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ABSTRACT
We study the effect of disc self-gravity on instabilities associated with gaps opened by a giant
Saturn mass planet in a protoplanetary disc that lead to the formation of vortices. We also study
the non-linear evolution of the vortices when this kind of instability occurs in a self-gravitating
disc as well as the potential effect on type III planetary migration due to angular momentum
exchange via co-orbital flows.

It is shown analytically and is confirmed through linear calculations that vortex-forming
modes with low azimuthal mode number, m, are stabilized by the effect of self-gravity if
the background structure is assumed fixed. However, the disc’s self-gravity also affects the
background gap surface density profile in a way that destabilizes modes with high m. Linear
calculations show that the combined effect of self-gravity through its effect on the background
structure and its direct effect on the linear modes shifts the most rapidly growing vortex mode
to higher m.

Hydrodynamic simulations of gaps opened by a Saturn mass planet show more vortices
develop with increasing disc mass and therefore importance of self-gravity. For sufficiently
large disc mass the vortex instability is suppressed, consistent with analytical expectations. In
this case a new global instability develops instead.

In the non-linear regime, we found that vortex merging is in general increasingly delayed as
the disc mass increases and in some cases multiple vortices persist until the end of simulations.
For massive discs in which the vortices merge, the post-merger vortex is localized in azimuth
and has similar structure to a Kida-like vortex. This is unlike the case without self-gravity
where vortices merge to form a larger vortex extended in azimuth.

In order to study the properties of the vortex systems without the influence of the planet,
we also performed a series of supplementary simulations of co-orbital Kida-like vortices. We
found that self-gravity enables Kida-like vortices to execute horseshoe turns upon encountering
each other. As a result, vortex merging is avoided on time-scales where it would occur without
self-gravity. Thus we suggest that mutual repulsion of self-gravitating vortices in a rotating
flow is responsible for the delayed vortex merging seen in the disc–planet simulations.

The effect of self-gravity on vortex-induced migration in low-viscosity discs is briefly
discussed. We found that when self-gravity is included and the disc mass is in the range where
vortex-forming instabilities occur, the vortex-induced type III migration of Lin & Papaloizou is
delayed. There are also expected to be longer periods of slow migration between the short bursts
of rapid migration compared to what occurs in a simulation without self-gravity. However, the
extent of induced rapid migration is unchanged and involves flow of vortex material across
the gap, independent of whether or not self-gravity is included.

Key words: planets and satellites: formation – planet–disc interactions – protoplanetary discs.

�E-mail: mkl23@cam.ac.uk (MKL); J.C.B.Papaloizou@damtp.cam.ac.uk
(JCBP)

1 IN T RO D U C T I O N

Since the first detection of an extrasolar giant planet orbiting a main-
sequence star in a 4-d orbit by Mayor & Queloz (1995), there have
been many observations of hot Jupiters (Marcy et al. 2005; Udry
& Santos 2007). One possible explanation for their close proximity
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to their host stars is orbital migration due to interaction with the
gaseous protoplanetary disc, from their site of formation to their
current observed location (Lin & Papaloizou 1986).

Planetary migration was first studied by Goldreich & Tremaine
(1980), and since then many analytical and numerical studies of
disc–planet interactions have been undertaken (see Papaloizou et al.
2007, for a review). However, most of these adopt a low-mass
disc model for which it may be assumed that self-gravity may be
neglected. This is even the case when rapid type III migration that
requires a massive disc is considered. It is the purpose of this paper
to investigate the effect of the disc self-gravity on such disc–planet
interactions and in particular to consider its effect on the stability
of the disc to vortex formation, a phenomenon that has been found
to occur in discs with very low viscosity.

Astrophysical discs may be dynamically unstable for a variety
of reasons. One example is instability associated with steep sur-
face density gradients or vortensity1 extrema (Papaloizou & Pringle
1985, 1987; Papaloizou & Lin 1989; Papaloizou & Savonije 1991;
Lovelace et al. 1999; Li et al. 2000) that can lead to vortex forma-
tion in non-linear regime (Li et al. 2001). The disc vortensity profile
necessary for such instabilities to occur may be induced by disc–
planet interaction. For sufficiently large planetary masses and/or
sufficiently low disc viscosity, the tidal perturbation on the gaseous
disc leads to a dip or gap in the surface density (Lin & Papaloizou
1986). There have been a series of studies of the vortex instability
associated with planetary gaps (Koller, Li & Lin 2003; Li et al.
2005; de Val-Borro et al. 2007) and its consequences for planetary
migration (Ou et al. 2007; Li et al. 2009; Lin & Papaloizou 2010; Yu
et al. 2010). However, the effect of disc self-gravity is still unclear.

In the context of disc–planet interactions, disc self-gravity is often
neglected. It has thus far only been studied in a limited number of
works (Nelson & Benz 2003a,b; Baruteau & Masset 2008; Zhang
et al. 2008). Li et al. (2009) included self-gravity in their study
of type I migration in low-viscosity discs, where the vortex insta-
bility develops for α viscosity parameters ≤10−5, but the specific
effect of self-gravity on the instability was not discussed analyti-
cally or explored numerically. In this paper we examine the effect of
self-gravity on the vortex instability associated with edges of gaps
opened by a Saturn mass planet and its effect on the subsequent
non-linear evolution of vortices together with a first calculation of
the subsequent effects on orbital migration.

This paper is organized as follows. In Section 2 we present the
governing equations and models for our disc–planet systems. We
discuss the linearized stability problem in Section 3. We show that
vortex-forming modes with long azimuthal wavelength associated
with vortensity minima at gap edges, induced by an embedded
planet, are stabilized by self-gravity when the background model
is held fixed. In Section 4 we perform linear mode calculations for
disc models of varying mass. We confirm the analytic discussion but
show in addition that changes to the gap structure that occur with
increasing disc mass are destabilizing, an effect that is stronger for
modes with short wavelength in the azimuthal direction. All of these
effects cause the most unstable modes to shift to shorter azimuthal
wavelength as the disc mass increases. However, in practice, these
modes are eventually dominated by long azimuthal wavelength,
global edge modes, which are not associated with localized vortex
formation and which are studied in Lin & Papaloizou (2011). Edge
modes dominate our models when the disc-to-star mass ratio is
�0.047, corresponding to a Keplerian Toomre stability parameter

1 The term vortensity is used for the ratio of vorticity to surface density.

�2 at the outer disc boundary (see Section 2.1 and Appendix A). As
this paper is concerned with vortex formation, we focus on models
with disc mass below this threshold.

We go on to present non-linear hydrodynamic simulations in Sec-
tion 5. In accord with expectations from linear theory, the instability
produces more vortices of smaller scale as the disc mass increases.
The vortices are found to survive for much longer against merging
than in the non-self-gravitating (NSG) limit and themselves be-
come SG with strong over surface densities. This is found to enable
pairs of vortices to undergo co-orbital dynamics with horseshoe
trajectories which aid to inhibit merging. In Section 6 we perform
simulations of interacting Kida-like vortices without an embedded
planet in order to clarify results obtained for vortices at gap edges.
These show that the co-orbital dynamics occurs independently of the
embedded planet. In Section 7 we give a preliminary investigation
of the effects of vortex formation in low-viscosity discs on orbital
migration when self-gravity is significant but not strong enough to
prevent effective vortex formation. As in the NSG case, episodes of
rapid migration occur as vortices are scattered by the planet (Lin &
Papaloizou 2010), but longer time intervals between them are ex-
pected on account of stabilization by self-gravity and slowed vortex
merging. Finally we summarize and conclude in Section 8.

2 D I SC MODEL AND BA SI C EQUATI ONS

We consider a gaseous disc of mass Md orbiting a central star of
mass M∗. We assume the disc to be razor thin and thus work in
the two-dimensional flat disc approximation. We adopt cylindrical
polar coordinates (r, ϕ) centred on the star and defined in the plane
of the disc. The reference frame is non-rotating.

The governing hydrodynamic equations are the continuity and
momentum equations

D�

Dt
= −�∇ · u, (1)

Du
Dt

= − 1

�
∇p − ∇� + f

�
, (2)

where � is the surface density, u is the velocity field and p is
the vertically integrated pressure. Numerical calculations adopt a
locally isothermal equation of state, p = c2

s � where cs = H�k

is the local sound speed and �k = √
GM∗/r3 ≡ 2π/P . Here

H = hr is the putative disc semithickness. We fix the constant
h = 0.05. The viscous force per unit area is f being characterized
by a uniform kinematic viscosity ν. The gravitational potential �

includes the indirect potential �i, the potential due to the central star,
�∗ = −GM∗/r, the potential due to the disc �d when self-gravity
is included and the potential due to an embedded planet, �p, for
disc–planet systems. Details of f are given in Masset (2002). The
potentials due to the planet and the disc are

�p = − GMp√
r2 + r2

p − 2rrp cos (ϕ − ϕp) + ε2
p

(3)

�d = −
∫
D

G�(r ′, ϕ′)√
r2 + r ′2 − 2rr ′ cos (ϕ − ϕ′) + ε2

g

r ′dr ′dϕ′, (4)

where the integral is taken over the domain of the discD. The planet
has mass Mp, position (rp, ϕp) and its potential is softened by use of
the softening length εp = 0.6H(rp). Similarly the disc potential is
softened by use of the softening length εg = 0.3H(r′). The indirect
potential takes account of the forces on the central star, which is at
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the origin of a non-inertial frame, due to the disc and planet. It is
given by

�i = r

∫
D

G�(r ′, ϕ′)
r ′2 cos (ϕ − ϕ′)r ′dr ′dϕ′

+GMp

r2
p

r cos (ϕ − ϕp). (5)

We adopt units such that G = M∗ = 1. The Keplerian orbital period
at r = 1 is then P (1) = 2π. As in our previous work, for disc–planet
simulations we use a uniform viscosity ν = 10−6 in code units. This
is an order of magnitude smaller than the typically adopted value of
ν = 10−5 that suppresses the vortex instability (de Val-Borro et al.
2007; Lin & Papaloizou 2010).

2.1 Disc–planet model

Most of our discussion will be applied to disc–planet systems, so we
describe these models here. Supplementary simulations in Section 6
employ a different set-up from that described below.

The disc occupies r = [ri, ro] = [1, 10]. The initial surface density
profile is modified from Armitage & Hansen (1999):

�(r) = �0r
−3/2

(
1 −

√
r1

r + H1

)
, (6)

where H1 = H(r1) is introduced to prevent a singular pressure force
at the inner boundary because � → 0 there. �0 is chosen via the
parameter Qo ≡ QKep(ro), where

QKep(r) = csκ

πG�
= hM∗

πr2�(r)
(7)

is the Toomre Q parameter for a thin Keplerian disc with a lo-
cally isothermal equation of state and κ2 = 2�r−1d(r2�)/dr is
the square of the epicycle frequency, with � being the disc angu-
lar velocity. We use Qo to label disc models and also define Qp ≡
QKep(rp). We note that specifying Qo also determines the disc-to-
star mass ratio, Md/M∗. The conversion between Qo, Qp and Md/M∗
for the models used in disc–planet interactions is given by Table A1
in Appendix A.

The disc is initialized with the azimuthal velocity required by
hydrostatic equilibrium. The initial radial velocity is ur = 3ν/r,
corresponding to the initial radial velocity profile of a Keplerian
disc with uniform kinematic viscosity and surface density ∝r−3/2.
Note that |ur| 
 |uϕ |.

In most of this work we focus on stability of the gap induced
by an embedded planet, accordingly we fix the planet on a circular
orbit of radius rp = 5. We quote time in units P0 = 2π/�k(rp). The
planet is introduced at t = 25P0 with azimuthal velocity that takes
account the contribution from the gravitational force due to the disc.
The planet potential is ramped up over a time period of 10P0.

