂z

)
=

(
∂

∂r̂
− ẑ

H ′

H

∂

∂ẑ
,

1

H

∂

∂ẑ

)
, (31)

where the prime denotes differentiation with respect to the
argument. In this coordinate system, the background density
is separable, i.e., ρ(r̂ , ẑ) = g(r̂)f (ẑ), where f = exp (−ẑ2/2)
for locally isothermal disks and f = (1 − ẑ2)n for polytropic
disks. This motivates us to seek solutions of the form

W =
∞∑
l=0

Wl(r̂)Hl(ẑ), (32)

S =
∞∑
l=0

Sl(r̂)Cλ
l (ẑ), (33)

where Hl is a Hermite polynomial of order l and Cλ
l is a

Gegenbauer polynomial of index λ and order l. Note that radial
and vertical variations are coupled because ẑ = ẑ(r) through
H (r).

These polynomials satisfy the orthogonality relations∫ ∞

−∞
Hk(ẑ)Hl(ẑ) exp (−ẑ2/2)dẑ =

√
2πl!δkl, (34)

∫ 1

−1
Cλ

k (ẑ)Cλ
l (ẑ)(1 − ẑ2)λ−1/2dẑ = π21−2λΓ(l + 2λ)

l!(l + λ)Γ2(λ)
δkl, (35)

where δkl here is the Kronecker delta and Γ is the Gamma
function (Abramowitz & Stegun 1965). For polytropic disks,
we choose the parameter λ to be

λ = n − 1

2
. (36)

Consequently, for a polytropic index n = 1.5, C1
l are the

Chebyshev polynomials of the second kind, and for n = 1,
C1/2

l are the Legendre polynomials. Eigenfunction expansions
in ẑ is a standard method to account for vertical dependence
in disk problems (e.g., Okazaki & Kato 1985; Papaloizou &
Pringle 1985; Takeuchi & Miyama 1998; Tanaka et al. 2002).

It is important to keep in mind that by assuming the above
decompositions (Equations (32) and (33)) we restrict the type
of perturbations to those satisfying certain physical conditions
implied by the orthogonal polynomials at the upper disk bound-
ary. In the locally isothermal disk, we require the kinetic energy
density to be bounded at large heights (Takeuchi & Miyama
1998), and for polytropic disks a regularity condition applies at
ẑ = ±1 (Papaloizou & Pringle 1985). Such perturbations can be
decomposed as above because the polynomials form a complete
set (Zhang & Lai 2006). On the other hand, the above specific
decomposition cannot be applied if one considers other vertical
boundary conditions (e.g., conditions imposed at other heights).

After transforming the governing equations into (r̂ , ẑ) co-
ordinates, we insert the ansatz equations (32) and (33) into
Equations (22) and (23), multiply by Hk, and Cλ

k , respectively,
then integrate vertically. This procedure yields an equation of
the form

AlXl + BlXl−2 + ClXl+2 = 0, (37)

4
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where Xl is Wl or Sl, and Al, Bl, and Cl are linear operators
which only depend on r and σ , but are different for the two
EOSs (see Appendix A). For each l, there is a separate equation
with the operators Bl, Cl representing coupling with the l ± 2
modes. Note that Bl is set to zero when l = 0, 1.

We have now transformed the governing PDE into an infinite
set of coupled ordinary differential equations (ODEs). In prac-
tice, we truncate the solution at lmax, i.e., Xl ≡ 0 for l > lmax.
The decomposition has the advantage that for modes nearly in-
dependent of z, lmax can be small. In the simplest case of setting
lmax = 0, we only solve

A0X0 = 0, (38)

which is the 2D problem. That is, if lmax = 0 then W0 = W2D
and S0 = S2D.

4.1. Matrix Methods

We now proceed to a numerical solution to the linear problem.
We discretize the linear operators and solutions on a grid which
divides the radial range r ∈ [ri, ro] into Nr uniformly spaced
points. The coupled set of ODEs then becomes a single matrix
equation. This is denoted generically as

Mx = 0, (39)

where the square matrix M represents the discretized linear
operator and the vector x is the discretized solution. The size
of the matrix and vector depends on lmax. For example, setting
lmax = 4, Equation (39) then represents the discretized version
of

A0X0 + C0X2 = 0,

B2X0 + A2X2 + C2X4 = 0,

B4X2 + A4X4 = 0,

for which M is a 3Nr × 3Nr matrix and x is a vector of length
3Nr.

The matrix problem, Equation (39), is a set of homogeneous
linear equations. Non-trivial solutions exist if

detM = 0. (40)

The complex frequency σ is required to be such that the matrix
M(σ ) is singular. We have used two approaches to achieve this.
The first is to consider the usual eigenvalue problem:

M(σ )x = νx. (41)

Starting with a trial σ , standard matrix software3 may be used
to find the eigenvalues ν and associated eigenvectors x. We then
apply Newton–Raphson iteration to solve νmin/|νmax| = 0 by
varying σ , where νmin,max corresponds to eigenvalues of smallest
and largest absolute value found from Equation (41).

Another approach is to perform a singular value decomposi-
tion4 (SVD) of M, so that

M = Udiag(s1, s2, . . .)V †, (42)

3 We used LAPACK.
4 We used LAPACK for a direct decomposition. We also performed the SVD
with PROPACK (available at http://soi.stanford.edu/∼rmunk/PROPACK/),
which is an iterative method. These gave the same results.

where U and V are unitary matrices (“†” denotes Hermitian
conjugate) and the real numbers si � 0 are the singular values
of M. The columns of V are the right singular vectors of M. If
min(si) = 0 then Mx0 = 0, where x0 is the right singular vec-
tor associated with min(si). We therefore use Newton–Raphson
iteration to zero the quantity F ≡ x†

0 Mx0/x†
0x0 by

varying σ .
These methods give the same result. We always perform the

SVD for the final matrix M(σ ) in order to evaluate R−1, where
R ≡ max(si)/min(si) is the condition number of M. Since
R = ∞ for a singular matrix, we only accept solutions for which
R−1 is zero at machine precision (typically R−1 � 10−15).
The matrix methods outlined above were also used in Lin &
Papaloizou (2011a, 2011b).

4.2. Radial Boundary Conditions

For simplicity, we impose dXl/dr = 0 at r = ri, ro.
The RWI is associated with internal structure away from
boundaries. Consequently, it is insensitive to radial boundary
conditions in razor-thin disks (de Val-Borro et al. 2007; Lin
& Papaloizou 2011a). We assume this still holds in 3D. For
example, approximate 3D disk models developed by Umurhan
(2008, 2010), in which the inner/outer disk boundaries play no
role, also support the RWI.

As a check, additional calculations were performed with
∂rX = 0 applied at boundaries (which introduces mode cou-
pling), different ri, ro, and a numerical condition where bound-
ary derivatives are approximated by interior points. The last case
is strictly a numerical procedure to generate a closed set of equa-
tions to solve. For the solutions of interest, these experiments
gave results with no appreciable difference.

