Molecular Hydrogen at high-z: Physical conditions in protogalaxies

R. Srianand IUCAA, Pune

Patrick Petitjean(IAP, Paris), Cedric Ledoux (ESO, Chile) Gary Ferland (University of Kentuky) Gargi Shaw (University of Kentucky)

Motivation:

Motivation:

• Search for molecular hydrogen in all the DLAs at $z \ge \sim 1.8$ toward QSOs that are brighter than V = 18.5 in the southern sky.

Motivation:

- Search for molecular hydrogen in all the DLAs at $z \ge \sim 1.8$ toward QSOs that are brighter than V = 18.5 in the southern sky.
- Investigating physical conditions such as particle density, kinetic temperature, ionization state using H₂, fine-structure excitations of C I, C II and ionization state of C and AI.

Motivation:

- Search for molecular hydrogen in all the DLAs at $z \ge \sim 1.8$ toward QSOs that are brighter than V = 18.5 in the southern sky.
- Investigating physical conditions such as particle density, kinetic temperature, ionization state using H₂, fine-structure excitations of C I, C II and ionization state of C and AI.
- Probing the chemical history, dust depletion and in situ-star formation

• The sample includes 26(47) QSOs with 32 (62) DLAs along the line of sight.

- The sample includes 26(47) QSOs with 32 (62) DLAs along the line of sight.
- H₂ is detected in 8 (14) systems (~ 20%). Most of them show C I, C I* and C II* absorption. HD is detected in only 1 system.

- The sample includes 26(47) QSOs with 32 (62) DLAs along the line of sight.
- H₂ is detected in 8 (14) systems (~ 20%). Most of them show C I, C I* and C II* absorption. HD is detected in only 1 system.
- $\sim 2\%$ of the systems show C I without H₂.

- The sample includes 26(47) QSOs with 32 (62) DLAs along the line of sight.
- H₂ is detected in 8 (14) systems (~ 20%). Most of them show C I, C I* and C II* absorption. HD is detected in only 1 system.
- $\sim 2\%$ of the systems show C I without H₂.
- 30% of DLAs show C II* absorption without showing H₂ and C I absorption.

- The sample includes 26(47) QSOs with 32 (62) DLAs along the line of sight.
- H₂ is detected in 8 (14) systems (~ 20%). Most of them show C I, C I* and C II* absorption. HD is detected in only 1 system.
- $\sim 2\%$ of the systems show C I without H₂.
- 30% of DLAs show C II* absorption without showing H₂ and C I absorption.
- 50% of DLAs do not show absorption due to atomic fine-structure lines or H₂.

RESULTS OF UVES SURVEY OF H₂ **IN DLAs** $z_{abs} = 2.5947$ DLA toward Q 0405–443.

H₂ detection is independent of N(H I)

IAU Colloquium 199 Shanghai, 14-18 Mar, 2005 4

H₂ is frequently detected in high Z systems:

H₂ is detected in DLAs with higher depletion:

fraction of H₂ vs. dust content:

Kinetic temperature of the gas : 153 \pm 78 K

Rotational Excitation of H₂: Radiation field

Fine-structure excitation of C |: Pressure/density

IAU Colloquium 199 Shanghai, 14-18 Mar, 2005 11

Carbon ionization:

IAU Colloquium 199 Shanghai, 14-18 Mar, 2005 12

C II* excitation:

C II* excitation:

Table 1: Systems without H ₂ detection						
QSO	Z_{abs}	log x(Al Ⅲ)	n_H (cm ⁻³)			
			\mathbf{CNM}^1	WMN ²	lonized ³	Max^4
0058 - 292	2.671		3.1	1.2	0.3	<3
0112 - 306	2.423	-1.46	24.4	9.6	2.3	<15
0135 - 273	2.800	-1.86	60.0	23.4	5.6	<5
0405 - 445	2.550	-1.58	7.3	1.8	0.4	<4
0841 + 129	2.374	-1.16	11.3	2.8	0.7	<22
1157 + 014	1.943	-1.68	16.3	4.0	1.0	<3
1223 + 178	2.465	-1.35	9.4	2.3	0.6	<2

¹ T = 100 K and $n_e/n_H = 0.001$; ² T = 8000 K and $n_e/n_H = 0.01$ ³ $T = 10^4$ K and $n_e/n_H = 0.1$; ⁴ from H₂ equilibrium formation

PDR modeling of DLAs: HM spectrum

PDR modeling of DLAs: Stellar radiation

PDR modeling of DLAs: Stellar radiation

 20% of the DLAs show gas with 75≤ T(K)≤230, 20≤ n_H ≤100 cm⁻³ and radiation field inexcess of mean local ISM UV field.

- 20% of the DLAs show gas with 75≤ T(K)≤230, 20≤ n_H ≤100 cm⁻³ and radiation field inexcess of mean local ISM UV field.
- 50% of the DLAs do not show either atomic fine-structure lines or H₂. These systems are consistent with the absorption originating from low density gas.

- 20% of the DLAs show gas with 75≤ T(K)≤230, 20≤ n_H ≤100 cm⁻³ and radiation field inexcess of mean local ISM UV field.
- 50% of the DLAs do not show either atomic fine-structure lines or H₂. These systems are consistent with the absorption originating from low density gas.
- 30% of the DLAs show C II* absorption without showing H₂ or C I. n_H is probably lower than what is typically seen in the H₂ components.

- 20% of the DLAs show gas with 75≤ T(K)≤230, 20≤ n_H ≤100 cm⁻³ and radiation field inexcess of mean local ISM UV field.
- 50% of the DLAs do not show either atomic fine-structure lines or H₂. These systems are consistent with the absorption originating from low density gas.
- 30% of the DLAs show C II* absorption without showing H₂ or C I. n_H is probably lower than what is typically seen in the H₂ components.
- If 20% of general DLA population has this SFR then DLAs will contribute half the SFR measured from LBGs.

References:

- Petitjean, Srianand, Ledoux, 2000, A&A, 364, 26
- Srianand, Petitjean, Ledoux, 2000, Nature, 408,931
- Ledoux, Srianand, Petitjean, 2002, A&A, 392, 781
- Petitjean, Srianand, Ledoux, 2002, MNRAS, 332, 383
- Ledoux, Petitjean, Srianand, 2003, MNRAS, 346, 209
- Srianand et al., 2005a, MNRAS (Preprint)
- Srianand et al., 2005b, MNRAS (Preprint)