3 LINEA R M ODES IN DISCS W ITH
STRUCTU R ED SURFAC E D ENSITY

In this section and the next we study linear disturbances associated
with internal surface density depressions in a disc in which self-
gravity is not neglected. We will consider dips/gaps self-consistently
opened by a giant planet. To simplify the discussion, we ignore
viscosity, indirect potentials and the planet potential. The planet’s
role is then only to set up the basic state, assumed to be axisymmetric
and defined by �(r), uϕ(r) and ur = 0. We begin with the linearized
equations with a local isothermal equation of state.

We consider perturbations to the disc state variables with az-
imuthal and time dependence through a factor exp i(σ t + mϕ)
which is taken as read. Here σ = σR − iγ is a complex frequency
with σ R and −γ being the real and imaginary parts, respectively.
The azimuthal mode number m is taken to be a positive integer. De-
noting perturbations by a prime, the linearized equations of motion
read

u′
r = − 1

D

[
iσ̄

(
c2

s

dW

dr
+ d�′

dr

)
+ 2im�

r

(
c2

s W + �′)] (8)

u′
ϕ = 1

D

[
κ2

2�

(
c2

s

dW

dr
+ d�′

dr

)
+ mσ̄

r

(
c2

s W + �′)] , (9)

where D = κ2 − σ̄ 2, σ̄ ≡ σ + m�(r) is the Doppler shifted
frequency, W = �′/� is the relative surface density perturbation
and �′ is the disc gravitational potential perturbation which is given
by the Poisson integral:

�′ = −G

∫ ro

ri

Km(r, ξ )�(ξ )W (ξ )ξdξ, where (10)

Km(r, ξ ) =
∫ 2π

0

cos(mϕ) dϕ√
r2 + ξ 2 − 2rξ cos (ϕ) + ε2

g (ξ )
. (11)

Using the linearized equations of motion to eliminate the velocity
component perturbations from the linearized continuity equation,

iσ̄W = − 1

r�

d

dr

(
r�u′

r

) − im

r
u′

φ, (12)

yields the governing equation:

d

dr

[
r�

D

(
c2

s

dW

dr
+ d�′

dr

)]
+

[
2m

σ̄

(
��

D

)
dc2

s

dr
− r�

]
W

+
[

2m

σ̄

d

dr

(
��

D

)
− m2�

rD

] (
c2

s W + �′) = 0. (13)

3.1 Modes leading to vortex formation: the effect
of self-gravity

We shall be concerned with the vortex-forming instabilities com-
monly observed in disc–planet interactions in discs with low vis-
cosity (Koller et al. 2003; Li et al. 2005, 2009; Lin & Papaloizou
2010). The unstable modes are found to be localized to gap edges
and associated with minima in the vortensity (Papaloizou & Lin
1989; Papaloizou & Savonije 1991; Lovelace et al. 1999).

Here, we investigate the effect of self-gravity on these modes and
show somewhat paradoxically, in view of the fact that increasing
self-gravity in general destabilizes discs, that it tends to stabilize the
modes. To do this we consider a small change to the strength of self-
gravity and apply perturbation theory to determine the consequence
of the change for these modes.

Non-linear simulations show more vortices develop as self-
gravity is increased. This is in fact consistent with the stabiliza-
tion effect demonstrated below, which is effective for small m. In
other words, stabilization by self-gravity discourages low m vor-
tex modes, supporting the observation that only higher m modes
develop in simulations.

To make the analysis tractable, further simplifications are made.
We take the fluid to be such that either c2

s is constant (strictly
isothermal) or more generally the equation of state is barotropic such
that p = p(�). We do not expect a significant difference between
adopting a strictly isothermal, or barotropic equation of state, and
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the fixed cs profile as used in simulations. This is because the modes
of interest are driven by local features and disturbances are localized,
whereas cs(r) for a locally isothermal equation of state varies on a
global scale. For mathematical convenience we also take a softening
prescription such that Km(r, ξ ) = Km(ξ , r) is symmetric, e.g. εg =
constant. Although convenient mathematically, this is not expected
to lead to significant changes for the same reason as that given
above.

Introducing the variable S

S ≡ c2
s W + �′ = c2

s W − G

∫ ro

ri

Km(r, ξ )ξ�(ξ )W (ξ ) dξ, (14)

the governing equation derived from equation (13) simply by taking
cs to be constant is

r�W = d

dr

[
r�

D

(
dS

dr

)]
+

{
m

σ̄

d

dr

[
1

η(1 − ν̄2)

]
− m2�

rD

}
S

≡ rL(S), (15)

where we have used the expression for vortensity η = κ2/2�� and
ν̄ ≡ σ̄ /κ . We remark that in fact these equations also hold for a
general barotropic equation of state.

3.2 The limit of negligible self-gravity

When self-gravity is negligible, we may set G = 0 in (14), from
which we obtain W = S/c2

s . Substituting this into (15) gives the
second-order ordinary differential equation for S that governs sta-
bility in the limit of zero self-gravity in the form

r�S

c2
s

= d

dr

[
r�

D

(
dS

dr

)]
+

{
m

σ̄

d

dr

[
1

η(1 − ν̄2)

]
− m2�

rD

}
S.

(16)

This equation was studied by Lin & Papaloizou (2010) for gap
profiles of the type we consider. They found that depending on
parameters such as m, there were neutral modes with corotation
radius, rc, where σ̄ (rc) = 0 coincident with a vortensity minimum.
This could be associated with either the inner or outer gap edge.
Small variations of the disc parameters could then lead to an insta-
bility associated with vortex formation. When unstable these modes
retain rc to be close to the vortensity minimum with which they can
be considered to be associated.

3.3 Localized low m modes

When m is small the neutral modes described above are localized
around corotation and therefore insensitive to distant boundary con-
ditions. For these modes, we may neglect ν̄ and set D = κ2 in (16)
above to get the simpler equation:

r�S

c2
s

= d

dr

[
r�

κ2

(
dS

dr

)]
+

{
m

σ̄

d

dr

[
1

η

]
− m2�

rκ2

}
S. (17)

Localization occurs because the solutions of (17) can be seen to
decay exponentially away from the corotation region, where there
are large background gradients, on a length-scale comparable to H.
However, for (17) to be a good approximation, we require |ν̄2| 
 1
in the region of localization which is also comparable to H in extent.
This in turn requires H 
 2r/(3m), a condition which is satisfied
for low m. For larger m the mode becomes de-localized with the
excitation of density waves that propagate into the extended disc
(Lin & Papaloizou 2010). In this case the boundary conditions
can play a role. The analysis below assumes localization so that
boundary conditions do not play a role. It therefore only applies for
low m.

3.4 Evaluating the effect of small changes to low m modes
using perturbation theory

In order to investigate the effect of self-gravity, we return to equa-
tions (14) and (15) and note that strengthening self-gravity by scal-
ing up the surface density is equivalent to increasing G, provided that
the background form remains fixed. Thus although we increase the
effective disc gravity, we shall assume the background disc model
remains unchanged. In fact, in our case the background model is
structured by a perturbing planet and so its response to changing the
disc gravity is non-trivial to evaluate analytically. Calculations pre-
sented below in Section 4.7 show that changes to the background
surface density profile induced by incorporating the disc gravity
tend to act to make the vortex modes we consider more unstable.
However, the direct effect of self-gravity on the linear response con-
sidered below turns out to be more important for localized modes
with low m, and acts to stabilize them.

Accordingly we assume a solution S corresponding to a neutral
mode with corotation radius, rc, located at a vortensity minimum,
such that dη/dr|r=rc = 0. As the associated σ is real, for this value,
the operator L is real and regular everywhere. We then perturb this
solution by altering the strength of self-gravity via

G → G + δG,

so that δG > 0 corresponds to increasing the importance of self-
gravity and vice versa (note that the initial value, G, could be zero).
This induces perturbations

S → S + δS, �′ → �′ + δ�′, σ → σ + δσ,

L → L + δL,

with

δσ = δσR − iγ

δL = ∂L

∂σ
δσ,

where δσ R and γ are real.
Noting that δ denotes a small change and γ is small, we linearize

in terms of these quantities about the assumed original neutral mode
and determine γ . The governing equations lead to

L(δS) + δL(S) = δ�′, (18)

δS = c2
s

δ�′

�
− G

∫ ro

ri

Km(r, ξ )ξδ�′(ξ ) dξ

− δG

∫ ro

ri

Km(r, ξ )ξ�′(ξ ) dξ. (19)

Next, we define the inner product between two functions U(r) and
V(r) as

〈U, V 〉 =
∫ ro

ri

rU ∗(r)V (r) dr, (20)

Then, assuming localized functions corresponding to localized
modes so that we can assume boundary values vanish when in-
tegrating by parts, we have

〈U, L(V )〉 = 〈L(U ), V 〉, (21)

which used the fact that L corresponding to the neutral mode is real,
which makes L self-adjoint. Equations (18)–(19) can be manipulated
to yield

〈S, δL(S)〉 = δG

∫ ro

ri

∫ ro

ri

rξKm(r, ξ )�′∗(ξ )�′(r) dξdr.

≡ δGE, (22)
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where we have used the fact that the kernel Km is symmetric. Note
that E > 0 and is proportional to the magnitude of the gravitational
energy of the mode. Following Papaloizou & Lin (1989), we sepa-
rate out the contribution to the perturbed linear operator δL that is
proportional to the vortensity gradient and is potentially singular at
corotation and write

〈S, δL(S)〉 ≡ 〈S, δL1(S)〉 + 〈S, δL2(S)〉, (23)

where δL2(S) contains the potentially singular contribution, and we
have

〈S, δL2(S)〉 = −mδσ

[
P

(∫ ro

ri

g(r)

σ̄
dr

)
+

∫ ro

ri

iπδ(σ̄ )g(r) dr

]
,

(24)

where

g(r) ≡ |S|2
σ̄

d

dr

(
1

η

)
. (25)

Note that the usual Landau prescription for positive γ has been
used to deal with the pole at corotation and that P outside the above
integral indicates that the principal value is to be taken. Note too
that δL1 accounts for the remainder of δL and is not singular at
corotation. The contribution from δL2 is the only one that can lead
to an imaginary contribution in the limit δσ → 0 because of the
pole at corotation. In this regard, we remark that one does not get
such contributions arising from Lindblad resonances where D = 0.
This is because, as is well known, these do not constitute effective
singularities in a gaseous disc (e.g. Papaloizou & Savonije 1991).

Recalling that γ is small, equations (22)–(24) can be combined
to give

δGE = δσ

[
∂ 〈S,L1(S)〉

∂σ
− mP

(∫ ro

ri

g(r)

σ̄
dr

)

− imπ

∫ ro

ri

δ(σ̄ )g(r) dr

]

≡ (A − imχ )δσ, (26)

where A is the contribution from the L1 term plus the principle
value integral and

χ ≡ π|S|2
m�′|m�′|

d2

dr2

(
1

η

)∣∣∣∣
r=rc

. (27)

In the limit γ → 0+, A is real so we have

γ = − mχ

A2 + m2χ 2
δGE. (28)

As we have remarked above, vortex-forming modes are associated
with vortensity minima or at maxima of η−1. Consider a marginally
stable mode with corotation at max(η−1). Typical rotation profiles
have �′ < 0, which means χ > 0 for this mode. For consistency
with the assumption of γ > 0 in deriving equation (28), we require
δG < 0 since E > 0. Accordingly in order to destabilize this mode,
the strength of self-gravity needs to be reduced.

This leads to the conclusion that increasing self-gravity stabilizes
low m modes with corotation at a vortensity minimum (as has been
borne out by our linear and non-linear calculations presented be-
low); while increasing self-gravity would destabilize modes which
had corotation at a vortensity maximum. This suggests that for suf-
ficiently strong self-gravity, modes associated with vortensity max-
ima should be favoured. This has been found to be the case, but they
are not modes leading to vortex formation (see Lin & Papaloizou
2011).