4.3. Fiducial Setup

We work in units such that G = M∗ = 1. Our standard
disk spans r ∈ [ri, ro] = [0.4, 1.6] and has a surface density
profile with α = 0.5. The bump is located at r0 = 1 with width
parameter β = 0.05. We use Nr = 512 grid points and first solve
the 2D problem (lmax = 0), then use the obtained eigenvalue to
start the iteration for the 3D problem, for which lmax = 6. We
only consider even l.

In Section 7, we will use the setup employed by Meheut et al.
(2010) to examine a 3D RWI mode with κ2 < 0 at the bump
radius. This mode appears quite different from our standard
setup with κ2 > 0 everywhere.

4.4. Results Analysis

The solution to the linear problem gives the complex radial
functions Xl, which can be used to reconstruct the complex am-
plitudes, e.g., δvz(r, z) by using Equations (32), (33), and (19),
but we are interested in physical (real) solutions. We will often
visualize the solution for a specific m with 2D plots. We explain
below how these are obtained.

The real perturbation is, e.g., Re[δvz exp i(σ t + mφ), so the
spatial dependence of a physical perturbation is

δvz → Re[δvz] cos (mφ) − Im[δvz] sin (mφ), (43)

and similarly for other variables. We focus on the solution near
the vortex core, defined to be at (r, φ) = (r0, φ0), where

cos (mφ0) = Re[X(r0, 0)]/|X(r0, 0)|,
sin (mφ0) = −Im[X(r0, 0)]/|X(r0, 0)|. (44)

5

http://soi.stanford.edu/~rmunk/PROPACK/


The Astrophysical Journal, 754:21 (16pp), 2012 July 20 Lin

Figure 1. Background profile of the fiducial locally isothermal disk with
A = 1.25 and h = 0.07, in terms of the generalized vortensity η/c2

s , scaled by
its value at the bump. Unstable modes are associated with the minimum at r0.

Table 1
Eigenfrequencies in the Locally Isothermal Disk with h = 0.07

m −σR/(mΩ0) −102γ /Ω0

1 0.9960 (0.9960) 2.8038 (2.8044)
2 0.9960 (0.9960) 4.8931 (4.8985)
3 0.9961 (0.9960) 5.7205 (5.7365)
4 0.9964 (0.9964) 5.1245 (5.1843)
5 0.9972 (0.9971) 3.4557 (3.5720)
6 0.9980 (0.9978) 1.8317 (1.9615)

Note. Values in brackets were obtained from the 2D problem.

The magnitude of the (real) perturbation is arbitrary but its sign
is fixed, e.g., X, now representing the real density or enthalpy
perturbation, is positive at (r, φ, z) = (r0, φ0, 0). In practice, the
vortex core is near a maximum midplane overdensity.

We visualize results in the (r, z) plane by setting φ = φ0
in Equation (43). Similarly, perturbations are visualized in the
(r, φ) plane at a chosen z, and in the (φ, z) plane at r = r0 with
the azimuthal range set to φ ∈ [φ0 − π/2m,φ0 + π/2m]. For
convenience, we also define Ω0 ≡ Ω(r0) and κ0 ≡ κ(r0).

5. RESULTS: LOCALLY ISOTHERMAL DISKS

For locally isothermal disks, we choose h = 0.07 and
A = 1.25 as a fiducial case. Recall c2

s ∝ 1/r , so that far from
r0 the generalized vortensity η/c2

s is flat, and is a minimum at
r0. The background disk is shown in Figure 1. Note that κ2 > 0
everywhere, and min(κ2/Ω2

k) � 0.59.
Recall that for locally isothermal disks, we assumed an

approximate basic state (Section 2.1.1). The extent of inexact
radial balance in the background depends on h (Tanaka et al.
2002). In a nonlinear simulation, this may lead to radial
motion. To keep this effect fixed in comparing different linear
calculations below, in this section we fix h.

5.1. Solution Example

We solved the fiducial case for m ∈ [1, 6]. Table 1 compares
the eigenfrequencies obtained from the 2D and 3D problems.
Growth rates in 2D and 3D are very similar, so the instability
is largely associated with W0. We thus expect the RWI to grow
in 3D disks on the same timescales as in the razor-thin disks5

(e.g., Li et al. 2000). The growth rate for the most unstable mode

5 This statement assumes that the 2D problem gives similar growth rates to
the equivalent razor-thin-disk setup, which we have checked to be the case.

Figure 2. Radial eigenfunctions Wl for locally isothermal disk with h = 0.07.
These are normalized by |W0(r0)|. The l > 0 modes have also been magnified
in order to compare its radial structure with W0.

(m = 3) is only �0.06Ω0 but this corresponds to ∼3 orbits at
r0, so the instability operates on dynamical timescales.

Figure 2 compares the radial functions Wl for the m = 3 and
m = 5 modes. In both cases, W0 dominates over Wl>0, implying
that the relative density perturbation is nearly z-independent.
For m = 3, W0 itself is dominated by the corotation region
r ∼ r0, but for m = 5 the amplitude in the oscillatory region is
larger than that around r0. The Wl>2 modes are negligible, so 3D
effects are due to W2. Unlike W0, in both cases |W2| has largest
amplitudes in the wave-like regions toward the boundaries, and
is smallest near r0. This is consistent with the absorption of
waves with l > 0 at corotation discussed in Li et al. (2003).

It is well known that in the razor-thin disk, as m is increased
the RWI becomes more wave-like (as seen here for W0) and is
eventually quenched (Li et al. 2000). This might contribute to the
slightly smaller growth rates obtained in the 3D problem than in
the 2D problem (Table 1) since Wl>0 are wave-like (in addition
to wave absorption at corotation). However, this effect is
unimportant because their amplitudes are much smaller than W0.

Although the observed stabilization effect increases with m,
W0 loses its RWI character at high m. Thus, it can be said that the
RWI, considered as a low m, radially confined non-axisymmetric
disturbance, has a growth rate determined by the 2D problem.

5.2. Flow in the (r, φ) Plane

Figure 3 shows the perturbed velocity field in the (r, φ) plane
for the m = 3 mode above, and for a case with A = 1.6
(growth rate ∼ 0.15Ω0). The figure shows that anti-cyclonic
motion at an overdensity is a robust feature. This confirms that
the unstable modes found here are indeed the analog of the RWI
in razor-thin disks. The perturbed horizontal velocity (δvr , δvφ)
has negligible variation with respect to z.

6
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Figure 3. Perturbed horizontal velocity field in the (r, φ) plane, for the locally
isothermal disk with h = 0.07 and A = 1.25 (left) and with A = 1.6 (right).
The contours indicate relative density perturbation. The case with A = 1.6
displays a double peak in density perturbation, which is explained in Li et al.
(2000).

(A color version of this figure is available in the online journal.)

