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It is believed that some stars have two or more convection zones in close proximity near to the stellar
photosphere. These zones are separated by convectively stable regions that are relatively narrow. Due to
the close proximity of these regions it is important to construct mathematical models to understand the
transport and mixing of passive and dynamic quantities. One key quantity of interest is a magnetic field,
a dynamic vector quantity, that can drastically alter the convectively driven flows, and have an important
role in coupling the different layers. In this Letter we present the first investigation into the effect of an
imposed magnetic field in such a geometry. We focus our attention on the effect of field strength and
show that, while there are some similarities with results for magnetic field evolution in a single layer,
new and interesting phenomena are also present in a three layer system.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Throughout the Universe there are a plethora of stars with a va-
riety of different internal structures [1]. Amongst the stars that we
observe there are some, such as A-type stars, which are believed
to have multiple convection zones near the surface [2,3], which is
a phenomenon that results, to some extent, from the non-trivial
changes in the chemical makeup as a function of distance centre
of the star is increased [4]. The convection zones in these stars are
thin, as compared to the radius of the star but are important as
they affect the transport properties of this part of the star.

As with all cases of convection in an astrophysical context,
there are no solid boundaries encasing the convectively unstable
fluid. Thus the ascending and descending plumes in the unstable
regions can overshoot the convectively unstable layer and continue
into the adjacent convectively stable region. Indeed, if the convec-
tion is sufficiently strong, or the adjacent stable region is suffi-
ciently narrow, the overshooting plumes can pass straight through
the stable region and enter the second convectively unstable re-
gion. It is thus clear that fascinating dynamical behaviour can be
envisioned for this system and it is important to study such sys-
tems if we are to understand transport and mixing in stars where
more than one convection zone is present.
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Early analytical work on convection in stars with multiple con-
vection zones indicated that a separation of more than two pres-
sure scale heights between the convection allows them to be
considered as disjoint [4–6]. With advances in computational re-
sources, it has since become possible carry out direct simulations
of convection zones and their interaction with radiative zones, in
application to solar convection or multiple convection zones in
A-stars [7,8]. These simulations show the importance of further in-
vestigations into the mixing and transport in these stars as they
demonstrate that a large degree of separation is required for the
convection zones to be considered dynamically and thermally iso-
lated [8].

The numerical investigations to date have been aimed at pro-
viding a solid basis for later, more complex, models. There are
many further aspects of the physics of these stars which need to
be considered and questions that still remain. Amongst these is the
fact that convectively unstable regions in such stars are permeated
by a magnetic field [9].

There has, to date, been an extensive literature concerning the
effect of a magnetic field on a convectively unstable layer (see, for
example, [10–13]) or in a convectively unstable layer that abuts
onto a single convectively stable layer (see, for example, [14a,14b]).
However as yet there has been no examination of the evolution
of a magnetic field in a scenario with multiple convection layers
as described by Silvers and Proctor [8]. The purely hydrodynamic
problem proved not to be a simple extension of single-layer sys-
tems, and we naturally anticipate at least the same complexity
once a magnetic field is included. Exploring the effect of a mag-
netic field is also of interest because it has been conjectured that
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certain chemical anomalies could result from magnetic fields in
stellar atmospheres [9,15]. Michaud [16] suggested that field lines
might stabilize the atmosphere to allow diffusion and guide parti-
cles into patches. It has also been suggested that magnetic fields
may reduce the ion diffusion velocity [15].

In magnetoconvection calculations in a single unstable layer,
the state that is reached after long times depends strongly on the
strength of the magnetic field permeating the system. We expect
to see a similar sensitivity here, and in addition we expect that the
coupling between the layers is strongly affected by the field. Thus
in the present Letter we will explore the effect of varying field
strength on the convection and interaction between two layers.

In this work we consider an atmosphere with two convective
zones separated by a stable layer with an initially vertical magnetic
field. We do not address the specific problem of chemical anoma-
lies by detailed modelling of stellar atmosphere composition and
diffusion, as our goal is to provide a first understanding the effect
of varying the strength of the magnetic field on convection through
a simple model.

This Letter is organised as follows: in the next section we de-
scribe our model with relevant equations, parameters and numer-
ical method. In Section 3 we present the results for cases with
different strength magnetic fields. Finally, in Section 4 we summa-
rize our findings.