Note χ ∝ 1/m2, suggesting that γ decreases for large m, so the
stabilization/destabilization effect of self-gravity diminishes for in-
creasing azimuthal wavenumber. This is only speculative because
there are implicit dependencies on m through terms in the integrals
and through the original eigenfunctions S. Nevertheless, a weak-
ening effect of self-gravity through the potential perturbation is
anticipated because increasing m decreases the magnitude of the
Poisson kernel Km.

3.5 Association of localized low m normal modes with
vortensity minima for the strength of self-gravity below
a threshold

We can also show that corotation radii for localized neutral modes
with low m must be at vortensity minima unless self-gravity (or an
appropriate mean value of Q) is above (below) a threshold level.
Let us consider a disc with localized steep surface density gradients
and a non-axisymmetric disturbance with corotation radius in this
region. Multiplying equation (15) by S∗ and integrating over the
disc, assuming most of the contribution is from near corotation, as
is expected for low m modes (see Section 3.3), so that the term
that is potentially singular at corotation and is proportional to the
vortensity gradient is dominant on the right-hand side, we have the
balance∫ ro

ri

rc2
s

|�′|2
�

dr − G

∫ ro

ri

Km(r, ξ )rξ�′∗(ξ )�′(r) dξdr


∫ ro

ri

m|S|2
σ̄

d

dr

(
1

η

)
dr. (29)

If the left-hand side can be shown to always be positive then corota-
tion for a localized neutral mode must lie at a vortensity minimum
or max(η−1). This holds if the maximum possible value of � for
any �′ is less than unity, where

� =
G

∫ ro

ri

Km(r, ξ )rξ�′∗(ξ )�′(r) dξdr∫ ro

ri

rc2
s

|�′|2
�

dr

. (30)

Now from the Cauchy–Schwartz inequality it follows that

� ≤ G

√∫ ro

ri

K2
m(r, ξ )

�∗(r)�(ξ )

c2
s (r)c2

s (ξ )
rξdξdr. (31)

Thus if the right-hand side of the above is less than unity, coro-
tation of a neutral mode localized at a vortensity extremum must
be localized at a vortensity minimum. This condition requires that
the strength of self-gravity be below a threshold, and this implies a
lower bound on an appropriate mean Q value. The fact that this fails
for sufficiently strong self-gravity is consistent with the discussion
above that led to the conclusion that increasing self-gravity tends to
stabilize the vortex-forming instability.

Indeed when self-gravity increases further, instability is trans-
ferred to modes with corotation associated with vortensity maxima.
These are different in character to vortex-forming modes being more
global and are referred to as edge modes, and they are studied in
Lin & Papaloizou (2011).

4 L I N E A R C A L C U L AT I O N S

We now present numerical solutions to equation (13) with a local
isothermal equation of state for consistency with numerical simula-
tions used to set up the basic state. We regard the governing equation
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as the requirement that an operator L acting on W should be zero,
thus

L(W ) = 0. (32)

One form of L is

L = rc2
s

d2

dr2
+ rI2 +

[
1

r
+ �′

�
− D′

D

] (
rc2

s

d

dr
+ rI1

)

+
{

2m

σ̄

[
�′�
�

+ �′ − �D′

D

]
− m2

r

} (
c2

s + I0

)

+ rc2′
s

d

dr
+

[
2m�c2′

s

σ̄
− rD

]
. (33)

It is understood that primes in equation (33) denote d/dr . The
integro-differential operators In are such that

In(W ) = dn�′

drn
. (34)

First and second derivatives of the perturbed potential are performed
by replacing Km(r, ξ ) by ∂Km/∂r and ∂2Km/∂r2 in the Poisson
integral, respectively.

4.1 Quadratic approximation

Vortex modes are localized about corotation at a vortensity mini-
mum. They extend over a region characterized by small |σ̄ | in the
neighbourhood of rc and are expected to be insensitive to boundary
conditions. If we multiply equation (33) by σ̄D and expand the
resulting equation in powers of σ̄ and neglect terms proportional to
σ̄ 3 and higher powers, we can derive an equation of the form

(σ 2L2 + σL1 + L0)W = 0, (35)

where the operators Li are real and only depend on the basic
state. The eigenfrequency now appears explicitly. We call this the
quadratic approximation. Although the above procedure is not ex-
pected to be valid in general, it should be valid for modes localized
about their corotation radii with the scale of localization being much
less than rc itself. Modes can be found from equation (35) using
standard numerical methods. The eigenvalues are then used as start-
ing values in order to obtain an iterative solution for the eigenvalues
for the full equation (32). The concept of the vortex-forming mode
as a localized mode is confirmed if the final solution of (32) is not
significantly changed from the solution of (35). Note that since the
operators Li are real, eigenfrequencies are either real or occur in
complex conjugate pairs.

4.2 Distinction between including and excluding self-gravity

Since we are concerned with effects of self-gravity, we need to
clearly define self-gravitating (SG) and non-self-gravitating (NSG)
cases. The background state on which we perform linear stabil-
ity analysis was obtained from non-linear hydrodynamic simula-
tions (see Section 4.4), which can be run with self-gravity (SGBG)
or without self-gravity (NSGBG). In the linear calculations, self-
gravity can be disabled by setting �′ = 0. Therefore, we have two
disturbance types: an SG response (SGRSP) and an NSG response
(NSGRSP).

The analytical discussion in Section 3.1 applies to the effect
of self-gravity through the linear response, assuming the form
of the background remains unchanged. In the context of hydro-
dynamic simulations, including or neglecting self-gravity simply
means whether or not the disc gravitational potential is included.
If it is included, the background state set up by simulations also

depends on self-gravity. Hydrodynamic simulations therefore cor-
respond either to the combination SGBG+SGRSP or to the combi-
nation NSGBG+NSGRSP. We call these fully SG and fully NSG
cases. The advantage of performing linear calculations is that we
can distinguish between the effects of self-gravity arising through
its effects on the background state and the effects resulting from its
influence on the linear response.

4.3 Numerical approach

We discretized the linear operators on a grid that divides the radial
range [ri, ro] into typically Nr = 385 equally spaced grid points
at which W is evaluated as Wj, j = 1, 2, . . . , Nr. The governing
equation thus becomes a system of Nr simultaneous equations for
the Wj which determine an eigenvalue problem for σ . The system
of equations incorporates the boundary conditions. For simplicity
we impose dW/dr = 0 at boundaries in discretized form. We remark
that it is known from other linear calculations and simulations that
vortex-forming modes are localized and insensitive to boundary
conditions (de Val-Borro et al. 2007; Lin & Papaloizou 2010). Tests
have shown that the boundary condition does not influence the
essential effect of self-gravity on localized modes.

The discretized quadratic approximation obtained from equa-
tion (35) leads to a quadratic eigenvalue problem that is equivalent
to a 2Nr × 2Nr standard linear matrix eigenvalue problem. This is
solved by methods which give all eigenvalues σ . The most unsta-
ble eigenvalue is then used as a trial solution for the full system
which yields a discriminant that is then solved iteratively for the
actual eigenvalue , σ , using the Newton–Raphson method. We re-
strict attention to modes with eigenfrequencies such that |σ R/m�e +
1| < 0.1 and |γ | < �e, where �e is the rotation frequency of the
vortensity minimum at the outer gap edge.

4.4 Background state

The background states used for linear calculations were set up by
running disc–planet simulations for the models described in Sec-
tion 2.1. Numerical details will be described in Section 5. We allow
the planet to open a gap, then take azimuthal averages to obtain
one-dimensional profiles.

Fig. 1 shows the gap profile, in terms of the inverse vortensity
1/η, opened up by a Saturn mass planet in the Qo = 4 disc. The

Figure 1. Gap profiles opened by a Saturn mass planet in an initial disc
model with Qo = 4. The inverse vortensity, η−1, obtained with (solid) and
without (dotted) self-gravity included is shown. Profiles were obtained from
azimuthal averages taken from disc–planet simulation outputs. The planet
is at the fixed location r = 5.
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formation of vortensity peaks is due to the generation of vorten-
sity as material passes through shocks induced by the giant planet
which extend into its co-orbital region (Lin & Papaloizou 2010). We
shall see that in hydrodynamic simulations vortices predominantly
develop at the outer gap edge, so we focus on modes associated
with the outer vortensity extrema. The outer vortensity maximum
or min(η−1) is located at r  5.5 while the outer vortensity minimum
or max(η−1) is located at r  5.75. These extrema are separated by
about 0.89H. As we increase the strength of self-gravity, the discus-
sion in Sections 3.4 and 3.5 indicates that eventually vortex modes
associated with vortensity minima are suppressed and modes as-
sociated with vortensity maxima become favoured instead. This is
consistent with self-gravity stabilizing low m vortex modes through
the linear response.

The gap profiles set up with and without self-gravity are similar.
When self-gravity is included, the peaks and troughs have slightly
larger amplitudes due to increased effective planet mass (see Sec-
tion 5.3).

4.5 Solution in the quadratic approximation

We first present solutions for linear modes for the Qo = 4 disc in the
quadratic approximation. Fig. 2 compares the growth rates, γ , and
the eigenfunctions, W, obtained for m = 5 for the fully SG case and
the fully NSG case. Growth rates are such that the most unstable
mode shifts to higher m when self-gravity is included. Without self-
gravity, the dominant mode has m = 3, whereas with self-gravity
the dominant mode has m = 6–7. The combination of self-gravity
acting through the background and the linear response stabilizes
modes with m ≤ 5 and destabilizes modes with m ≥ 6. Thus higher
m vortex modes are enabled by self-gravity.

Figure 2. Growth rates (a) obtained from the quadratic approximation to
the governing equation and the modulus of the m = 5 eigenfunction (b).
Here Wc = W(r = 5.7). The solid (dotted) lines correspond to the case with
(without) self-gravity in both the background state and response. The initial
disc model had Qo = 4.

The eigenfunctions W with and without self-gravity are similar,
and are for the most part localized about corotation. This suggests
the nature of the instability is unchanged in this case. However,
the eigenfunction amplitude in r > 6 and r < 5.2 is larger when
self-gravity is included. Note too that the amplitude is larger for r >

6 than for r < 5.2. This is not unexpected since the outer disc has
smaller Toomre Q values it is expected to be more responsive.

It is important to remember that the quadratic approximation
assumes modes are localized about corotation. The global nature of
some disturbances may invalidate this approximation. Increasing m
eventually quenches modes in the NSG case, thus we did not find
modes for m ≥ 9 that fit the description of being localized modes.
For the full governing equation (13), high m modes are expected
to have increasing wave-like behaviour and be less focused around
corotation, contradicting the quadratic approximation, and so it is
not surprising that they are not found here. Similarly, we did not
find a localized m = 1 vortex mode in the SG case because it
had been stabilized by the inclusion of self-gravity, according to
earlier analysis. However, there exist other types of low m mode
not captured by the quadratic approximation. Modes with extreme
values of m are of less relevance since they are not observed to
develop in hydrodynamic simulations of interest, which typically
show the number of vortices in agreement with the most unstable
m.

4.6 Solutions to the full governing linear equation

Solutions to the full governing equation (13) for the fiducial cases
with Qo = 4 above are shown in Fig. 3. In Fig. 3 we compare growth

Figure 3. Growth rates obtained for the full governing equation (a) and the
eigenfunction |W| for m = 5 (b). Here Wc = W(r = 5.7). Solid lines are
for the fully SG case and dotted lines are for the fully NSG case. The initial
disc had Qo = 4. In (a), the local maximum around m = 9 in the dotted
curve is most likely caused by a boundary condition effect. Modes with m ≥
7 without self-gravity are not seen in non-linear simulations and are not
relevant.
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rates and the m = 5 eigenfunction. The corotation radii for the SG
and NSG cases are rc = 5.88 and 5.79, respectively. These radii
are close to the local vortensity minimum or max(η−1). In the NSG
case, corotation almost coincides with the extremum.