5.3. Vertical Flow

We now examine vertical flow associated with the RWI. We
focus on the corotation region since this is where relative density
perturbations are largest and vortex formation is expected.

Figure 4 shows the perturbed vertical velocity field in the
(r, z) plane, at several azimuths. Since the largest contribution
to δvz comes from the l = 2 term in the expansion for W
(Equation (32)), the magnitude of δvz increases linearly with z.

Ahead of and behind the vortex core, the flow just follows
the anti-cyclonic motion, with radial variations in δvz being
negligible. At φ = φ0, there is also very little vertical motion
for z � 0.5H , but there is upward motion at r = 0.9, 1.1, i.e.,
the edge of the vortex (see Figure 3). This can affect how dust
particles are collected by RWI vortices.

For comparison, Figure 5 shows the vertical flow for the
m = 2 mode. This flow is more two dimensional than the
fiducial case above. This is expected for decreasing m (see,
e.g., Papaloizou & Pringle 1985; Goldreich et al. 1986). It also
appears qualitatively different (e.g., downward flow at r = 1.1
instead of upward as see for m = 3). We typically find locally
isothermal disks to display a wider range of flow patterns around
corotation than polytropic disks presented later, which show
generic patterns.

Finally, Figure 6 shows the perturbed vertical velocity in the
(φ, z) plane at r = r0. Vertical motion is upward ahead of an anti-
cyclonic vortex and downward behind it. The vertical velocity
can be comparable to the perturbed azimuthal velocity, so the
perturbed flow is fully three dimensional in this plane. However,
the vortex center (r0, φ0) remains in vertical hydrostatic balance.
This is not the case for polytropic disks.

5.4. Dependence of Vertical Flow on Instability Strength

We now assess how the three dimensionality of the flow
in the corotation region varies with instability strength. We

Figure 4. Vertical velocity field (contours) for the m = 3 mode in the locally
isothermal disk with h = 0.07, in the (r, z) plane at azimuths θ ≡ m(φ − φ0) =
0.2π (top), 0 (middle), and −0.2π (bottom). Arrows indicate the perturbed
velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

Figure 5. Vertical velocity field (contours) for the m = 2 mode in the locally
isothermal disk with h = 0.07. The slice is taken at the azimuth φ = φ0. This
figure is to be compared with the middle plot in Figure 4. Arrows indicate the
perturbed velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

examine the ratio 〈|δvz|〉/〈|δvr |〉, where 〈·〉 denotes averaging
over r ∈ [0.9, 1.1] and z ∈ [0, 2H ] at fixed azimuth φ = φ0.
In calculating this ratio, we ignore Wl>2 because the dominant
contribution to δvr and δvz comes from W0 and W2, respectively.
This ratio is large if there is significant vertical motion.

Results are shown in Figure 7, where the bump amplitude A
is increased at fixed h = 0.07. Growth rates increase with A,
which is expected from previous works (Li et al. 2000), but the
flow actually becomes less three dimensional with increasing
instability strength.

7
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Figure 6. Vertical velocity field (contours) for the m = 3 mode in the locally
isothermal disk with h = 0.07, in the (φ, z) plane at the radius r = r0. Arrows
indicate the perturbed velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

Figure 7. Average magnitude of vertical velocity (solid), in the corotation region
of the RWI in the locally isothermal disk, as a function of bump amplitude A
at fixed aspect ratio h. Also shown are the normalized amplitude of W2 in this
region (dashed) and the growth rates (dotted).

Figure 8. Same as Figure 4 but for a disk with A = 1.6. The slice is taken at
φ = φ0.

(A color version of this figure is available in the online journal.)

In the corotation region where σ̄ ∼ iγ , we expect from the
linearized equation of motion that

|δvz| ∼ c2
s

H

∣∣∣∣W2

γ
H′

2

∣∣∣∣ . (45)

|δvz| scales with 1/|γ |, so that increasing growth rates con-
tributes to decreasing |δvz|. Thus, the flow in the corotation
region does not necessarily become more three dimensional
with increasing A.

It is clear from Figure 7 that three dimensionality decreases
because of increasing |γ | since 〈|W2|〉/〈|W0|〉 varies weakly. We
demonstrate this in Figure 8, which shows that in the disk with
A = 1.6 the flow is mainly horizontal. As in the fiducial case
with A = 1.25, there is little motion at r = r0.

Figure 9. Background profile of the fiducial polytropic disk with n = 1.5, A =
1.4, and h = 0.14 in terms of the vortensity.

Table 2
Eigenfrequencies in the n = 1.5 Polytropic Disk

m −σR/(mΩ0) −102γ /Ω0

1 0.9930 (0.9930) 4.4900 (4.4907)
2 0.9934 (0.9934) 8.2793 (8.2867)
3 0.9941 (0.9941) 10.769 (10.793)
4 0.9947 (0.9946) 11.594 (11.591)
5 0.9952 (0.9945) 10.646 (10.861)
6 0.9954 (0.9950) 8.0092 (8.5802)

Note. Values in brackets were obtained from the 2D problem.

Figures 7 and 8 shows that in the locally isothermal disk,
more unstable modes are also more two dimensional (in the
corotation region). |W2| remains a small fraction of |W0| and
|δvz| is largely affected by |γ |.

However, |γ | can be obtained by just solving the 2D problem.
Thus, we could have anticipated the trend of |δvz| in Figure 7
based on only 2D calculations, with the assumption that changes
in |W2| are less significant than the increase in |γ |. The above
explicit calculation confirms this, suggesting we interpret the
RWI as predominantly a 2D instability and that 3D effects on
the RWI are small (for low m). We further illustrate these points
with polytropic disks below.

6. RESULTS: POLYTROPIC DISKS

Our fiducial polytropic disk has polytropic index n = 1.5. In
the absence of a bump, a surface density profile ∝r−1/2 gives a
constant aspect ratio (H ∝ r). The bump parameters are set to
A = 1.4 and h = 0.14. Recall that for polytropic disks, H is the
disk thickness and h is the aspect ratio at r0.

Although the surface density enhancement is relatively large,
it corresponds to only �9% enhancement of the disk thickness
at r0. The background disk is shown in Figure 9 in terms of
the vortensity profile. The fiducial disk has a global vortensity
gradient (η ∝ r−1 away from r0), but it is the local minimum
that drives instability. The epicycle frequency is such that
min(κ2/Ω2

k) = 0.47.

6.1. Solution Examples

Eigenfrequencies for the fiducial case are shown in Table 2.
The modes of interest are those with disturbance amplitudes
largest near r0, which were found to correspond to m � 4.
These modes have effectively the same growth rates in 2D and
3D. This gives confidence that the RWI is a 2D instability. We
will consider m = 3 below in order to compare with locally

8
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Figure 10. Radial functions Sl for the n = 1.5 fiducial polytropic disk. These
are normalized by |S0(r0)|. The l > 0 modes have also been magnified in order
to compare its radial structure with S0.

isothermal disks. The m = 3 growth rate is only slightly smaller
than the most unstable m = 4 mode. In corotation region, low
m modes are also insensitive to radial boundary conditions (Lin
& Papaloizou 2011a).