2. Model

We consider an atmosphere taking the form of a compressible
fluid in a slab, with temperature decreasing piecewise linearly with
height, permeated by an imposed vertical magnetic field. The slab
is comprised of three layers of equal thickness, the top and bottom
being convectively unstable and the middle stable.

Apart from the multi-layer feature of the geometry, the equa-
tions are in standard form, as described in [8,12]. The governing
equations are given in dimensionless form; lengths are scaled by
the depth d of each layer; density and temperature by ρ0 and
T0 (values at z = 0, where z increases downwards); times by the
sound crossing time d/

√
R∗T0 where R∗ is the gas constant; and

magnetic field by B0, the magnitude of the initial uniform field.
The equations then take the form:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)

= −∇(
P + F B2/2

) + θ(m + 1)ρẑ + ∇ · (F BB + ρσκτ ), (2)

∂T

∂t
+ u · ∇T + (γ − 1)T ∇ · u

= γ κ

ρ
∇2T + κ(γ − 1)

(
στ 2/2 + F ζ0 J 2/ρ

)
, (3)

∂B

∂t
= ∇ ∧ (u ∧ B − ζ0κ∇ ∧ B), (4)

∇ · B = 0, (5)

P = ρT , (6)

here F = B2
0/(R∗T0ρ0μ0), κ = K/(dρ0cp

√
R∗T0 ) the dimension-

less thermal diffusivity, τi j ≡ ∂ jui + ∂iu j − (2/3)δi j∂kuk is the stress
tensor and ζ0 = ηcpρ0/K where η is the magnetic diffusivity.
Other quantities have their usual meanings. The equations are
solved using a mixed finite-difference/pseudospectral code. More
details on the numerical method and code may be found in [12].
Throughout this Letter we will use a resolution of 64 × 64 × 240.

For convenience we define the Chandrasekhar number Q =
F/ζ0σκ2, which provides a measure of field strength relative to
diffusion and in what follows we will focus on the effect of varying
Table 1
Parameter values.

Symbol Name Value

zm Vertical extent 3.0
ym = xm Horizontal extent 8.0
γ Ratio of specific heats 5/3
σ Prandtl number (= μcp/K , viscosity μ) 1.0
θ Temperature difference across a layer 10
ζ0 Magnetic diffusivity 0.2
m1 = m3 Top and bottom polytropic index 1.0
m2 Middle polytropic index 4.0
R1 Rayleigh number near the top 5000.0
Q Chandrasekhar number variable

this quantity, with other parameters held fixed. Their values are
given in Table 1. Note that, for simplicity, we will introduce the no-
tation that subscripts 1, 2 and 3 refer to respectively the top, mid-
dle and bottom zones. Also, we note here that our choice of poly-
tropic indices corresponds to the stiffness parameters S1 = S3 =
−1.0 for the top and bottom and S2 = 5.0 for the middle layer,
where S2 = (m2 −mad)/(mad −m1) and S3 = (m3 −mad)(mad −m1);
see e.g. [8].

The initial three-layer structure, with different polytropic in-
dices in the three layers is obtained by choosing a thermal con-
ductivity profile of the form [8]:

K = K1

2

[
1 + K2 + K3

K1
− tanh

(
z − 1

�

)

+ K3

K1
tanh

(
z − 2

�

)

− K2

K1
tanh

(
z − 2

�

)
tanh

(
z − 1

�

)]
(7)

where � = 0.1 in this case, so as to allow a smooth transition
between the layers. To the static state we add random velocity
perturbations in the range [−0.05,0.05] and allow the system to
evolve. The boundary conditions at the top and bottom of the do-
main are taken to be:

T = 1, uz = ∂ux

∂z
= Bx = B y = ∂ Bz

∂z
= 0 at z = 0,

∂T

∂z
= θ, uz = ∂ux

∂z
= Bx = B y = ∂ Bz

∂z
= 0 at z = 3, (8)

and all quantities are taken to be periodic in x and y with periods
xm, ym .

3. Results

In this Letter we explore the effect of varying magnetic field
strength, by varying the Chandrasekhar number, Q . We begin with
a discussion of the weak field case where Q = 100. Fig. 1 shows
the distributions of vertical momentum density (ρuz , sides of the
box) and of vertical component of magnetic field (Bz near the top
and bottom) once the motion is fully established. This figure shows
that the vertical magnetic field structure is dominated by regions
of width between 0.4–0.7 between the convection cells in the up-
per layer. The lower layer does not resemble the upper layer, in
spite of having the same polytropic index, because it has greater
density and different values of other physical properties.