The NSG case has maximum growth rate for m = 4, and the
SG case is most unstable for m = 6–7. Modes with m < 5 are
stabilized while m > 5 are destabilized by self-gravity. This results
in a shift to higher m modes when self-gravity is included in non-
linear simulations of the model. Modes with the larger m values
are destabilized, but this is not in contradiction with earlier analysis
which assumed small m and did not take account of variations in the
form of the background state. It is shown in Section 4.7 below that
the destabilization of higher m modes is in fact due to the change in
the background state.

Results for m < 5 are in essential agreement with those obtained
in the quadratic approximation, giving us confidence in our view
of the importance of the dominance of the corotation region. As
with the quadratic approximation, we did not find a m = 1 mode
with dominant disturbance about the gap edge in the SG case.
This suggests that such modes are the most easily stabilized by
increasing self-gravity. In the NSG case, the growth rates for m ≥
8 are larger than m = 7 and do not follow the trend of decreasing
growth rates seen from m = 5 → 7. Note in Fig. 3(a) (and Fig. 4a
below) the local maxima at m = 9 for NSG cases. The NSG m ≥
8 modes are unlikely to be the same type of vortex modes as m ≤
7 because the former have significant wave-like regions in W and
are not concentrated near corotation as for m ≤ 7. In addition, the
m ≥ 8 region is also where the quadratic approximation appears
to fail. These wave-dominated modes demand radiative boundary
conditions rather than the simplistic conditions applied here, which

Figure 4. The effect of self-gravity on growth rates (as a function of az-
imuthal wavenumber m) of vortex-forming, gap edge instabilities through
the background (a) and through the response (b). The disc model is Qo =
4. In (a), the local maximum around m = 9 in the dotted curve is most
likely caused by a boundary condition effect. Modes with m ≥ 7 without
self-gravity are not seen in non-linear simulations and are not relevant.

are appropriate for boundary condition insensitive modes such as
local vortex-forming modes. The NSG m ≥ 8 modes identified here
are thus likely to be artefacts of the boundary condition. Fortunately,
these modes are irrelevant because they are not the most unstable,
nor are they observed in the corresponding non-linear simulations.
By considering the behaviour for m ≤ 7, we can expect a cut-off for
vortex modes around m = 8 for this model.

The m = 5 eigenfunctions shown in Fig. 3 are similar. Both have
dominant disturbance around corotation. Behaviour in the region
r ≤ 4.6 is essentially identical. The largest difference is found in the
region r ≥ 6.4. The disturbance around corotation is also somewhat
wider in the SG case. Comparing with Fig. 2, we see that the
quadratic approximation captures the main feature of the mode in
the corotation region. However, it removes the wave-like behaviour
in the exterior disc.

4.7 The role of self-gravity

The calculations above can be compared to hydrodynamic simula-
tions where self-gravity is either enabled or not. The linear problem
allows one to examine separately the effect of self-gravity through
its influence on the basic state and through its influence on the linear
response.

We continue with the disc model with Qo = 4 and compare
growth rates for a pair of models, one with and the other without
self-gravity in setting up the basic state (i.e. the simulations were
run with and without self-gravity enabled), but both without self-
gravity implemented in the linear mode calculation (i.e. setting �′ =
0). In addition we compared another pair of models, one with and
the other without self-gravity implemented in the linear response,
but with both having the background state calculated with the disc
self-gravity incorporated.

Fig. 4(a) examines the influence of self-gravity through its mod-
ification of the background state. It shows that this modification is
destabilizing. This is not surprising because a deeper gap is set up
when self-gravity is included in the simulation. In going from the
case without self-gravity to the one with self-gravity, the most un-
stable mode shifts from m = 4–5 to m = 6. The vortex modes do not
require self-gravity to operate. However, the difference in growth
rates decreases as m decreases, so the effect due to the modification
of the background is smallest for small m. In other words, high m
modes can be made more unstable by including self-gravity in the
base state.

Fig. 4(b) compares the growth rates obtained from linear calcula-
tions for the same background state but with and without self-gravity
implemented in the response. The analysis in Section 3.1 applies to
this comparison. Consistent with that, enabling self-gravity in the
response decreases |γ | and stabilizes the system against modes with
corotation associated with a vortensity minimum for any value of
m. Unlike the effect acting through the background, the influence of
self-gravity is more significant for low m and can lead to stabiliza-
tion. The m = 1 mode has been stabilized. The most unstable mode
without self-gravity has m = 5 and including self-gravity shifts it
to m = 6.

The fact that self-gravity acting in the linear response and back-
ground state has opposite effects on growth rates is consistent with
the comparison between fully SG and fully NSG cases (Fig. 3).
The effect of self-gravity through changes to the background and
through direct influence on the linear response both contribute to
favouring higher m. However, the background effect is achieved by
increasing high m growth rates, whereas the effect via the response
works by stabilizing low m modes in accordance with the discussion
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Figure 5. Growth rates for unstable modes in background discs with Qo =
3, 4, 8. Panel (a) is obtained from solving the full linear equation, while panel
(b) is from the quadratic approximation. Self-gravity is fully incorporated
throughout.

in Section 3.4. Thus low m vortex modes become disfavoured. Over-
all, we expect more vortices to form, corresponding to increasing
m, with increasing self-gravity.

4.8 Models with different Qo

In the calculations presented below, self-gravity is included both
in setting up the background and in evaluating the linear response.
We compare the fiducial calculation to cases with Qo = 3 (a more
massive disc) and Qo = 8 (a less massive disc). The Qo = 8 case
has a mass Md = 0.012M∗ which is usually considered to be NSG
in disc–planet simulations.

Growth rates are shown in Fig. 5(a). The plot demonstrates a clear
shift of the most rapidly growing mode to higher m as Qo is lowered
(increasing disc mass). For Qo = 8 the most unstable mode has m =
5–6 and for Qo = 3 it shifts to m = 7–8. The shift is accompanied
by the stabilization (or loss) of low m modes. For example, when
the disc mass is halved as Qo changes from Qo = 4 to 8, the m = 3
growth rate decreases by a factor of 3. Modes with the lowest m are
stabilized by strong self-gravity, as we did not find m = 1, 2 modes
when Qo = 3.

These calculations have also been performed in the quadratic ap-
proximation. Fig. 5(b) shows a similar dependence of the growth
rates on Qo in this case. The shift to higher m is more apparent. For
Qo = 3 we did not find modes with m ≤ 4. Since the approximation
reinforces the localized property of vortex-forming modes, it means
that localized modes for low m become increasing unlikely as we
lower Qo. Hence, for massive discs only high m vortex-forming
modes can develop. The agreement between results obtained us-
ing the quadratic approximation and the full governing equation
indicates a lack of sensitivity to boundary conditions and so is re-
assuring.

5 N O N - L I N E A R H Y D RO DY NA M I C
SI MULATI ONS OF VO RTEX-FORMI NG
INSTABILITIES

We present hydrodynamic simulations of vortex formation and evo-
lution at edges of gaps opened by a giant planet for discs of varying
masses with self-gravity self-consistently included. The disc–planet
models have been already described in Section 2.1. We consider a
Saturn mass planet with Mp = 3 × 10−4M∗. The kinematic viscosity
ν = 10−6 corresponds to an α viscosity of α = ν/(csH) = 1.8 ×
10−4 at the planet’s fixed orbital radius at rp = 5.

Higher viscosities corresponding to α = O(10−3), which is com-
monly assumed for protoplanetary discs, inhibit vortex formation
(de Val-Borro et al. 2007; Lin & Papaloizou 2010). If planetary
masses appropriate for type I migration are used, then a much lower
viscosity would be required for vortex formation to occur (e.g. Li
et al. 2009, where α ≤ 10−5 was needed). Since we consider a
giant planet, such low-viscosity regimes are not needed in order to
develop vortices.

5.1 Numerical scheme

The hydrodynamic equations are evolved using the FARGO code
(Masset 2000). FARGO is an explicit finite-difference code similar
to ZEUS (Stone & Norman 1992) with second-order accuracy in
space. It employs a modified azimuthal transport to achieved large
time-steps, otherwise limited by the Keplerian velocity near the
inner boundary of the domain. Self-gravity for FARGO was imple-
mented and tested by Baruteau & Masset (2008). The gravitational
acceleration due to the disc is calculated directly using Fast Fourier
Transforms in both azimuth and radius. The latter requires the radial
domain to be doubled when calculating the self-gravity potential.

The disc is divided into Nr × Nϕ = 768 × 2304 computational
grid cells in radius and azimuth. The computational grid in the radial
direction is logarithmically spaced. We impose an open boundary
at r = ri and non-reflecting boundary as used by Zhang et al. (2008)
at r = ro (Godon 1996). Since vortices are localized features, as
long as gap edges are far from boundaries, boundary conditions can
only have a limited effect. We also performed some simulations
with damping boundary conditions (de Val-Borro et al. 2007) and
open outer boundaries. We found similar results to those presented
below.

5.2 The effect of self-gravity

We compare cases where disc gravitational potential is either in-
cluded or excluded in the total potential calculation. This is the
standard distinction between SG and NSG disc–planet simulations
(Nelson & Benz 2003a; Zhang et al. 2008). We consider the Qo =
4 (Qp = 7) disc. The disc mass is Md = 0.024M∗.

Fig. 6 shows vortensity contours that illustrate vortex formation
at the outer gap edge. There is a local vortensity maximum at about
r = 5.5 that has been produced by flow through shocks induced by
the planet. This maximum remains largely undisturbed indicating
that instability is associated with structure outside it and associated
with the vortensity minimum. More vortices are excited when self-
gravity is included. In that case, the m = 6 vortex mode dominates
whereas the m = 3 mode dominates in the NSG case. This behaviour
is consistent with linear calculations.

Fig. 6 also shows that vortices have radial length-scales com-
parable to the local scaleheight [H(6) = 0.3]. The vortices in
these cases have radial sizes of ∼2.2H(6) without self-gravity and
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Figure 6. Vortensity contours for Qo = 4 with (left) and without (right) self-
gravity. The planet is located at r = 5, φ = φp. The thick lines crossing the
outer radial boundaries correspond to spiral shocks induced by the planet.

∼1.3H(6) with self-gravity. The vortices are of smaller radial extent
when self-gravity is included because of the preference for higher
m. A decrease in radial size can be expected from the decrease in
width of the WKBJ evanescent zone centred on corotation. This is
determined by the condition:

(σ + m�)2 = κ2(1 − 1/Q2). (36)

Writing σ = −m�(rc), it is straightforward to show that the radial
width of the evanescent zone approximately scales as 1/m. Since
the preferred m is approximately a factor of 2 smaller, we expect
vortices in the case without self-gravity to be double the size of
those in the case where self-gravity is included.

In the case with self-gravity, the vortices are approximately cen-
tred along the radius r = 5.9, close to the corotation radius expected
from linear calculations, rc = 5.88. In the NSG case, linear calcu-
lation gives rc = 5.81 for m = 3, but the vortices are approximately
centred along r = 6. However, perturbations here are already in
the non-linear regime and interaction between vortices or with the
spiral shock may shift the vortices around. Note too that in this
regard there is more variation in the radial locations of the vortices
as compared to the case with self-gravity.

5.3 Varying disc mass: gap profiles

We present simulations of discs models with 1.5 ≤ Qo ≤ 8, equiva-
lently 2.6 ≤ Qp ≤ 14 or 0.063 ≥ Md/M∗ ≥ 0.012. The equilibrium
gap profiles have a range of Q values with local extrema of 1.5 ≤
min(Q) ≤ 9.5 and 4.8 ≤ max(Q) ≤ 21.6 near the outer gap edge.
The gap profiles opened by the planet are given in Fig. 7 for a range
of Qo that develops vortices. Outside the plotted region the curves
are indistinguishable. The gap deepens with decreasing Qo and gap
edges become steeper. In going from Qo = 8 → 2 the gap depth
|��/�| increases by about 0.05–0.08, similarly the bumps near
gap edges increase by 0.05–0.06. On a global scale, self-gravity
becomes more important with increasing radius. However, we ob-
serve no trend in the difference between gap profiles with respect
to radius.