Figure 10 shows the Sl functions for the m = 3 case. These
are similar to the locally isothermal disk (Figure 2). We typically
find the l > 0 radial functions to have larger amplitudes
(compared to l = 0) in the polytropic disk than in locally
isothermal disks. Sl>0 have small but non-zero amplitudes near
corotation, and their amplitude in the wave-like regions are at
most �20% of |S0(r0)|.

In the wave-like region, |Sl>0| can be comparable to or
larger than |S0|. We found the solution in the wave regions
more strongly affected by boundary conditions than in locally
isothermal disks.

We remark that for m = 5, 6, S0 no longer has the largest
disturbance amplitude around r0, because radial confinement
around corotation requires low m (Lin & Papaloizou 2011a),
unless the vortensity minimum is very deep. At sufficiently large
m (which depends on parameters), the modes are dominated by
the wave-like region (much like the m = 5 mode in locally
isothermal disks; see Figure 2). Boundary conditions are likely
to play a role here, but they are not the vortex-forming RWI
modes of interest.

6.2. Vertical Structure

We now examine the m = 3 mode in more detail. The flow in
the (r, φ) plane is similar to the locally isothermal disk. However,
consistent with the previous section, vertical motion was found
to be more prominent in the polytropic disk.

As before we focus on the region r ∈ [0.9, 1.1]. Figure 11
shows upward vertical motion at the vortex core and is largest
near z = H . The flow for z/H � 0.5 and/or away from
r0 is essentially horizontal. The converging flow pattern in
Figure 11 is consistent with (r0, φ0) being an overdensity. At
the vortex core, upward motion makes sense since the midplane
is reflecting. It also implies an increase in disk thickness at
(r0, φ0).

The background polytropic disk becomes thicker at r0 (i.e.,
H varies on a local scale). Fluid moving into the vortex core
finds itself in a region of larger vertical extent. Upward motion
enhances the disk thickness, consistent with enhanced pressure
and with the RWI vortices being overpressure regions.

In the locally isothermal disk, it is difficult to directly
associate vertical motion with enhanced pressure as above, since
the scale height is prescribed to vary on a global scale and it

Figure 11. Vertical velocity field for the m = 3 mode in the n = 1.5 fiducial
polytropic disk. The slice is taken in the (r, z) plane at the azimuth φ = φ0.
Arrows are the perturbed velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

Figure 12. Vertical velocity field for the m = 3 mode in the n = 1.5 fiducial
polytropic disk. The slice is taken in the (φ, z) plane at radius r = r0. Arrows
are the perturbed velocity field projected onto this plane.

(A color version of this figure is available in the online journal.)

remains unperturbed. Hence, vertical motion at (r0, φ0) was not
seen in locally isothermal disks.

We have also examined the vertical flow in the polytropic
disk for other m (�4), but found similar flow structure. This is
unlike the locally isothermal disk, which can display a range
of vertical flow pattern depending on m (Figures 4 and 5). This
hints that there is a physical reason why polytropic disks tend
to have positive vertical velocity at r0. We return to this point
later.

Lastly, Figure 12 shows the vertical flow in the (φ, z) plane
at r = r0. The flow is similar to that in the locally isothermal
disk (Figure 6) except that the region φ ∼ φ0 is not in vertical
hydrostatic equilibrium.

6.3. Effect of h and A

We measure the three dimensionality of the flow in the
corotation region in the same way as in Section 5.4, but here the
averages are taken over the finite vertical extent of the disk.

Figures 13 and 14 show results from calculations with variable
h (at fixed A = 1.4) and variable A (at fixed h = 0.14),
respectively. The range of growth rates is similar to the cases
examined for the locally isothermal disk (see Figure 7). |γ | and
〈|X2|〉 also behave similarly.

As in locally isothermal disks, Figures 13 and 14 shows
that the three dimensionality of the flow decreases with in-
stability strength, but less rapidly in polytropic disks. Overall,
〈|δvz|〉/〈|δvr |〉 does not vary much, consistent with our findings
that the vertical flow structure, such as Figures 11 and 12, is
generic. Such plots are qualitatively similar across the range

9
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Figure 13. Effect of h on the three dimensionality of the corotation flow (solid).
Also shown are the normalized amplitude of S2 in this region (dashed) and the
growth rates (dotted). The increase in growth rates with h is expected because
the RWI is driven by pressure forces (Li et al. 2000).

Figure 14. Same as Figure 13, but as a function of bump amplitude A.

of h and A considered. The vertical flow at the vortex core is
always upward.

When the spatial average is taken over r ∈ [0.98, 1.02], we
found 〈δvz〉/〈|δvr |〉 maximizes at h = 0.16 for fixed A and at
A = 1.6 for fixed h. However, its values are of similar size:
〈δvz〉/〈|δvr |〉 � 0.44–0.65 and 〈δvz〉/〈|δvr |〉 � 0.53–0.65 for
variable h and A, respectively. A reason for such insensitivity
is that the above calculations have fixed polytropic index n,
thereby fixing the fluid properties. Below, we show that varying
n affects the vertical flow.

6.4. Other Polytropic Indices

The polytropic index n not only affects the magnitude of
the bump in the background disk thickness but also the com-
pressibility of the fluid. An isothermal fluid can be considered a
polytrope with n → ∞ and is highly compressible, while n = 0
corresponds to an incompressible fluid. Thus, increasing n also
increases compressibility.

For polytropic disks, we identified vertical flow at the vortex
core. Here, we focus on this region and take radial averages over
r ∈ [0.98, 1.02]. Figure 15 shows calculations for n ∈ [1, 2.4].
As n decreases, the instability strength increases and the vertical
flow at r0 noticeably increases, so the motion becomes more
three dimensional. This is qualitatively different from varying
h or A, where the vertical flow at the vortex core remains of
similar size.

Figure 15. Dependence of the vertical flow at the vortex core on the polytropic
index n (solid). The bump amplitude is fixed to A = 1.4 and h = 0.14. Also
shown are the growth rates (dotted) and amplitude of S2 (dashed). The mode is
m = 3.

Figure 16. Comparison between vertical velocity (contour) in a disk with
polytropic index n = 1 (top) and n = 2 (bottom). Arrows indicate the velocity
field projected onto this plane.

(A color version of this figure is available in the online journal.)

At the corotation radius, which is close to r0, the vertical
velocity is

|δvz| ∼
∣∣∣∣ S2

γH0
Cλ

2
′
∣∣∣∣ =

∣∣∣∣(4n2 − 1)
zS2

γH 2
0

∣∣∣∣ . (46)

H0 is constant for fixed h. The factor |(4n2 − 1)/γ | decreases
with decreasing n, which by itself would reduce the vertical
velocity. Figure 15 shows this is not the case. The increase in
|S2| with decreasing n overcomes this effect.