The bottom field is relatively weak and much more uniform, the
most prominent structures being rising convergent plumes (diame-
ter � 0.9) with slightly enhanced values of Bz . Distinct upflow and
downflow regions can be seen in the upper layer. In the central,
stably stratified layer where |ρuz| is small, Bz is almost uniform.
The lower convection zone, in contrast to the upper layer, has
fewer and less ordered convection cells, and there is little corre-
lation with the field in the upper convection layer.
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Fig. 1. Relative distribution of vertical component of magnetic field (near the top
and bottom) and vertical component of momentum (sides), for the case Q = 100 at
t = 29.58.

To explore the change in flows in more detail we consider Fig. 2
that shows horizontal slices of Bz and ρuz at the middle of each
of the zones. At z = 0.75, regions of high Bz corresponds to ver-
tical motion, and from the colourbar range on the ρuz plot we
see that downflows are stronger, consistent with previous stud-
ies of compressible magnetoconvection [11]. Regions of weakest Bz

matches to where |ρuz| ∼ 0 so any motion is in the horizontal
plane. This is again consistent with previous investigations, which
showed that magnetic flux is swept by convection into converg-
ing regions within which the field is nearly parallel to the fluid
motion [10]. We also note that in the ρuz plots, there is little vari-
ation within the upflow cells.

In the convectively stable region, at z = 1.5, there is a much
smaller variation Bz and ρuz than in the upper convection zones.
The pattern of motion is very weakly correlated with that at
z = 0.75 for Bz with rolls still dominant but of larger widths
(∼ 1 unit). The mid-layer ρuz is typically anti-correlated to the
upper layer; for example the downflow region in the lower half of
the plot corresponds to upflow at z = 0.75, although the former
is thinner in extent. Comparing the plots we can see that vertical
Fig. 2. From top to bottom: vertical component of magnetic field (left) and vertical component of momentum (right) in the horizontal plane at z = 0.75, 1.5, 2.25; for Q = 100
and t = 29.58.



72 M.-K. Lin et al. / Physics Letters A 373 (2008) 69–75
field and motion at z = 0.5 are almost unrelated. It is important
to note that no convection can occur in the middle of the box be-
cause of our choice of polytropic index; so any motion must be
due to overshooting plumes from either convection zone, and it
would seem that the magnetic field pattern is due almost entirely
to the vigorous convection in the unstable layers.

In the lower convection zone, at z = 2.25, the contrast in Bz

is similar to that in the central region but the pattern is more
cellular. Interestingly, although this layer is convectively unstable,
Bz does not correlate well to ρuz , unlike in the top layer. The
distribution of ρuz is almost uniform with small cells (diameter
∼ 0.5 units) of strong upwards motion and their positions appear
unrelated. These slice plots show distinct changes in Bz across the
layers, suggesting that for a weak field, its associated structure can-
not be easily communicated across boundaries, from this perspec-
tive the three layers appear independent. However, the boundary
conditions on the interface allow overshooting, which is another
form of communication across boundaries, and is best illustrated
by considering the variation of |ρuz| with z.

Fig. 5 shows snapshots of 〈|ρuz|〉 and 〈B2〉 as a function of z
for the Q = 100 case, where angle brackets denote horizontal av-
erages. It is possible that such snapshots can be misleading as they
can be contaminated by acoustic and gravity modes. However, we
have verified by looking at other snapshots that the distributions
of the two quantities shown are typical in the statistically steady
state. As expected vertical motion dominates in the two convec-
tively unstable zones due to convection, but the solid lines extend
from both unstable zones into the middle so there is non-zero
vertical motion throughout the stable region which indicate over-
shooting. The motion in the upper convection zone is more vigor-
ous and the solid curve extends into the mid-layer more than that
from the lower convection zone, which suggests more overshoot-
ing from the upper layer into the middle. This is indeed consistent
with the slice plots (Fig. 2); but as we will show later, the cor-
respondence is not universal. In the statistically steady state the
top also contains most of the magnetic energy. The typical value
of 〈B2〉 in the middle is ∼ 0.37 times the maximum (in the upper
layer) so some of the perturbation to magnetic energy ‘overflows’
into the middle. Although there is more motion in the lower zone
than the middle there is not much field amplification, and from
this together with the slice plots above we conclude that stronger
motions are required to increase 〈B2〉 at the bottom, as seems very
reasonable given the greater density there.