Self-gravity affects gap structure on a local scale by increasing
the effective planet mass so that Mp → M ′

p. A straightforward
estimate, based on the unperturbed disc model, of the expected
mass within the Hill radius , rH, of a point mass planet with Mp =
3 × 10−4M∗ is MH = 0.047Mp for Qo = 8 and MH = 0.17Mp for

Figure 7. Gap profiles opened by a Saturn mass planet in SG discs as
a function of disc mass, parametrized by Qo. The azimuthally averaged
relative surface density perturbation is shown. The planet located at r = 5.

Qo = 2. It is likely that MH or at least some significant fraction of it
adds to the effective mass of the planet acting on the disc when self-
gravity is self-consistently included. Thus M ′

p, and therefore also
the gap depth, is expected to increase with disc mass. Thus we note
that without carefully tuning Mp, SG disc–planet calculations with
different surface density scales will always differ in M ′

p. Since the
gap profiles differ, as we have seen above, stability is affected also.
Note that the gap width w in Fig. 7 does not change greatly with Qo,
which is consistent with the scaling w ∝ rH ∝ M ′1/3

p . However, the
peaks/troughs for Qo = 2 do lie slightly closer to the orbital radius
rp than other cases. This is because shocks are induced closer to the
planet due to increased M ′

p (Lin & Papaloizou 2010).

5.4 Varying disc mass: gap stability

Fig. 8 shows snapshots of the relative surface density perturbation as
instability sets in. Consider Qo ≥ 2 first. The instability is associated
with the outer gap edge while the inner edge remains relatively
stable. In the least massive disc Qo = 8, three to four vortices form
at the outer gap edge, similar to what happens in the NSG disc in
Section 5.2. As we increase the disc mass, more vortices develop.
By Qo = 2, eight surface density maxima can be identified. Note
that a vortex may be obscured if it coincides with the planetary
wake. In moving from Qo = 8 → Qo = 2, vortices become smaller
and their centres move inwards. When Qo = 8 local surface density
maxima lie just outside r = 6, while for Qo = 2 they lie just interior
to r = 6.

Increasing Md makes the perturbation more global. Vortices in
massive discs can gravitationally perturb parts of the disc further
out, similar to a planet. Lowering Qo, vortices develop longer, more
prominent trailing spirals exterior to them. This is most notable with
Qo = 2, where the vortex spirals can have comparable amplitudes
as the planet wake. However, increasing self-gravity even further,
we expect a global instability to eventually develop as the vortices
perturb the disc strongly via self-gravity.

The Qo = 1.5 disc does not develop vortices. This is consistent
with the stabilization effect of self-gravity on the vortex instability
through the linear response. Instead, Qo = 1.5 develops global spiral
instabilities associated with the gap edge. We call these edge modes.
They have been suggested to occur in SG discs with surface density
depression (Meschiari & Laughlin 2008). Here, we have shown that
they can indeed develop in gaps self-consistently opened by a giant
planet. Detailed discussions of edge modes are beyond the scope
of this paper and are presented in Lin & Papaloizou (2011), but for
reference we note some important differences to the vortex modes.
Edge modes here are associated with local vortensity maxima, which
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Figure 8. Instability at the outer gap edge of a Saturn mass planet, in a discs with minimum Toomre parameter, from left to right, of Qo = 1.5, 2, 3, 4, 8. The
relative surface density perturbation is shown.

Figure 9. Fourier amplitudes of the surface density in the outer disc r ∈ [5,
10], normalized by the m = 0 component, for some of the models illustrated
in Fig. 8.

lie closer to the planet than vortensity minima. Perturbations at the
inner gap edge are also identified and correlate with those at the
outer gap edge, where the overdensity is largest (and stronger than
for vortex disturbances). Communication between the two sides of
the gap is only possible with sufficient self-gravity.

The Fourier amplitudes of the surface density in r ∈ [5, 10], as
a function of m, is shown in Fig. 9 for Qo = 2, 4, 8 at t = 56P0.
Amplitudes have been normalized by the axisymmetric component.
The shift to higher m vortex modes with increasing disc mass is
evident as expected from linear calculations. For Qo = 8, 4 and
2, the preferred vortex modes have respectively m = 4, 5–7 and
7–9, with average amplitudes that decrease with Qo. The latter may
reflect the stabilization effect of self-gravity on linear modes with
low m.

An important region in Fig. 9 is m ≤ 3. There is a peak in am-
plitude at m = 2 for Qo = 2, 4. These are the edge modes described
above. They were not seen in linear calculations because there we
focused on finding vortex modes, which have corotation at or close
to local vortensity minima. The loss of low m vortex modes with
increasing self-gravity observed in linear calculations is replaced
by the increasing prominence of global edge modes. Fig. 9 shows
the m = 2 amplitude becomes more significant with increasing
self-gravity.

In the Qo = 2 simulations, we do see evidence of an m = 2 dis-
turbance hindering vortex evolution. This transition case is difficult
to analyse since both types of instabilities develop. Fig. 9 shows
the edge and vortex modes have comparable amplitudes in r > 5.
However, considering the region r ≥ 7 for Qo = 2 we found m = 2
is dominant, because the edge mode is global, whereas vortex mode
disturbances are localized to the edge (r  6). Increasing self-gravity

further, we expect eventually edge modes become dominant, this is
seen in the Qo = 1.5 case in Fig. 8.

5.5 Evolution and merging of self-gravitating vortices

We examine the evolution of vortices under the influence of self-
gravity. Fig. 10 compares surface density perturbations for a range
of disc masses at t = 100P0. Since the vortices emerge at roughly t =
56P0, they have evolved for a similar time. Typical growth rates for
vortex modes are τ ∼ 6P0, which implies the vortices have evolved
for about 7τ , well into the non-linear regime.

The snapshot for Qo = 8 shows a single vortex, resulting from
the merging of the initial vortices. The vortex disturbance is largely
confined to within a local scale-height of the gap edge. Such a result
is typical for simulations with no self-gravity (de Val-Borro et al.
2007). The case with Qo = 4 shows vortex merging taking place,
as individual surface density maxima can still be identified in the
large vortex behind the shock. Note there is a smaller vortex just
passing through the shock. When Qo = 4, a single vortex forms at
t  110P0. Fig. 10 shows that increasing the disc mass delays vortex
merging. For Qo = 3.5, five vortices remain and for Qo = 3 and
Qo = 2.5, seven vortices remain. They have not merged into a single
vortex as happened when Qo = 8. A 25 per cent increase in disc
mass as Qo = 4 → 3 causes merging to be delayed by 50P0. This
suggests that increased gravitational interaction between vortices
opposes merging.

As Qo is lowered the inter-vortex distance increases. When Qo =
2.5 their azimuthal separation can be larger than the vortex itself.
Also, vortices become less elongated and more localized being
symptomatic of gravitational condensation. Trailing wakes from
vortices also become more prominent as the vortices more strongly
perturb the disc via their self-gravity. In fact, the planetary wake
becomes less identifiable among the vortex wakes. Note vortex
wakes are mostly identified with vortices upstream of the planetary
wake, rather than just downstream. The vortex wakes appear to
detach from the vortex after passing through the planetary shock.
There is a sharp contrast in gap structure between the Qo = 2.5
and 8 cases. The single vortex that results when Qo = 8 is aligned
along the outer gap edge, which is still approximately identified as
circle r = 6. However, when Qo = 2.5 the vortices and their wakes
intersect the circle r = 6 making the radius of the outer gap edge
less well defined.

An important feature of vortices is that the wakes are associ-
ated with the excitation of density waves which transport angular
momentum transport outwards (see e.g. Paardekooper, Lesur &
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Figure 10. Non-linear evolution of vortex instabilities at the outer gap edge of a Saturn mass planet as a function of disc mass, parametrized by the minimum
Toomre parameter Qo, from left to right, of Qo = 2.5, 3.0, 3.5, 4.0, 8.0.

Figure 11. The running time average of the viscosity parameter α averaged
over the vortex region for a range of disc models.

Papaloizou 2010). A measure of this is made through the standard
α viscosity parameter. We define it here through

α(r, ϕ) ≡ �ur�uϕ/c
2
s (r), (37)

where � denote deviation from azimuthal averaged values. As we
are interested in the vortex region, α is spatially averaged over the
annulus r ∈ [5.7, 7.1] and its running-time average 〈α〉 is plotted in
Fig. 11. The parameter 〈α〉 associated with vortices is O(10−3), an
order of magnitude larger than the imposed value associated with ν.
When Qo = 4, 〈α〉 decays steadily after an initial transient growth.
The case Qo = 2 is also shown. In that case 〈α〉  1.9 × 10−3 for
t � 80P0. Interestingly, for Qo = 2.5–3.5 there is growth in 〈α〉
over several tens of orbits.

The behaviour of 〈α〉 as a function of Qo is consistent with the
general picture of vortex formation and evolution (Fig. 10). We see
below that the decay in 〈α〉 is associated with vortex merging lead-
ing to fewer vortices. This is the case for Qo = 4. Vortex merging
happens more readily for lower disc masses, hence, although mul-
tiple vortices develop from the instability, this phase does not last
long enough for the multiple-vortex configuration to significantly
transport angular momentum. As we increase self-gravity when
Qo = 3.5 → 2.5, vortices become less prone to merging. Hence,
the multiple-vortex phase lasts longer. They have time to evolve
into compact objects that further perturb the disc. This is consistent
with fact that 〈α〉-growth is prolonged with increased disc mass, as
merging is delayed. However, if self-gravity is too strong, such as
when Qo = 2.0, growth is again limited, because the m = 2 edge
mode develops and hinders vortex evolution.

5.6 Long-term evolution of gap edge vortices

We consider the long-term evolution of vortices in the disc with
Qo = 3. Fig. 12 shows the instantaneous α viscosity parameter,
average overdensity (defined in regions where the relative surface
density perturbation is positive) and surface density contour plots
of the vortex region. The viscosity parameter α grows from t =
100P0 to t = 170P0 with max(α)  8 × 10−3, which is 50 times
larger than the contribution from the background viscosity. At t =
150P0 there remains six distinct vortices, one of which just pass-
ing through the planetary wake. The multiple-vortex configuration
has been maintained for a further ∼50P0 since Fig. 10. With weak
self-gravity, a single vortex would have formed through merging.
Delayed merging allows individual vortices to evolve and become
planet-like. The typical overdensity in a vortex is ∼1 at t = 100P0

and increases to >1.5 by 150P0. As a consequence we expect in-
creased disturbance in the surrounding disc. The phase of α-growth
correlates with a linear increase in the average overdensity in the
vortex region.

At t = 170P0, Fig. 12 shows six vortices still remain, but the
pair just upstream of the planet is merging. The parameter α is
a maximum. However, after a burst of vortex merging events, α

decreases rapidly. The snapshot at t = 180P0 shows a quieter disc
with only three vortices of similar size to those before merging.
This is unlike the cases with weak self-gravity where a larger vortex
results from merging. Fig. 13 compares post-merging vortices in
discs with Qo = 3 and 4. For Qo = 3, the post-merging vortices are
localized in azimuth, with Q ∼ 1 and the contour plot shows the
densest vortex has an overdensity of  3.75. However, for the disc
with Qo = 4, a single vortex forms that extends about half the total
azimuth and has Q > 2.

The mass of the disc with Qo = 3 is Md = 0.031M∗, usually con-
sidered insufficient for gravitational collapse by itself. However, the
comparison above shows that addition of self-gravity to the vortex
instability induced by an embedded planet may enable collapse into
compact objects that survive against shear.