In Figure 16, we compare the flow in the (r, z) plane between
n = 1 and n = 2. As previously noted, the flows share the
same qualitative feature: converging toward r0 with upward
motion near r0. However, for smaller n (stronger instability),
upward motion is concentrated at r0 whereas for larger n (weaker
instability) there is also upward motion away from the vortex
core. The latter was also seen for locally isothermal disks,
consistent with larger n being more compressible.

10
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A larger vertical velocity at r0 with decreasing n is consistent
with variable compressibility. First note that |S2| 
 |S0| in r ∈
[0.9, 1.1] so the perturbed enthalpy, and radial and azimuthal
velocities are all dominated by S0, which gives converging flow
toward the vortex core where there is enhanced pressure or
density. We may then ask what vertical motion at r0 is compatible
with this 2D perturbed flow, as implied by S0?

At the vortex core (r0, φ0), the linearized continuity equation
is approximately

∂t (δρ/ρ) ∼ −∇ · δv − δvz∂z ln ρ,

where the δ quantities are regarded as real. If the fluid is
highly compressible (large n), then the density at the vortex
core may increase with vertical motion playing no role. That is,
the divergence term on the right-hand side dominates over the
second (∇ · δv itself is dominated by horizontal velocities).

However, if the fluid is made less compressible (decreasing
n), so that ∇ · δv is reduced in magnitude, then the fluid at
(r0, φ0) should move upward so that −δvz∂z ln ρ > 0 contributes
to increasing the density. For n 
 1, the fluid becomes
incompressible so that ∇ · δv is negligible. Then the density
can only increase with the fluid moving upward, increasing the
disk thickness and accommodating more material.

It is important to note that in the above argument, we deduced
vertical motion by imposing the 2D solution in the 3D disk.
Effectively, we regarded S0 as a source for S2, and that S2 has
no back-reaction on S0. This interpretation may not work for
general disturbances, however. Here, it is justified by the fact
that |S2| 
 |S0| from the numerical calculations. Calculations
where the disk is truncated by setting ri = 0.7, ro = 1.3,
thereby excluding the wave-like regions in Sl, show similar
upward motion. This indicates that S0 induces S2 locally.

7. DISKS WITH κ2 < 0

Meheut et al. (2010) performed the first nonlinear hydrody-
namic simulations that showed evidence for the RWI in a 3D
polytropic disk. Their fiducial calculation showed the develop-
ment of an m = 1 anti-cyclonic vortex which survived many
orbits.

Indeed, the consideration of polytropic disks in this paper
was originally inspired by these simulations, but it turns out that
the disk model employed by Meheut et al. (2010) has a region
where κ2 < 0. Motivated by this feature, in this section we use
Meheut et al.’s (2010) disk model to explore the 3D RWI when
κ2

0 < 0. We find that the RWI can be quite different from those
described previously (where κ2 > 0 everywhere).

It is straightforward to adapt our setups to models used by
Meheut et al. They considered an n = 1.5 polytropic disk,
occupying r ∈ [ri, ro] = [1, 6], and specified the midplane
density to be a power law (ρ0 ∝ r−1/2) with a Gaussian bump.
Their bump in midplane density has the same functional form as
that used for the surface density in our models (Equation (5)), so
A is now the bump amplitude in the midplane density. The bump
is located at r0 = 3 with width Δr = 0.1ri . The calculations
presented below employed Nr = 768 grid points, on account of
the larger disk compared to previous models.

We will consider the m = 1 mode below. Calculations were
done for m � 6, which gave similar growth rates when κ2

0 < 0,
but provided A is chosen to ensure κ2

0 > 0, then higher m
modes become dominant (e.g., with A = 1.15, m = 5 had the
highest growth rate). The latter is qualitatively consistent with

Figure 17. Radial functions Sl for the polytropic disk model with a bump in the
midplane density of amplitude A = 1.4 (top, Meheut et al.’s fiducial setup) and
with a bump amplitude of A = 1.3 (bottom). For A = 1.4, κ2

0 < 0.

very recent numerical simulations (Meheut et al. 2012a; see also
Appendix B.1).

When κ2
0 > 0, we find similar flow structure to that described

previously. Having applied the linear calculations to a different
disk model and recovering similar results gives us confidence in
the robustness of the RWI to develop 3D.

7.1. m = 1 Modes

In their fiducial setup, Meheut et al. adopted a bump amplitude
of A = 1.4. This results in κ2 = 0 at r � 0.99r0, 1.01r0
and κ2

0 < 0 (which is also reflected in their Figure 9). The
disk is therefore unstable to local axisymmetric perturbations
(Chandrasekhar 1961).

Interestingly, for A = 1.4 we found an m = 1 mode with
large growth rate, |γ | = 0.36Ω0, almost twice the largest growth
rates found previously. Below, we examine this solution along
with a case with A = 1.3, which has κ2 > 0 everywhere and
growth rate |γ | = 0.05Ω0.6

Despite A being similar, the m = 1 growth rate for A = 1.3
is much smaller than that for A = 1.4. For A = 1.3, we did
not find other m = 1 modes with growth rates similar to the
m = 1 mode in A = 1.4. Furthermore, for A = 1.4 the quantity
D = κ2 − σ̄ 2 almost vanishes near r0:

min
(|D|/Ω2

k

) = 4 × 10−3,

which occurs at r = 1.002r0. For A = 1.3, the value above is
0.14.

Figure 17 compares the Sl functions for the cases above.
While the double peak in S0 for A = 1.3 was also found in
previous sections and also by Li et al. (2000), it is absent in
A = 1.4. The dominant 3D mode is S2, but it is significantly
larger in A = 1.4 than in A = 1.3. This indicates the vertical
flow will also be qualitatively different.

6 This is comparable to the nonlinear simulation.
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Figure 18. Vertical velocity field for an m = 1 mode in Meheut et al. (2010)’s
disk model with A = 1.4, which results in κ2 < 0 at r0 and D → 0 there
as well. The arrows are the perturbed velocity field projected onto this plane.
This result is qualitatively different from modes with κ2 > 0 (see figures in
Section 6).

(A color version of this figure is available in the online journal.)

Figure 18 shows the flow pattern at φ = φ0 for A = 1.4.
This result is very different from that for A = 1.3, which share
the same features as our previous setups with κ2 > 0 (e.g.,
Figure 11). Note that while the Sl behave smoothly across r0
(Figure 17), numerical evaluation of δvr involves a division by
D, which is very small near r0 for A = 1.4. Thus, horizontal
velocities may be subject to numerical artifacts at r0. Despite
this, the direction of radial flow, being inward for r < r0 and
outward for r > r0 with a sharp transition at r0, was also found
in Meheut et al. (2010, their Figure 11).