Having discussed the weak field, Q = 100 case, we now move
to examine the effect of increasing the Chandrasekhar number
to Q = 500. As we have shown for the Q = 100 case, the mo-
tion is largely confined to the top and bottom layers shown in
Fig. 3. Furthermore, for this Q = 500 case, near the top we no-
tice hexagonal-type cells of size ∼ 1.6–1.8 dominate, the stronger
field has reduced horizontal scales because particle motion is more
confined along field lines. The sides of the box also show that
the convection cells in the upper layer are less prominent than
for Q = 100. The variation with z for the Q = 500 case is shown
more clearly in Fig. 4. At z = 0.75, Bz is concentrated in circular
and triangular cells, corresponding to upflow and downflow re-
gions in the ρuz plot. These regions of concentrated vertical flux
are separated by rings with low Bz , and correspond to regions of
low |ρuz|. At this depth there is strong correlation between field
and motion; a behaviour that is similar to Q = 100 and is again
consistent with the general picture of one-layer magnetoconvec-
tion. In the stable region, at z = 1.5, the associated disturbance
to the stronger field has been effectively mirrored or transported
well into the mid-layer. A possible consequence of such magnetic
‘connection’ between these two layers is that field lines may act
as channels and guide particles (not possible for weak fields) from
one region into another. A typical convection cell would require
Fig. 3. Relative distribution of vertical component of magnetic field (near the top
and bottom) and vertical momentum density (sides), for the case Q = 500 at t =
37.12.

some horizontal motion but if this is opposed by a strong vertical
field then particles are more likely to continue in the vertical di-
rection. However, we must also note that increasing field strength
is to reduce motion, as discussed later, so in terms of overshooting
there is a competition between the two factors.

Fig. 4 shows the middle layer (z = 1.5) has generally lower
values of Bz and around half as much contrast than at z = 0.75
because motion is less vigorous and ρuz at this depth is typically
an order of magnitude smaller than at z = 0.75. The figure shows
no correlation between ρuz and Bz for the mid-layer, as with Q =
100. However, in contrast to the weak field case where there is
some similarity between ρuz at z = 0.75,1.5; here the hexagonal
structure in the upper layer is entirely absent in the middle. De-
spite the strong similarity in Bz , information about vertical motion
is not transported from the top to the middle. In fact, comparing
ρuz at z = 1.5,2.25 show some correspondence (see, for example,
the roll [in red] near the top left of the two plots). This suggests
the increased field may have reduced overshooting from top and
increased it from the bottom. We conclude from Fig. 4 that, since
there is no requirement that Bz and ρuz to be related in a convec-
tively stable region, the middle may echo either of the structures
above or below. In order to test whether the effect of increasing
the Chandrasekhar number is to reduce overshooting from the top
and increase it from the bottom, we examine once again, the mod-
ulus of the vertical component of momentum density shown in
Fig. 6 to compare the three regions. In conjunction with Fig. 5
(Q = 100), we see that 〈|ρuz|〉Q =100 > 〈|ρuz|〉Q =500 so increased
field has generally suppressed convection. Although the plot for
Q = 500 is qualitatively very similar to that for Q = 100 the de-
crease in max(〈|ρuz|〉) from Q = 100 to Q = 500 is 1.18 → 0.70
in the upper layer and 0.29 → 0.21 in the bottom layer and thus
activity in the top layer is more strongly suppressed. This implies
that the extent of overshooting from the bottom relative to that
from the top has increased with field strength. Although the top
has more vigorous motion, for overshooting we must consider also
the direction of motion, and we will return to this when we con-
sider 〈ρuz〉 later. Fig. 6 shows that the variation of 〈B2〉, in compar-
ison to the weak field case, is smaller but that the variation with z
is similar. The typical value at the middle is ∼ 0.70 times the max-
imum, which shows that stronger fields can increase the amount
of magnetic energy pumped downwards, thereby transporting the
structure and hence providing more connection. However, since
the viogour of motion is suppressed (compared to Q = 100) there
is no increased overshooting from the top.
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Fig. 4. From top to bottom: vertical component of magnetic field (left) and vertical component of momentum (right) in the horizontal plane at z = 0.75, 1.5, 2.25; for Q = 500
and t = 37.12.
Fig. 5. Horizontal average of modulus of vertical momentum density (solid) and
magnetic energy (solid line), as a function of depth, for Q = 100 at t = 29.58.