We found that vortices in the disc with Qo = 3 noticeably affect the
gap structure. Fig. 14 shows several snapshots of the gap structure
from t = 100P0, when there were multiple vortices, to the end of the
simulation when a vortex pair remained. The gap profile for Qo =
4 is also shown for comparison. Neither the single vortex for the
disc with Qo = 4 nor multiple vortices with Qo = 3 affect the one-
dimensional gap profile at t = 100P0, because the disturbances only
redistribute mass in the azimuthal direction. However, the original
bump at the outer edge is diminished after vortex merging takes
place in the disc with Qo = 3 at t = 200P0. A surface density
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Figure 12. Vortex evolution for the disc with Qo = 3. Line plot: instantaneous α viscosities (solid) and average overdensity (dotted). Contour plots: relative
surface density perturbations before and after vortex merging.

Figure 13. Comparison of post-merging vortices for discs with Qo = 3
(left) and Qo = 4 (right). The Toomre Q (solid) and surface density (dotted)
averaged over r ∈ [6, 6.5] is shown as a function of azimuth relative to the
planet.

Figure 14. The gap profile for the Qo = 3 disc at different times (solid,
dotted and dashed) as shown through relative surface density perturbation.
A snapshot of the profile for the disc with Qo = 4 (dot–dashed) is also given
for comparison.

depression of ��/�  −0.1 then develops at r = 7.3 and a bump
develops at r = 8.5. These features last to the end of the simulation.
Self-gravitating vortices behave like planets and gap opening is to be
expected. Assuming vortices lie near the surface density maximum
at r = 6, the creation of the surface density deficit for r ∈ [7, 7.5]
and the new surface density maximum at r = 8.5 could be induced,
in a similar manner as it would be by a planet, through the outward
transport of angular momentum by the density waves launched by
the vortices. The material removed from the region of the deficit,
which has gained angular momentum, ends up contributing to the
new surface density maximum at r = 8.5.

5.7 Anticyclonic vortices

For the disc with Qo = 3, a vortex-pair forms at t  230P0 and lasts
until the end of the simulation (t  300P0) and is reminiscent of
co-orbital planets. The pair survives on a time-scale beyond which
merging occurs in the simulations without self-gravity. A snapshot
is shown in Fig. 15(a). Two blobs can be identified along the gap

Figure 15. The final vortex pair at the end of the disc–planet simulation for
Qo = 3. Panel (a): relative surface density contour plot. Panel (b): vortensity
contours for the upper vortex. Shown in panel (c) is the relative surface
density for a pair of vortices formed by imposing Kida vortex solutions as a
perturbation in a standard power-law disc.

edge, the upper vortex being more overdense than the lower one.
They lie at a radius rv = 6.4, corresponding to local surface density
maximum in azimuthally averaged one-dimensional profiles, which
is expected to be neutral for vortex migration (Paardekooper et al.
2010).

The upper vortex in Fig. 15(a) is different to the pre-merging vor-
tices or those with weak self-gravity. It has two spiral disturbances
extending from the vortex to (r, φ −ϕp) = (9,−0.2π), whereas the
pre-merging vortices have one trailing spiral. Its vortensity field is
shown in Fig. 15(b). The vortex core has η < 0, whereas the final
large vortex in the disc with Qo = 4 has η > 0 in its core, though it
is still a local minimum.

From the vortensity field the region where η < 0 has a mass of
Mv  5.46 × 10−5M∗  0.18Mp and average radius r̄  0.92H (rv).
This is about 18 Earth masses if M∗ = 1Ms. Denoting the mean
square relative velocity (to the vortex centre) as �v2, we found
GMv/r̄�v2 ∼ 3.9. This region is gravitationally bound. Although
planets of such mass are not expected to open gaps, the surface
density deficit in r = [7, 7.5] in Fig. 15(a) indicates vortices may
do so. This may be because the process is assisted by the fact that
a vortex of size H produces a perturbation of a magnitude similar
what would be produced by Saturn when h = 0.05, even without
self-gravity (Paardekooper et al. 2010). We estimate by inspection
that the region with negative vorticity has semimajor and semiminor
axis of a ∼ 1.57H(rv), b  0.55H(rv), respectively, corresponding
to aspect ratio of 2.9.

Finally, Fig. 15(c) shows ��/� for a pair of Kida-like vortices
placed in a disc. We note the similarity between the Kida-like vor-
tex and the upper vortex in Fig. 15(a), particularly the double wake
structure, the tilted core and the surface density deficit just outside
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the vortices. This is a surprising coincidence, given that the simula-
tion setups that produced them were completely different (for more
details see below).

6 SI M U L AT I O N S O F C O - O R B I TA L K I DA
VO RTICES

In the simulations above, we observed one of the effects of self-
gravity is to delay vortex merging. This effect is significant when
vortices develop into compact structures. Furthermore, the similar-
ity between the final vortex in the disc with Qo = 3 and a Kida-like
vortex (Kida 1981) motivates us to consider the effect of self-gravity
on the interaction between two Kida vortices.

The simulations presented here are supplementary and focus on
the interaction between vortices without the perturbation of the
planet. Thus, we isolate effects due to vortex–vortex interactions
and the influence of self-gravity on those without interference from
the planet. In this way we obtain a better understanding of some of
the results above.

6.1 Numerical setup

We use a standard power-law disc with initial surface density profile
� = �0r−1/2, where �0 is a scaling constant for r ∈ [0.25, 2.5].
The value of �0 is chosen to provide a specified QKep at a specified
radius as before. The initial azimuthal velocity is chosen so that
the disc is in hydrostatic equilibrium. The initial radial velocity is
zero. The disc is locally isothermal with h = 0.05. The viscosity
is ν = 10−9 which is essentially the inviscid limit. No planets are
introduced, but in this section we use (rp, ϕp) to denote a vortex’s
centroid.

To set up vortices in the disc, we follow Lesur & Papaloizou
(2009) and introduce velocity perturbations (δur, δuϕ) that corre-
spond to the elliptical vortices of Kida (1981) in an incompressible
shear flow. Details of the implementation is described in Appendix
B. Two vortex perturbations are imposed with initial angular sep-
aration θ = π/2. Table 1 summarizes our numerical experiments.
We consider switching self-gravity on or off, a range of disc masses
[here specified through Q1 ≡ QKep(1)] and initial radial separations
X0 of the two vortices (so that for one of the vortices, rp → rp +
X0).

We use the FARGO code with resolution Nr × Nϕ = 800 × 2400
giving  17 grid points per scaleheight. The vortices are typically of

Table 1. Parameters for two-vortex
interaction simulations. The first col-
umn gives the nomenclature for the
simulations. The initial radial sepa-
ration is X0 and Q1 is the Keplerian
Toomre parameter QKep at unit radius.
The fourth column indicates whether
self-gravity was included.

Case X0/H Q1 Self-gravity

Fnsg 0 8.0 NO
Fsg 0 8.0 YES
M1 0 15.9 YES
M2 0 5.3 YES
S1 0.1 8.0 YES
S2 0.2 8.0 YES
S3 0.3 8.0 YES
S4 0.6 8.0 YES

Figure 16. Vortices formed by imposing Kida vortex solutions as a pertur-
bation to a global disc. The vortensity field (scaled) is shown.

that size. Damping boundary conditions are applied (de Val-Borro
2006).

6.1.1 Vortex pair interactions

As an example of vortices formed by the above procedure, Fig. 16
shows the vortensity field for the case Fnsg. The vortex pair cir-
culates at r  0.96 and are localized in radius and azimuth. The
vortex centroids have vorticity −1.57 (dimensionless units) in the
non-rotating frame, close to the local Keplerian shear (−1.5r−3/2

p 
−1.59). The vortices are not symmetric with respect to reflection
in a co-orbital radius. The upper vortex has a long tail reaching the
outer part of the lower vortex rather than its centroid. The wakes
associated with each vortex are similar to those induced by a planet
and responsible for vortex migration (Paardekooper et al. 2010).

Focusing on one vortex, the region with negative absolute vor-
ticity has half width in radius and azimuth of 0.6H and 1.3H,
respectively. This region has mass mv ∼ 1.2 × 10−5M∗, or about
4 Earth masses if M∗ = 1Ms. The estimate is not far from the as-
sumption that the final vortex has size H with average density that
of the unperturbed disc at the location it was set up, which gives
mv ∼ 1.6 × 10−5. If self-gravity is enabled, we can expect gravita-
tional interaction between vortices to behave like that between two
co-orbital planets of at least a few Earth masses.

6.2 Simulation results

We first compare cases Fsg and Fnsg. These are for the disc with
Q1 = 8 with and without self-gravity, respectively. The distance be-
tween vortex centroids as a function of time is shown in Fig. 17(a). It
takes almost five times as long for the SG vortices to merge. Vorten-
sity evolutionary plots show that NSG vortices begin to merge at
t = 28P0, but SG vortices at t = 126P0. For Fnsg, vortices approach
each other within ∼23P0 of formation and merge. Assuming they
move relative to each other because of Keplerian shear, the time
taken to merge implies that their radial separation at vortex forma-
tion must be 0.14H. This length-scale is resolved by about 2.5
grid cells indicating that a non-zero initial separation is generated
by grid effects, despite the vortex perturbations being imposed at the
same radius. In a pair of lower resolution runs (Nr = Nϕ /3 = 400),
vortex merging without self-gravity occurs at t = 23P0, whereas
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Figure 17. Inter-vortex distances for vortex pair simulations. Panel (a): with and without self-gravity for Q1 = 8 (simulations Fsg and Fnsg). Panel (b): for
discs of different masses characterized by Q1, the Keplerian Toomre parameter at r = 1, self-gravity being included (simulations Fsg, M1 and M2). Panel (c):
vortices input with varying initial radial separation, X0, with self-gravity included for disc models with Qo = 8 (simulations Fsg, S1, S2, S3 and S4).

with self-gravity the vortex pair survive until the end of the sim-
ulation. These are consistent if the initial radial separation is in-
creased due to lowered resolution, giving stronger differential rota-
tion, hence earlier merging in the non-self-gravity run and increased
impact parameter in terms of horseshoe orbits in the SG run (see
below).

In the SG case Fsg, the inter-vortex distance oscillates with pe-
riod 50P0 and there are two close encounters before merging. This
is analogous to the survival mode of the vortex pair towards the end
of the disc–planet simulation for Qo = 3. Given a maximal separa-
tion of 1.4 and that the vortices are circulating near unit radius,
the maximal angular separation is  π/2. The minimal separation
during the first two close encounters is 0.6, or about 12H which
implies that the vortices are on tadpole orbits. As the minimum
separation is much larger than the typical vortex size, merging does
not occur during the first two close encounters.

Next, in Fig. 17(b) we vary the disc mass via Q1. The reference
case has Q1 = 8. Doubling Q1 to Q1 = 15.9 (case M1) weakens
self-gravity and vortices merge within few tens of P0. For Q1 = 5.3
(case M2), the oscillation period is 40P0 and maximal separation
is 1.55, larger than for Q1 = 8, as is the first minimum separation;
the increased self-gravity has enhanced the mutual repulsion of
vortices. The M2 two-vortex configuration lasts until the end of
the simulation, but there is a secular decrease in the minimum
separation (of 0.6 at t = 20P0 and 0.45 at t = 180P0) due to vortex
migration. We expect merging to occur eventually. Consistent with
the behaviour seen for gap edge vortices, increasing self-gravity
delays merging.

Our final experiment varies the initial radial separation of the
vortex perturbations. Results are shown in Fig. 17(c). Increasing X0

to 0.1H from the reference case, the first minimum separation de-
creases to 0.45 from 0.6: vortices approach each other more closely,
but still repel and undergo co-orbital dynamics. The increased os-
cillation amplitudes imply a larger tadpole orbit. For X0 = 0.2H
and 0.3H, vortex separation decreases more rapidly and becomes
small enough for vortex merging. However, for X0 = 0.6H, vortices
simply circulate past by each other and no merging occurs, despite
reaching a similar minimal separation as when X0 = 0.2H, 0.3H.
This implies merging requires that vortices should collide head on.

