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Disc stability

Discs are ubiquitous in astrophysics.

Instability is important: accretion, star formation, direct or indirect planet
formation.

Unstable because: magnetic fields, thermodynamics, disc structure,

self-gravity.
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Gaps in protoplanetary discs

490+ exo-planets discovered (October 2010).

Planets form in discs. Sufficiently massive planets opens a gap (Papaloizou &
Lin, 1984; Lin & Papaloizou, 1986).

Dynamical instability at gap edges because of steep gradients.
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Self-gravity

Total gravitational potential: star, planet, disc.

Usually ignore disc potential because Md ∼ 0.01M∗.

Massive discs needed for giant planet formation via GI, type III migration.

How does SG affect gap stability?

Consider a series of disc-planet simulations with increasing Md :
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Self-gravity

Total gravitational potential: star, planet, disc.

Usually ignore disc potential because Md ∼ 0.01M∗.

Massive discs needed for giant planet formation via GI, type III migration.

How does SG affect gap stability?

Consider a series of disc-planet simulations with increasing Md :

Md = 0.063M∗ Md = 0.032M∗ Md = 0.011M∗
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Model equations

2D disc in polar co-ordinates centered on primary but non-rotating.

Hydrodynamic equations with local isothermal equation of state:

∂Σ

∂t
+ ∇ · (uΣ) = 0,

∂u

∂t
+ u · ∇u = −

1

Σ
∇P −∇Φ +

f

Σ
.

Viscous forces f ∝ ν, pressure P = c2
s Σ with c2

s = h2GM∗/r

and potential Φ include star potential, indirect potentials and disc potential Φd :

Φd = −

∫

GΣ(r ′, φ′)
√

r2 + r ′2 − 2rr ′ cos (φ − φ′) + ǫ2
g

r ′dr ′dφ′.
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Linearised equations

Ignore viscosity, ignore planet & indirect potentials. Set P = P(Σ) here.

Perturb the system, e.g. Σ → Σ + δΣ(r) exp i(σt + mφ).

Linearise to get ODE for S = c2
s δΣ/Σ + δΦ

L(S) = δΣ

δΦ = −G

∫

Km(r , ξ)δΣ(ξ)ξdξ.

L is a linear operator

L(S) =
mS

r σ̄(1 − ν̄2)

d

dr

(

1

η

)

+ · · · ,

σ̄ = σ + mΩ, ν̄ = σ̄/κ and

η = κ2/2ΩΣ is the vortensity.

When σ̄(rc) = 0, need dη/dr = 0 there.
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Vortensity profile of gaps

Disturbances with co-rotation radius near vortensity extrema, η′(rc) ≃ 0.

Consider
∫

rS∗L(S)dr =
∫

rS∗δΣdr = energy.

On LHS, only keep vortensity gradient term.
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Vortensity profile of gaps

∫

m|S |2

σ̄(1 − ν̄2)

d

dr

(

1

η

)

dr ∼

∫

c2
s

|δΣ|2

Σ
dr − G

∫ ∫

rξKm(r , ξ)δΣ∗(r)δΣ(ξ)drdξ

Assume LHS integral has most contribution near σ̄(rc) ≃ 0, then

Sign of LHS depends on sign of (1/η)′′/Ω′ at rc . Note Ω′ < 0.

Insignificant SG: RHS > 0 so rc is min(η) → VORTICES.

Significant SG: RHS < 0 so rc is max(η) → SPIRALS.

Note: Toomre Q = κcs/πGΣ. max(Q) coincides with max(η).
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A nice result

Theorem

The perturbative effect of self-gravity through the linear response, δΦ, is to

stabilise vortex modes and de-stablise spiral modes.

Proof.

Consider marginally stable mode with σ = −mΩ(rc). η′(rc) = 0.

Change self-gravity via G → G + δG .

Perturb eigensolution: σ → σ + δσ with δσ = δσR + iγ; S → S + δS ;
δΣ → δΣ + δΣ1. γ is assumed small negative (unstable).

Can show:

γ = β
d2η

dr2

∣

∣

∣

∣

rc

×δG ,

with β > 0 for Ω decreasing outwards. Vortex modes have η′′(rc) > 0. Need
δG < 0 to de-stabilise them, i.e. increasing SG stabilises them.
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Stabilisation of vortex modes

Solve the linear problem numerically, with local isothermal equation of state.

Also solved with δΦ = 0.