Fig. 6. Horizontal average of modulus of vertical momentum (solid line) and mag-
netic energy divided by F (dashed line), as a function of depth, for Q = 500 at
t = 37.12.
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Fig. 7. Relative distribution of vertical component of magnetic field (near the top
and bottom) and vertical component of momentum (sides), for the case Q = 1000
at t = 53.60.

We now move to discuss the Q = 1000 case for which Fig. 7
shows an almost inverted distribution of structure and activity
compared with that for Q = 100 and Q = 500. The bottom has
magnetic structure with a horizontal scale comparable to that for
the top of the Q = 500 case, although the distribution is less
ordered. Convection is predominantly in the bottom layer with
typical size ∼ 2.2 units. The strong applied field has caused the
top to be almost featureless with an almost uniform Bz and lit-
tle vertical motion. The slice plots shown in Fig. 8 confirm this
effect. This figure shows that the form of Bz at z = 0.75 is differ-
ent to that at z = 1.5,2.25 but the latter two plots are similar;
the disturbance to Bz is now transported from the bottom up-
wards, in contrast to the case Q = 500. Although the plots show
rich structure, note that the contrast in Bz is only ∼ 0.01, 0.05,
0.12 units for z = 0.75, 1.5, 2.25, respectively, and these are all
smaller than for previous cases, so the field is almost unperturbed
and remains mostly vertical. However, as for previous cases we
found the strongest flow-field correlation for the layer with most
magnetic disturbance, which is the bottom layer for Q = 1000.
This continues the trend from Q = 100 → 500, that overshooting
from the bottom relative to the top has increased, and is further
supported by Fig. 9 that show vertical motion almost completely
suppressed for z < 1.7 but 〈|ρuz|〉 is still comparable to previous
cases in the lower convection zone. Since the top is suppressed,
overshooting from the bottom dominates; in fact 〈|ρuz|〉 for z > 2
is qualitatively similar to the reverse of the curve in the top layer
in Q = 100 and Q = 500. A strong field resists deformation so
there is only a 1% perturbation to 〈B2〉. As before, the most vig-
orous region (bottom layer here) contains most magnetic energy
but unlike previous cases the middle has a significant portion of
magnetic energy. These observations are again different from that
for Q = 100,500. We have also done calculations for Q = 1500;
these show the same effect as for Q = 1000 but to a greater de-
gree, and for Q = 750, which show features intermediate between
the Q = 500 and Q = 1000 cases.

4. Conclusions

In this Letter we have examined three-layer magnetoconvec-
tion and we have focused on the effect of varying the strength of
the magnetic field via varying the Chandrasekhar number Q . For
weak imposed magnetic field and for our parameter choices con-
vection occurs in both the top and bottom layers. For such fields
the magnetic field behaves passively and is easily swept into the
intracellular regions. As we increased the strength of the magnetic
Fig. 8. From top to bottom: vertical component of magnetic field in the horizontal
plane at z = 0.75, 1.5, 2.25; for Q = 1000 and t = 53.60.

Fig. 9. Horizontal average of modulus of vertical momentum (solid) and magnetic
energy divided by F (dashed line), as a function of depth, for Q = 1000 at t =
53.60.
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field we showed at the magnetic field forces substantial changes
onto the flow. We showed that for modest strength magnetic field,
e.g. for the Q = 500 case, the magnetic field forces a fairly reg-
ular convection pattern in the upper layer. However, we showed
that if the magnetic field becomes too strong, as for example in
the Q = 1000 case motion in the upper convection zone is almost
completely suppressed.

This preliminary work has provided the first steps towards un-
derstanding the effects of imposed magnetic fields on a stellar
atmosphere with multiple unstable regions. Although the geom-
etry is somewhat idealised, the results do show that the efficiency
of overshooting and the way in which the unstable layers can
communicate with each other through a stable region can be sig-
nificantly affected by a magnetic field permeating all three layers.
Further work at higher Rayleigh numbers is undoubtedly required
to show whether the behaviour found persists in turbulent flows.
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