A also did not produce vertical flow consistent with that in
Meheut et al. (2010) where strong downward flow at r0 was
identified with rolls excited on either side. By contrast the linear
solutions have upward motion and there is no vortical motion in
the (r, z) plane.

Despite using the same disk models, several factors may have
contributed to the discrepancy between the linear calculation
above and Meheut et al.’s simulation. These include the treat-
ment of the vertical domain, nonlinearities (H. Meheut 2012,
private communication) and interaction with other m modes in
the simulation which cannot be treated in linear theory.

There may also be numerical issues in our linear calculation
because of κ2 � 0. The RWI is associated with the term
∝(1/σ̄ )∂r (ρ0Ω/D) and its disturbance is localized about r0.
This term is ∝1/κ2, which diverges when κ2 → 0 near r0. Also,
because κ2

0 < 0, it allows D → 0 at corotation as well. We
have performed calculations with lower spatial resolution, so
that numerically κ2 and D have larger deviations from zero, but
we found eigenfrequencies and flow patterns similar to the case
shown above. We will further comment on RWI modes with
κ2

0 < 0 in Section 8.3.

8. SUMMARY AND DISCUSSION

In this paper, we have examined the linear stability of three-
dimensional, vertically stratified and radially structured disks.
Our calculations are 3D analogs of those presented by Li et al.
(2000), in which the RWI was studied in razor-thin disks.
In order to simplify the problem, we assumed the perturbed
hydrodynamic quantities have vertical dependence that can be
decomposed into Hermite or Gegenbauer polynomials. Our
conclusions therefore apply to such perturbations only.

Our numerical calculations confirm the RWI persists in 3D.
For ease of discussion below, we denote the full linear solution

schematically as

X = Y (r) + ΔY (r, z),

where Y is the z-independent part of the solution and ΔY is the
part that also depends on z.

8.1. Validity of 2D

We find that the RWI growth rate |γ | can be accurately de-
termined from the 2D problem alone. In other words, instability
is associated with Y (r). In the region of interest—the vorten-
sity minimum—where vortex formation is expected, we find
|ΔY | 
 |Y | so that enthalpy, radial velocity, and azimuthal
velocity perturbations have essentially no z-dependence.

In fact, weak z-dependence is expected from earlier studies
of accretion tori. For slender tori, Papaloizou & Pringle (1985)
demonstrated the existence of low m unstable modes with weak
z-dependence. Goldreich et al. (1986) also justified the use
of height-averaged equations for calculating modes in narrow
tori, for which vertical hydrostatic equilibrium was assumed.
Although we considered radially extended disks, their results
should apply here because the low m RWI modes, relevant to
vortex formation, have the largest disturbance associated with a
narrow region about the density bump. More recently, Umurhan
(2010) reproduced the RWI in approximate 3D disk models, in
which horizontal velocities have no vertical dependence. Our
numerical results are therefore supported by analytic studies
above.

The 2D solution, Y, implies anti-cyclonic motion associated
with overdensities, thus we expect the RWI will lead to columnar
vortices in 3D. The survival of vortices in 3D is then an
important issue because they may be subject to instabilities
(Lesur & Papaloizou 2009, 2010). On the other hand, if
there is a continuous source of vortensity extremum, such as
disk–planet interaction, then vortex formation via the RWI could
be maintained.

8.2. Vertical Motion

Although |ΔY | is small in the corotation region, it is nev-
ertheless non-zero. This implies vertical motion growing on
dynamical timescales, making the flow in the corotation region
three dimensional. We found the nature of the vertical flow is
affected by the EOS.

In polytropic disks, the vortex core (r0, φ0) always involves
upward motion. For a fixed polytropic index n, there is limited
variation in the magnitude of vertical flow with respect to insta-
bility strength. However, if the fluid is made less compressible
by lowering n, then vertical motion at the vortex core increases.

This result motivates us to interpret vertical motion around
corotation as a perturbation to the 2D solution (Goldreich
et al. 1986). Recall that Y is the solution to the vertically
integrated system. It signifies non-axisymmetric enhancements
in surface density at the bump radius. This characteristic feature
is unchanged by the addition of ΔY to the 2D solution. We then
ask how the disk should respond in the vertical direction.

The polytropic disk thickness is directly related to the surface
density (Equation (12)). Enhancement of the surface density
therefore implies enhancement in disk thickness, so fluid at
(r0, φ0) moves upward. If we look in the (φ, z) plane at r0,
the disk thickness becomes non-axisymmetric. This has already
been observed in nonlinear simulations (Meheut et al. 2011a,
2011b). In these newer simulations, the authors indeed find
upward motion in anti-cyclonic vortices.
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Note that the polytropic disk thickness becomes less sensitive
to surface density as n is increased (Equation (12)). For n → ∞,
the disk thickness is independent of surface density and there
is no need for fluid to move vertically in order to achieve a
surface density increase. In this case, there is no preference for
vertical velocity of a particular sign at (r0, φ0). Since the fluid
behaves isothermally as n → ∞, the above is consistent with
our observation that locally isothermal disks have little vertical
motion right at the vortex core. In Appendix B.2, we consider a
polytropic disk calculation with n = 8 to check for consistency.

8.3. RWI with κ2 < 0

We briefly examined the linear 3D RWI in disk where κ2

becomes negative at the density bump. This was inspired by the
3D RWI simulations presented in Meheut et al. (2010), where
the disk model had κ2

0 < 0. In this setup, we found an m = 1
linear mode with large growth rate and qualitatively different
from modes in disks with κ2 > 0 everywhere. In neither case
did we reproduce the vertical flow seen in Meheut et al. (2010),
namely, downward flow at the vortex center.

Most discussions of non-axisymmetric disk instabilities have
assumed κ2 > 0 everywhere, including Lovelace et al.’s (1999)
original description of the RWI, so that Rayleigh’s criterion for
stability against local axisymmetric perturbations is satisfied.

The RWI has been shown to exist for κ2
0 < 0 but its properties

appear different from those in disks with κ2
0 > 0. For example,

Li et al.’s (2000) linear calculations indicate a non-smooth
change in growth rate as κ2

0 becomes negative (the “homentropic
Gaussian bump (HGB)” case in their Figure 9). In nonlinear 2D
simulations by Li et al. (2001), the RWI also evolves differently
depending on whether the growth rate is low (|γ | ∼ 0.1Ω0 and
κ2

0 > 0) or high (|γ | ∼ 0.3Ω0 and κ2
0 < 0). Note that the latter

case has |γ | close to that found in our calculation. We therefore
expect the RWI to differ in 3D depending on sgn(κ2

0 ). This is
apparent by comparing our results with κ2

0 > 0 to those with
κ2

0 < 0.
Thus, while Meheut et al. (2010) is the first demonstration of

the 3D RWI, it should be kept in mind that the disk model has
κ2

0 < 0. An understanding of such modes in 3D is of theoretical
interest, but it is unclear whether or not protoplanetary disks will
develop sufficiently large pressure gradients to render κ2 < 0
(Yang & Menou 2010).