6.3 Vortices as co-orbital planets

The simulations presented above indicate that SG vortex pairs be-
have like co-orbital planets. This means there exists an initial ra-
dial separation (or impact parameter) below which vortices execute
horseshoe orbits relative to each other. Analytical and numerical
work indicates that vortices merge if their centroids are within d ∼
3s of each other (e.g. Zabusky, Hughes & Roberts 1979; Melander,
Zabusky & McWilliams 1988), where s is the vortex size. We cannot

assume the same critical d/s apply to our simulations because the
situations are very different, but it is reasonable to expect merging
if vortices can reach within some critical distance of one another.

The results above can be anticipated from existing treatments of
co-orbital dynamics, which we discuss here for completeness. The
first is Murray & Dermott (2000) model of the co-orbital satellites
of Saturn, the Janus–Epimetheus system. The governing equation
from Murray & Dermott (2000) gives a relationship between two
configurations, the ‘final’ configuration (subscript f) and the ‘initial’
configuration (subscript i), in the form:(

�ri

r0

)2

−
(

�rf

r0

)2

= −4

3
q [H (θi) − H (θf )] ,

H (θ ) = [sin (θ/2)]−1 − 2 cos θ − 2,

(38)

where �r is the radial separation of the satellites, r0 the average
orbital radius (assumed fixed), θ their angular separation and q =
M/M∗, with M being the sum of the satellite masses. It is assumed
q 
 1.

Let us apply equation (38). We assume zero final radial separa-
tion, �rf = 0 when the vortices are at their minimum separation.
Inserting θi = π/2, �ri = 7.1 × 10−3 (corresponding to the initial
conditions deduced for Fnsg), r0 = 1 and q = 2.3 × 10−5 (corre-
sponding to the measured mass of the negative absolute vorticity
region in Fsg), equation (38) gives θ f  0.41 or a minimal angular
separation of ∼8H so merging is not expected if vortices have size
H. This estimate is lower than the observed value of 0.6, but we
have used a lower limit on q. Inserting q = 1.2 × 10−4 gives θ f =
0.6, assuming all other parameters remain the same. This implies
the gravitational mass of the vortex should be 20 Earth masses.

Equation (38) is illustrated in Fig. 18(a). For fixed X0, as we
increase q (e.g. as a by-product of increasing the disc mass), the
minimal distance Y increases, eventually becoming too large for
merging to occur. For fixed q, Y decreases as X0 increases. This
is similar to a test particle on a horseshoe orbit in the restricted

Figure 18. Merging conditions based on Murray & Dermott model of co-
orbital satellites (a) and shearing sheet dynamics (b). In (a), Y is the minimum
inter-vortex separation and the horizontal line is a hypothetical critical sep-
aration below which merging occurs. Thus merging is less likely for larger
q. Fig. 18(b) illustrates equation (39); for a given X0, the allowed values
of minimum separation Y lies between the intersection of the horizontal
line X0/H = constant and the solid curve. The vertical dashed line is a
hypothetical critical separation, below which merging occurs.
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three-body problem. The larger its impact parameter (while still in
libration), the closer it approaches the secondary mass.

We may also view the horseshoe turns in a shearing sheet ap-
proximation. In Appendix C we derive the inequality

x̂0 <
1

h

(
8q

3ŷh
− q2

3ŷ4h4

)1/2

, (39)

where x̂0 = X0/H, ŷ = Y/H . Given X0, equation(39) can be
inverted to give the range of possible Y . This inequality is displayed
in Fig. 18(b). There exists a critical X0 = Xs, beyond which vortices
do not execute horseshoe turns and instead circulate past each other.
There may also exist a value X0,c such that X0,c < Xs and for X0,c <

X0 < Xs, vortices execute U-turns but the values of Y attained are
sufficiently small to allow merging. This happens only when the
vortices have small enough mass. When X0 < X0,c, Y can be larger
than critical, so that merging does not occur.

These simple models give qualitatively the same results as vor-
tex pair and disc–planet simulations, and serve to explain the ef-
fect of self-gravity delaying merging by interpreting vortices as
co-orbital planets that execute mutual horseshoe turns, thereby im-
posing a minimum inter-vortex separation (mainly in the azimuthal
direction). If this minimum separation is still larger than a critical
separation known to exist for vortex merging, then merging can-
not occur. Hence, multiple-vortex configurations can be sustained
longer as the strength of self-gravity is increased.

7 IM P L I C AT I O N S O N VO RT E X - I N D U C E D
M I G R AT I O N

Vortices at gap edges can lead to brief phases of rapid inwards
migration. The case for Saturn and Jupiter mass planets in NSG
discs was investigated by Lin & Papaloizou (2010). In their simula-
tions, gap edges become unstable to vortex modes leading to vortex
mergers on dynamical time-scales, in turn resulting in a large-scale
vortex circulating at either gap edge. Upon approaching the planet,
the inner vortex can execute a horseshoe turn and move outwards
across the gap, gaining angular momentum. Thus, the planet loses
angular momentum and is scattered inwards.

For comparison purposes, we repeated simulations of Lin & Pa-
paloizou with self-gravity. These correspond to inviscid discs with
initially uniform surface density. Fig. 19 shows the orbital migration
of a Saturn mass planet in discs with total mass Md = 0.035M∗ and
0.025M∗. In the Md = 0.035M∗ disc with self-gravity neglected,
vortex-induced migration occurs at t = 60P0, whereas in the SG
case it is delayed to t = 85P0. The delay is consistent with both
the stabilization of low m modes, and the slower vortex merging

Figure 19. Vortex-induced migration with (solid) and without (dotted) self-
gravity.

induced by self-gravity. Furthermore, there could be gravitational
influence of the outer gap edge vortices on the inner gap edge.

Indeed, although somewhat inhibited,2 we found the formation of
an azimuthally extended coherent vortex at the inner gap edge when
self-gravity was included, just as in the NSG case. However, it takes
a longer time for the inner vortex to build up, disrupt the co-orbital
region and flow across the gap, therefore induced rapid migration
is delayed. For Md = 0.025M∗ it is delayed by  50P0, or twice
of the higher mass disc, indicating stabilization is more effective
for the lower disc mass. However, the extent of rapid migration
is unaffected by self-gravity. Note also the increased oscillations
when self-gravity is included. This is because of the sustained multi-
vortex configuration at the outer gap edge (causing large oscillations
in disc–planet torques), whereas without self-gravity these vortices
would have merged.

After the first scattering event, migration stalls while the planet
opens a gap at its orbital radius and vortex formation recurs. In
the NSG case, a large inner vortex develops (taking about 15P0),
and each time it passes by the planet some vortex material splits
off and flows across the planet’s orbital radius, leading to inward
planet migration. With self-gravity included, the formation of a
single vortex takes longer (about 35P0 in the higher mass disc) and
it is narrower in radial extent than the NSG case. We found that in
this case, when the thinner vortex passes by the planet, little vortex
material splits off from the main vortex and flows across the gap.
This may be due to the self-gravity of the vortex. Hence, there is
a longer stalling period when self-gravity is included. Thus the net
effect of self-gravity is to slow the migration in this example.

For the setup of Lin & Papaloizou (2010), we do not observe a
second fast migration episode within the simulation time-scale, but
it may eventually occur. The total practical simulation time of a few
hundred orbits is still very short compared to disc lifetimes. How-
ever, for the Qo = 4 disc model used in previous parts of this work,
two episodes of rapid migration occur. Self-gravity does not change
the physical nature of vortex-induced migration, but we comment
that for discs of even larger mass where vortex formation no longer
occurs, being replaced by global spiral instabilities, the migration
may be even faster than in the NSG case (Lin & Papaloizou 2011).

A detailed numerical study of the effect of self-gravity on vortex-
induced migration and its consequences for disc structure will be
deferred to a future paper, but the simple experiment described here
indicates that episodes of fast migration punctuated by periods of
slower migration are still expected as a consequence of vortex-
induced migration.

8 C O N C L U S I O N S

We have studied the effect of self-gravity on vortex formation and
evolution in protoplanetary discs. We specifically considered vor-
tex production through instability associated with edges of surface
density dips or gaps opened by a giant planet. It was shown an-
alytically that vortex-forming modes are stabilized by self-gravity
through its effect on the linear mode when the background remains
fixed. This aspect has been confirmed by linear calculations, which
also showed that self-gravity has a destabilizing effect through its
effect on the background state that is set up by the perturbing ac-
tion of an embedded planet. Linear calculations showed that the
vortex-forming modes with the highest growth rate shift to higher

2 This is also seen in disc–planet simulations in previous sections; the inner
gap edge is relatively more stable than outer gap edge.
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m with increasing disc mass or equivalently decreasing Toomre Q
value.

We performed hydrodynamic simulations that compare simula-
tions with and without self-gravity for a range of disc masses. It
was found that more vortices form as the disc mass increased and
minimum Q value decreased in accordance with linear calculations.
However, for sufficiently strong self-gravity, the vortex modes are
suppressed. In this case, global spiral modes develop instead. Self-
gravity was found to delay vortex merging. In addition, multiple-
vortex configurations can be sustained for longer with increasing
disc mass, allowing vortices to evolve individually.

The nature of post-merging vortices is also affected by self-
gravity. With weak self-gravity (i.e.. Md ≤ 0.024M∗), a single vor-
tex extended in azimuth forms and circulates at the outer gap edge.
However, for Md = 0.031M∗, the final configuration is a vortex pair
at the outer gap edge, each localized in azimuth. In this case, a vor-
tex, despite containing on the order of 20M⊕, can be gravitationally
bound. The effect of their gravitational influence on the rest of the
disc is to redistribute mass radially, whereas for lower disc masses,
redistribution is restricted to the same azimuth.

We note that the internal flow in these SG localized vortices
adjusts so that they are not destroyed by the background shear, taking
on a structure similar to that of a Kida vortex (Kida 1981). We found
such vortices form in discs much less massive than that required for
direct disc fragmentation. Classical gravitational instability would
produce clumps of much larger mass than vortices in our models
and would have difficulty surviving against shear beyond a few
orbits. However, higher resolution calculations in three dimensions
that relax the assumption of a locally isothermal equation of state
are needed to assess the viability of the self-gravitational collapse
of a vortex.

We performed supplementary simulations of Kida-like vortices to
understand the effect of self-gravity on inter-vortex interactions in a
simpler setting where it was not contaminated by the presence of the
embedded planet. The effectiveness of merging as a function of disc
mass may be understood from existing descriptions of co-orbital
horseshoe dynamics. In essence, it appears that pressure forces do
not play a role, so that in an SG disc, vortex pairs behave like co-
orbital planets and as a consequence there exists a minimum inter-
vortex distance. Merging is then avoided if this minimal separation
is still larger than a critical separation, below which vortex merging
occurs.

Finally, we briefly considered the consequence of self-gravity on
vortex-induced migration. With self-gravity, the resistance to form-
ing a single large vortex, which in NSG simulations is responsible
for scattering the planet inwards, results in vortex-induced migra-
tion being delayed. The vortices are less effective in scattering the
planet, because they are smaller and do not disrupt the co-orbital
region as significantly as their NSG counterparts. Thus, it can be
said that in the regime of disc masses where vortices form and are
significantly affected by self-gravity, vortex-induced migration is
slowed down.

8.1 Outlook and caveats

A possible issue in this work is that the introduction of a planet over
short time-scales of a few orbits may favour instability. However,
de Val-Borro et al. (2007) have considered NSG discs with a pre-
defined gap profile and found similar growth rates for unstable
modes as models without an initial gap. In addition, our linear
calculations based on gap profiles attained in a quasi-steady state are
in good agreement with simulations. This indicates the instability

operates on such attained profiles and is not significantly affected
by how the gap is formed.