Growth rate |γ| as a function of azimuthal wave-number m:

Solid: with SG in response. Dotted: no SG in response.
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Effect of SG via the background

Altering SG affect the gap profile set up by simulation:

Qm ∝ 1/Md . Deeper gaps with increasing SG → more unstable. Effect diminishes

with lowering m.
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Getting more vortices

Now include SG all the way in linear problem. Recall Qm ∝ 1/Md .

Higher m preferred with increasing SG. Get more vortices.

Loss of low m (stabilisation by SG in response).

Enable higher m (effect of SG via basic state).
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Effect of SG on vortex evolution

Md = 0.032M∗ Md = 0.027M∗ Md = 0.024M∗ Md = 0.012M∗

Multiple-vortices configuration is sustained longer with increasing SG.
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Effect of SG on vortex evolution

Multiple-vortices configuration is sustained longer with increasing SG.

Get α growth for intermediate range of disc mass.
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Vortices as co-orbital planets

Gap edge vortex-pair Kida vortex pair

M-K. Lin (DAMTP) The stability of self-gravitating gaps November 30, 2010 14 / 27



Vortices as co-orbital planets
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Vortices as co-orbital planets

SG on/off

SG imply minimum inter-vortex distance. If still larger than critical →
no merging.
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Application to vortex-induced migration

Repeat Lin & Papaloizou (2010)’s simulations with SG.
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Strong self-gravity
A case with Md = 0.06M∗. Co-rotation radius at r ≃ 5.5, local vortensity
maximum. Confirms Meschiari & Laughlin (2008).
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Strong self-gravity
An example with Md = 0.08M∗.
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Requirement for edge modes

Recall ODE:
L(S) = δΣ, S = c2

s δΣ/Σ+δΦ. Only keep vortensity gradient term in L. Get...

λH(r) =
∫

Rm(r , ξ)H(ξ)dξ.

with λ = 1. S → H (new eigenfunction); Km → Rm (new kernel).

But there is a max(λ). So if max(λ) < 1 then no mode.

Can show max(λ) < Λ and estimate Λ:

Λ ∼
2GK0(mǫg/rc)

rc

∣

∣

∣

∣

∣

1

Ω′

(

2ΩΣ

κ2

)

′′

∣

∣

∣

∣

∣

Lc .

K0: Bessel function; Lc length-scale of edge.

Translate to Toomre Q, need Q < Q∗ but Q∗ ∼ 4.5 for fiducial parameter
values. Classic GI Q∗ ∼ 1.
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Linear calculations of edge modes

Solve the ODE with and without SG in response. Background has SG.

Solid line is 1/η! NSG rc = 5.80 and SG rc = 5.46.
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Linear calculations of edge modes

Here are the eigenfunctions:
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Analogy with disc-planet system

Edge disturbance acts as external forcing on smooth part of the disc.

Edge disturbance is like a planet. Does its potential vary on global scale?
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Back to hydrodynamics
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Eccentric gap
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Viscosity

Need low viscosity to get vortices (ν < 10−6 or α < 10−4).

Standard viscosity α = 10−3 can’t kill edge modes.
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Viscosity

Need low viscosity to get vortices (ν < 10−6 or α < 10−4).

Standard viscosity α = 10−3 can’t kill edge modes.

Lower viscosity → higher m (sharper profiles).

Eventually surpressed but because no local vortensity maximum.
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Application to disc-planet interaction

Disc-planet torque for fiducial case:
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Application to disc-planet interaction

Time-averaged disc-on-planet torques:

If unstable → average torque more positive with increasing disc mass.
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Diluting the outer torque

Stable disc.
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Diluting the outer torque

Stable disc. Unstable disc.
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Migration in massive disks

Numerically difficult: lots of parameters.

Need better set up.
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Migration in massive disks

Numerically difficult: lots of parameters.

Need better set up.

Spiral-induced type III migration.
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Summary & future work

Planetary gaps support two types of instability: vortices & spirals.

The level of self-gravity determines which type is preferred.

Increasing SG produce more vortices and merging is resisted.

Global spiral modes with enough SG. They occur during gap formation.
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Summary & future work

Planetary gaps support two types of instability: vortices & spirals.

The level of self-gravity determines which type is preferred.

Increasing SG produce more vortices and merging is resisted.

Global spiral modes with enough SG. They occur during gap formation.

Future topics:

‘Planetary migration in the presence of large-scale spiral arms’
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