8.4. Outstanding Issues

The main goal of our study is to demonstrate the linear
RWI in 3D and to identify the nature of associated 3D flow
structure around corotation. However, our study is subject to
several caveats which should be clarified in future work.

8.4.1. Baroclinic Effects

One issue is that our locally isothermal basic states are
not in true equilibrium, because we approximated the rotation
profile to be z-independent (Equation (8)). Initializing a full
hydrodynamic simulation this way might boost radial velocities
because of the inexact radial momentum balance. In order for
the angular velocity to be strictly independent of z, we must
set H ∝ r3/2, which is the globally isothermal disk already
considered by Meheut et al. (2012b). We do not expect this to
make a difference from our disks with H ∝ r , because the RWI
is driven by local variations in disk structure and its disturbance
is radially confined. We check this in Appendix B.2.

Another justification is that for a thin, smooth disk (A = 1)
with H = hr , the angular velocity is

Ω(r, z) = Ωk

[
1 − h2

2

(
α + 2 +

z2

2H 2

)]
(47)

(Tanaka et al. 2002). The difference in angular speed between
the gas at the midplane and gas at z is then

ΔΩ ≡ |Ω(r, z) − Ω(r, 0)| = h2

(
z2

4H 2

)
Ωk (48)

(a radial density bump does not contribute to this difference).
Since the gas is contained within a few scale heights, we have
ΔΩ/Ωk = O(h2). Because h 
 1, vertical shear should be
unimportant if the dynamics of interest operate on much faster
timescales, as can be the case for the RWI with growth rates
∼hΩk . That is, the vortical perturbation grows much faster than
it is sheared apart by ΔΩ. We have begun preliminary nonlinear
simulations which confirms vortex formation via the RWI in a
locally isothermal 3D disk with constant aspect ratio (Lin 2012).

Knobloch & Spruit (1986) have pointed out the possibility
of baroclinic instability in the case of Ω = Ω(r, z), when there
are radial variations in temperature on the scale of local scale
heights. This condition is not met in our locally isothermal disk
models because the sound speed varies on a global scale. In more
realistic disk models, one might expect that a density bump also
involves local temperature variations. Baroclinic effects may
then become important. On the other hand, the RWI may also be
enhanced because of local temperature gradients (Li et al. 2000).
Having Ω = Ω(r, z) means solving the linearized equations as
a PDE eigenvalue problem, which is not simple.

8.4.2. Boundary Effects

We have restricted our attention to the corotation region be-
cause this is where vortex formation eventually takes place.
Distant radial boundaries do not affect the dynamics in this re-
gion significantly (as checked numerically). However, it is clear
that far away from corotation, 3D effects become increasingly
important. This is seen in the polytropic disk as |ΔY | ∼ |Y | to-
ward the disk boundaries (Figure 10). Disturbances associated
with the RWI are therefore three dimensional beyond the Lind-
blad resonances. In order to study these regions, more physically
realistic radial boundary conditions are needed.

Around corotation, the RWI is a global disturbance in z,
so the upper disk boundary conditions could be important.
The use of orthogonal polynomials means we simply impose
a regularity condition at the upper disk boundary (Section 4).
This solution method does not allow us to explore the effect of
other vertical boundary conditions. Again, such a study involves
a PDE eigenvalue problem, but can reveal to what extent the
dominance of the 2D solutions found here are influenced by the
specific decompositions employed. This will be the subject of a
follow-up paper.

Nevertheless, we can make some speculations based on
results here. The vanishing density at the polytropic disk surface
is likely to provide a reflective upper boundary. This effect may
be important. It might reduce the growth of the RWI if it remains
predominantly a 2D disturbance, because the 2D solution alters
the surface density, which is directly related to the disk thickness
for a polytrope, but the disk thickness cannot change.

I thank H. Meheut for useful discussions and clarification of
their simulation results. I also thank O. Umurhan for comments
on the first version of this paper.
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APPENDIX A

EXPLICIT EXPRESSIONS FOR THE
LINEAR OPERATORS

A.1. Locally Isothermal Disks with Constant Aspect Ratio

For locally isothermal disks with H = hr with h being a
constant and Ω taken to be a function of radius only, the operators
governing the linear problem are given by

Al =
[

2mrΩ
σ̄

d

dr
ln

(
c2
s ΣΩ
D

)
−

(
m2 +

r2D

c2
s

)
+

lD

σ̄ 2h2

− lr
d

dr
ln

(
c2
s Σ
D

)
− l(2l − 1) +

4mΩl

σ̄

]

+ r2 d

dr

[
ln

(
rc2

s Σ
D

)]
d

dr
+ r2 d2

dr2
, (A1)

Bl = −
[

(l − 2) − 2mΩ
σ̄

]
+ r

d

dr
, (A2)

Cl = − (l + 1)(l + 2)

[
r

d

dr
ln

(
c2
s Σ
D

)
+ l − 2mΩ

σ̄

]

− r(l + 1)(l + 2)
d

dr
. (A3)

We have expressed the operators in terms of surface density Σ
so the above may be seen to be equivalent to Equation (21) in
Tanaka et al. (2002) when their parameter μ = d ln H/d ln r is
set to unity.

These equations are approximate because we ignored terms
proportional to ∂zΩ in the governing PDE from which
Equations (A1)–(A3) are derived. These terms are non-
vanishing for exact equilibrium if the sound speed varies with
radius, but for a thin disk ∂zΩ ∝ h2 
 1 so we expect them
to be small. It is worth neglecting them in favor of the one-
dimensional operators above, which are much simpler. Tanaka
et al. (2002) give a more general equation for the linear prob-
lem which includes ∂zΩ. Their Equation (11) shows that ∂zΩ
contributes to the coefficient of ∂zW as

∂W

∂z

[
z

H 2
+

m

σ̄

∂Ω
∂z

]
= z

H 2

∂W

∂z

[
1 − mh2qΩk

σ̄

]
, (A4)

where ∂zΩ is evaluated using Tanaka et al.’s Equation (4) and
q ≡ −d ln cs/d ln r = 0.5 for disks with constant aspect ratio
(equivalent to Equation (48) in Section 8.4.1). Near corotation
the magnitude of the second to first term is

∣∣∣∣mh2q
Ωk

σ̄

∣∣∣∣ ∼ mh2q

|γ /Ωk| . (A5)

For the fiducial case in Section 5, m = 3, h = 0.07, and
|γ /Ωk| � 0.057, this ratio is 0.13. We typically find |γ /Ωk| =
O(h), so the second term is a factor mhq 
 1 smaller
than the first for low m modes. Neglecting it (to arrive at
Equations (A1)–(A3)) is a self-consistent treatment.