For the most part planetary migration has been neglected in this
work. The role of the embedded planet was to create a structured
background state from which vortices develop. Hence, we expect
our findings on the effect of self-gravity to be applicable to other
types of structured features in a protoplanetary disc that could sup-
port vortex-forming instabilities. Such a possibility is the boundary
region between a dead zone and active region of the disc (Lyra et al.
2009).

Although migration was briefly considered, we note that there
are many technical issues associated with a numerical study. These
include the treatment of the Roche lobe and the time and the nature
of the release of the planet. The issue of the effects of the choice of
softening length and disc viscosity should also be investigated. A
detailed parameter survey is beyond the scope of this paper, but we
hope to investigate migration in more detail in the future.

Vortices can trap dust particles due to their association with pres-
sure maxima. We have seen that increasing self-gravity leads to
vortices of stronger density contrast (Fig. 13). We then anticipate
SG vortices to be more effective at collecting solid particles. It
would be interesting to consider a two-component gas and dust
disc model to investigate the specific role of self-gravity on dust
trapping.

Another issue is that we adopted the two-dimensional approxi-
mation. Clearly our studies should be extended to three dimensions.
It is known that Kida vortices with aspect ratio � 4 are strongly
unstable to elliptic instability in three-dimensional, unstructured
non-self-gravitating discs (Lesur & Papaloizou 2009). However,
results may change when vortices are produced by an instability
arising from a background structure and self-gravity is important.
These should be investigated in the future. We point out that re-
cently Meheut et al. (2010) demonstrated vortex formation in three-
dimensional simulations without self-gravity via the vortex-forming
instability. Because the importance of self-gravity is sensitive to the
disc thermodynamics and equation of state, it would be desirable to
incorporate a realistic energy equation in future studies.

AC K N OW L E D G M E N T S

MKL acknowledges support from St John’s College, Cambridge,
the Isaac Newton Trust and an Overseas Research Award.

REFERENCES

Armitage P. J., Hansen B. M. S., 1999, Nat, 402, 633
Baruteau C., Masset F., 2008, ApJ, 678, 483
de Val-Borro M. et al., 2006, MNRAS, 370, 529
de Val-Borro M., Artymowicz P., D’Angelo G., Peplinski A., 2007, A&A,

471, 1043
Godon P., 1996, MNRAS, 282, 1107
Goldreich P., Tremaine S., 1980, ApJ, 241, 425
Kida S., 1981, J. Phys. Soc. Japan, 50, 3517
Koller J., Li H., Lin D. N. C., 2003, ApJ, 596, L91
Lesur G., Papaloizou J. C. B., 2009, A&A, 498, 1
Li H., Finn J. M., Lovelace R. V. E., Colgate S. A., 2000, ApJ, 533, 1023
Li H., Colgate S. A., Wendroff B., Liska R., 2001, ApJ, 551, 874
Li H., Li S., Koller J., Wendroff B. B., Liska R., Orban C. M., Liang E. P.

T., Lin D. N. C., 2005, ApJ, 624, 1003
Li H., Lubow S. H., Li S., Lin D. N. C., 2009, ApJ, 690, L52
Lin D. N. C., Papaloizou J., 1986, ApJ, 309, 846
Lin M., Papaloizou J. C. B., 2010, MNRAS, 405, 1473
Lin M., Papaloizou J. C. B., 2011, MNRAS, in press (doi:10.1111/j.1365-

2966.2011.18797.x) (this issue)

C© 2011 The Authors, MNRAS 415, 1426–1444
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Vortex instabilities with self-gravity 1443

Lovelace R. V. E., Li H., Colgate S. A., Nelson A. F., 1999, ApJ, 513, 805
Lyra W., Johansen A., Zsom A., Klahr H., Piskunov N., 2009, A&A, 497,

869
Marcy G., Butler R. P., Fischer D., Vogt S., Wright J. T., Tinney C. G., Jones

H. R. A., 2005, Progress Theor. Phys. Suppl., 158, 24
Masset F., 2000, A&AS, 141, 165
Masset F. S., 2002, A&A, 387, 605
Mayor M., Queloz D., 1995, Nat, 378, 355
Meheut H., Casse F., Varniere P., Tagger M., 2010, A&A, 516, A31
Melander M. V., Zabusky N. J., McWilliams J. C., 1988, J. Fluid Mech.,

195, 303
Meschiari S., Laughlin G., 2008, ApJ, 679, L135
Murray C. D., Dermott S. F., 2000, Solar System Dynamics. Cambridge

Univ. Press, Cambridge
Nelson A. F., Benz W., 2003a, ApJ, 589, 556
Nelson A. F., Benz W., 2003b, ApJ, 589, 578
Ou S., Ji J., Liu L., Peng X., 2007, ApJ, 667, 1220
Paardekooper S.-J., Papaloizou J. C. B., 2009, MNRAS, 394, 2297
Paardekooper S., Lesur G., Papaloizou J. C. B., 2010, ApJ, 725, 146
Papaloizou J. C. B., Lin D. N. C., 1989, ApJ, 344, 645
Papaloizou J. C. B., Pringle J. E., 1985, MNRAS, 213, 799
Papaloizou J. C. B., Pringle J. E., 1987, MNRAS, 225, 267
Papaloizou J. C., Savonije G. J., 1991, MNRAS, 248, 353
Papaloizou J. C. B., Nelson R. P., Kley W., Masset F. S., Artymowicz P.,

2007, in Reipurth B., Jewitt D., Reid K., eds, Protostars and Planets V.
Univ. Arizona Press, Tucson, p. 655

Stone J. M., Norman M. L., 1992, ApJS, 80, 753
Udry S., Santos N. C., 2007, ARA&A, 45, 397
Yu C., Li H., Li S., Lubow S. H., Lin D. N. C., 2010, ApJ, 712, 198
Zabusky N. J., Hughes M. H., Roberts K. V., 1979, J. Comput. Phys., 30, 96
Zhang H., Yuan C., Lin D. N. C., Yen D. C. C., 2008, ApJ, 676, 639

APPEN D IX A : PARAMETRIZATION O F D I SC
MODELS F OR THE VO RTEX INSTABILITY

Disc models used to study the vortex instability are labelled by Qo,
which corresponds to values of Qp and disc-to-star mass ratio given
in Table A1.

APP ENDIX B: A RTIFICIAL VORTICES IN AN
ACC R ETION D ISC

The artificial Kida-like vortices used in Section 6 are set up as
follows. Consider a small patch of the disc, whose centre (rp, ϕp)
rotates at angular speed �p about the primary and set up local
Cartesian coordinates x = rp(ϕ − ϕp), y = rp − r. In the (x, y)

Table A1. Relationship
between the initial Keple-
rian Toomre stability pa-
rameter at the outer bound-
ary, Qo, at the planet’s ini-
tial orbital radius, Qp, and
the disc-to-star mass ratio
for disc models used in
disc–planet interactions.

Qo Qp Md/M∗

1.5 2.62 0.063
2.0 3.49 0.047
2.5 4.36 0.038
3.0 5.23 0.031
3.5 6.11 0.027
4.0 6.98 0.024
8.0 14.0 0.012

frame, there exists a Kida vortex solution for incompressible flow,
whose velocity field (ux, uy) is

ux = 3�pζy

2(ζ − 1)
, uy = − 3�px

2ζ (ζ − 1)
(B1)

inside the vortex core. The ratio of the vortex semimajor to semimi-
nor axis being ζ = a/b is a free parameter. This velocity field is
such that the vorticity ω is constant in the rotating frame. The el-
liptical boundary of the vortex is defined such that ω = −3�p(1 +
ζ 2)/[2ζ (ζ − 1)] = ωv − 3�p/2 inside the boundary of the vortex and
ω = −3�p/2 outside. The quantity ωv = −3�p(1 + ζ )/[2ζ (ζ − 1)]
is then the vorticity of the vortex core relative to the background.
Being negative, this corresponds to an anticyclonic vortex. In order
to introduce perturbations corresponding to Kida vortices, we im-
pose perturbations δur ≡ −vy, δuϕ ≡ vx inside a specified elliptical
boundary with an exponential decay outside. The boundary is fixed
by specifying ζ = 8 and its semimajor axis a = H(rp), where the
reference radius is rp = 1.

A P P E N D I X C : MU T UA L H O R S E S H O E T U R N S
I N T H E SH E A R I N G S H E E T

We describe the gravitational interactions between two vortices in
the shearing sheet. It is assumed that they behave like point masses
and that pressure forces may be neglected. We indicate below why
this is a reasonable assumption.

Consider a local Cartesian coordinate system (x, y) that corotates
with a small patch of fluid with angular velocity � about the primary,
at a distance rp. We have x = r − rp, y = rp(ϕ − �t). Let (xj, yj)
denote the coordinates of the centroid of the jth vortex and mj

be its mass (j = 1, 2). Defining X ≡ x2 − x1, Y ≡ y2 − y1 and
M ≡ m2 + m1, the equations of motion give

Ẍ − 2�Ẏ = 3�2X − GMX

R3
, (C1)

Ÿ + 2�Ẋ = −GMY

R3
, (C2)

where R2 ≡ X2 + Y2. These equations imply the constancy of the
Jacobi constant

J ≡ 1

2
(Ẏ 2 + Ẋ2) − 3

2
�2X2 − GM

R
. (C3)

Let the initial conditions be X = X0, Y = ∞, Ẋ = 0, Ẏ =
−3�X0/2. We assume the point of closest approach occurs when
X = Ẏ = 0. Equating J at the initial time and at the time of closest
approach, we obtain

−3

8
�2X2

0 = 1

2
Ẋ2 − GM

Y
(C4)

at the time of closest approach. Since the vortices are then at mini-
mum separation, Ÿ > 0. The y component of the equation of motion
then implies

1

2
Ẋ2 >

1

8

(
GM
�Y 2

)2

. (C5)

Substituting Ẋ from (C4) the inequality becomes

3

8
X̂2

0 <
q

Ŷ
− q2

8Ŷ 4
(C6)

at minimum separation, where X̂0 = X0/rp, Ŷ = Y/rp, q =
M/M∗, and we have assumed �2 = GM∗/r3

p .
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Equation (C6) is useful for the case there vortices are just able to
undergo U-turns. For fixed q, the function

f (Ŷ ; q) = q

Ŷ
− q2

8Ŷ 4
(C7)

has a maximum value at Ŷ = (q/2)1/3, corresponding to the maxi-
mum conceivable initial separation X0 = Xs, where

Xs = 22/3q1/3rp. (C8)

If X0 > Xs then equation (C6) cannot be satisfied and there can be
no horseshoe turns. For initial separations X0 < Xs, (C6) implies
that the minimal inter-vortex distance must exceed q1/3/2 (so that
f > 0). Now for sufficiently large q, q1/3/2 will be larger than the
critical separation for merging, so merging is avoided during the
encounter.

It is interesting to compare equation (C8) to the estimate of the
horseshoe half-width xs of Paardekooper & Papaloizou (2009). They
found xs = 1.68(q/h)1/2rp based on hydrodynamic simulations for

low-mass planets. Equating xs and Xs with h = 0.05, we find q =
8.9 × 10−5. This should give the minimum q for which pressure
effects could be ignored. Inserting this value in Murray & Dermott
(2000) model of co-orbital satellites gives a minimal separation of
0.58 (see the estimate in Section 6.3), close to simulation results.
Hence, if the vortex-pair interaction is purely gravitational, a single
vortex behaves in a similar way to ∼15 Earth masses, i.e. a low-mass
protoplanet.

Considering a vortex size of order H, the vortex-to-star mass ratio
is q ∼ πH 2�/M∗  h3/Q. For an SG vortex where Q ∼ 1, we
have q  h3 = 1.25 × 10−4 for h = 0.05, slightly exceeding the
threshold value above. Hence, we expect the pressureless treatment
of SG vortex–vortex interactions to be acceptable for the purpose
of explaining the resisted merging of SG vortices.
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