A.2. Polytropic Disks

For polytropic disks, we find it most convenient to express
the linear operators as

A0 = − V (1) +
(2λ + 1)

2(λ + 1)
[V (2) − V (4) + V (6) − V (7) + V (8)],

(A6)

Al>0 = − V (1) +
1

2(l + λ + 1)(l + λ − 1)

× {(l2 + 2λl + 2λ2 − λ − 1)[V (2) + V (6) + V (8)]

+ l(l + 2λ)[λV (3) − (l2 + 2λl − 1)V (5)]

− [(λ + 1)l2 + 2λ(λ + 1)l + 2λ2 − λ − 1]V (4)

− (l2 + 2λl + λ − 1)(2λ + 1)V (7)} − l(l + 2λ)V (9),

(A7)

Bl = − l(l − 1)

4(l + λ − 2)(l + λ − 1)
{V (2) + (l − 2)V (3)

+ (l + 2λ − 1)[V (4) + (l − 2)V (5)]

+ V (6) + (2λ + 1)V (7) + V (8)}, (A8)

Cl = (l + 2λ + 1)(l + 2λ)

4(l + λ + 1)(l + λ + 2)
{−V (2) + (l + 2λ + 2)V (3)

+ (l + 1)[V (4) − (l + 2λ + 2)V (5)] − V (6)

− (2λ + 1)V (7) − V (8)}, (A9)

where

V (1) = nDρ
−1/n

0 r2

K(1 + n)
, V (2) = r2

{
d

dr

[
ln

(ρ0r

D

)] d

dr
+

d2

dr2

}
,

V (3) = − r2

{
H ′

H

d

dr

[
ln

(ρ0r

D

)]
+

(
H ′

H

)′
+

H ′

H

d

dr

}
,

V (4) = − r2 H ′

H

d

dr
, V (5) = r2

(
H ′

H

)2

,

V (6) = 2mrΩ
σ̄

d

dr

[
ln

(
ρ0Ω
D

)]
,

V (7) = − 2mrΩ
σ̄

(
H ′

H

)
, V (8) = −m2,

V (9) = − r2D

σ̄ 2H 2
. (A10)

We have used the midplane density ρ0, but it is straightforward to
express the above in terms of Σ using the relation Σ = ρ0H (r)In.
The form of the operators above is appropriate for numerical
computations in the range of polytropic indices considered in
this paper (n � 1 or λ � 0.5). Numerical issues may arise for
smaller indices because of the (l + λ − 2)−1 factor in Bl. For
example, if λ = 0 (n = 0.5) and l = 2 this factor diverges.
However, for n = 0.5 it is more natural to use Chebyshev
polynomials of the first kind (Tl) for expansion in ẑ. We have
performed calculations with n = 0.5 using Tl, and found similar
results to those presented here.
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Figure 19. Linear m = 5 mode found in Meheut et al.’s (2012a) n = 1.5 polytropic disk model, but with a smaller bump amplitude than their simulation. Left: radial
eigenfunctions Sl normalized by |S0(r0)|. Right: vertical flow structure.

(A color version of this figure is available in the online journal.)

Figure 20. m = 3 mode in the standard n = 8 polytropic disk (growth rate
|γ | = 0.055Ω0). Contours of the real vertical velocity perturbation are shown.
Arrows are the perturbed velocity field projected onto this plane. This figure is
similar to locally isothermal disks in that there is very little vertical velocity near
the vortex core, and is unlike polytropic disks with smaller n (e.g., Figure 16,
which shows significant upward motion near r = r0).

(A color version of this figure is available in the online journal.)

APPENDIX B

SUPPLEMENTARY CALCULATIONS

B.1. Improved Simulations

During the finishing stages of this paper, Meheut et al. (2012a)
published new simulations of the 3D RWI with improved
numerical resolution. This simulation developed an m = 5
mode with growth rate |γ | = 0.17Ω0, with upward motion at
anti-cyclonic vortex centers and downward motion at cyclonic
vortex centers, which are consistent with our fiducial polytropic
disks (Section 6).

We were able to find an m = 5 linear mode provided the
bump amplitude A in the midplane density was chosen to ensure
κ2 > 0. Using A = 1.7, we find |γ | = 0.18Ω0 for m = 5.
This mode is shown in Figure 19. Note that S0 is still localized
about r0, despite the higher m than those considered in our
fiducial calculations (which gave more global disturbances).
This is because here the vortensity minimum is deep, with
min(κ2/Ω2

k) � 0.1, so even high m modes can be localized. The
vertical flow at the vortex core is upward, as found previously.

Meheut et al. (2012a) actually employed A = 2, giving
κ2

0 � −0.2Ω2
k , for which we were unable to find a linear mode

with similar growth rate as their simulation. As κ2
0 is more

negative in their new simulation than in Meheut et al. (2010), one
possibility is that an axisymmetric disturbance develops early
on, rendering κ2 � 0 then the usual RWI follows. For A = 1.7,

Figure 21. Linear mode in the locally isothermal disk with the same parameter
values as the Meheut et al.’s (2012b) globally isothermal disk (m = 4, h = 0.1,

other parameters are the same as our fiducial case in Section 5). Contours of the
real vertical velocity perturbation are shown. Arrows are the perturbed velocity
field projected onto this plane. The growth rate |γ | = 0.20Ω0 is similar to
Meheut et al. The vertical flow is also consistent with their Figure 3(d), namely,
the vertical velocity vanishes near r = r0.

(A color version of this figure is available in the online journal.)

we find linear growth rates peak at m = 8 with |γ | = 0.21Ω0,
but this is only marginally larger than m = 5. Differences in
the linear and nonlinear calculations, such as the treatment of
vertical boundaries, may then account for observation of m = 5
in the simulations.

B.2. Consistency Check

We describe calculations to check the consistency between
locally isothermal and polytropic disks and against the globally
isothermal disk presented in Meheut et al. (2012b).

Noting that an isothermal disk is a special case of a polytropic
disk in the limit of large n, we performed a polytropic disk
calculation with n = 8, A = 2.0, and h = 0.2. Figure 20
shows that in this case, vertical motion is much smaller than the
horizontal flow in the corotation region, compared to smaller
values of n discussed in Section 6.4. This is consistent with our
typical results for locally isothermal disks where the vertical
velocity vanishes at the vortex core.

Meheut et al. (2012b) solved the linear problem for globally
isothermal disks. Their basic state with Ω = Ω(r) satisfies exact
radial momentum balance but adopting such a profile for locally
isothermal disks is only approximate. We have performed a
locally isothermal calculation with the same parameters as
Meheut et al. (2012b). The result is shown in Figure 21. It
shares the same vertical flow implied by Meheut et al.’s (2012b)
Figure 3(d) around a maximum in the (real) density perturbation:
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δvz > 0 near r = 1.1, δvz < 0 near r = 0.9, and δvz ∼ 0 at
r = r0. This suggests that a node in the vertical velocity at
the vortex core is a generic feature for linear RWI modes in
isothermal disks. A global temperature profile does not affect
the 3D RWI significantly.
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