Cold gas in dark halos and the formation of late-type galaxies

Houjun Mo

Univ. of Massachusetts, Amherst

CDM Paradigm of Galaxy Formation

Galaxies form through gas cooling and condensation (cold gas) in extended CDM halos

A crucial step in understanding galaxy formation is to establish the link between galaxies, cold gas and dark matter halos Properties of CDM structure formation

- Dark matter dominates the universe
- Hierarchical clustering due to gravitational instability

Well understood based on N-body simulations and analytical models

Galaxy-dark matter connection: a missing link

CDM simulation (Virgo consortium)

Depending on how galaxies form in the dark matter density field complicated physics: gasdynamics, star formation, feedback.

Dark matter halos: an important link in the galaxy

- Dark matter halos are quasi-static clumps of dark matter
- Well-defined objects: $\overline{
 ho}_{
 m halo} \sim 350 \overline{
 ho}_{
 m U}$
- Galaxies are assumed to form in dark matter halos

Properties of CDM halos:

Well understood in the standard ΛCDM model

- Mass function: n(M)dM
- Spatial clustering: halo bias
- Internal structure: density profile, shape, substructure, angular momentum, etc

The galaxy-dark halo connection

CDM simulation (Virgo consortium)

The key: Halo Occupation Number, P(N|M), the probability that a halo of mass M contains N galaxies (of given properties).

The halo occupation model

We use the Conditional Luminosity Function to link the distributions of galaxies and CDM halos

 $\Phi(L|M)dL$ = average number of galaxies with luminosities in the range L, L + dL that 'live' in halos of mass M.

The Conditional Luminosity Function

Yang, Mo, van den Bosch (2003)

The luminosity function:

$$\Phi(L) = \int_0^\infty \Phi(L|M) n(M) \, \mathrm{d}M$$

The average luminosity in a halo of mass M:

$$\langle L \rangle(M) = \int_0^\infty \Phi(L|M) L \, \mathrm{d}L$$

The average number of galaxies in a halo of mass M with $L > L_1$:

$$N_M(L>L_1)=\int_{L_1}^\infty \Phi(L|M)\,\mathrm{d}L$$

Clustering properties of galaxies as function of luminosity:

$$\xi_{
m gg}(r|L) = b^2(L) \, \xi_{
m dm}(r)$$

 $\overline{b}(L) = rac{1}{\Phi(L)} \int_0^\infty \Phi(L|M) \, b(M) \, n(M) \, {
m d}M$
REMINDER: $n(M)$, $b(M)$, $\xi_{
m dm}(r)$ are well-understood halo properties

The conditional LF is the ideal statistical 'tool' to link the distributions of dark matter halos and galaxies.

Luminosity & Correlation Functions

• 2dFGRS: More luminous galaxies are more strongly clustered.

• Λ CDM: More massive halos are more strongly clustered.

More luminous galaxies reside in more massive halos

REMINDER: Correlation length r_0 defined by $\xi(r_0) = 1$

The Relation between Light and Mass

Light distribution in the Universe

Characteristic mass scales

Two characteristic mass scales: $M_h \sim 10^{11} h^{-1} M_{\odot}$ (feedback mass scale?) $M_h \sim 10^{13} h^{-1} M_{\odot}$ (cooling mass scale?)

Cold gas in dark halos

Observational input: HI mass function from blind HI surveys (Rosenberg & Schneider 2003; Zwaan et al. 2004); consistent with $z \sim 0$ damped Lyman alpha systems

The Cold gas - dark halo connection

Use Conditional HI mass Function to link HI mass and CDM halos

The conditional HI mass function:

 $P(M_{
m HI}|M)\,{
m d}M_{
m HI}$

The HI-mass function:

 $\Phi(M_{\rm HI}) = \int_0^\infty P(M_{\rm HI}|M)n(M) \, \mathrm{d}M$ A simple model: $P(M_{\rm HI}|M) \, \mathrm{d}M_{\rm HI}$ has a lognormal form, with median $\overline{M}_{\rm HI}(M)$ and dispersion $\sigma(M)$. We assume σ is a constant and

$$\overline{M}_{\rm HI}(M) = rac{M_{
m HI,0}(M/M_0)^{\gamma_1}}{1+(M/M_0)^{\gamma_1-\gamma_2}}\,.$$

where M_0 , $M_{\rm HI,0}$, γ_1 , γ_2 are free parameters.

The \overline{M}_{HI} -M relation

The relation is well constrained for low mass halos.

Constraining the formation of late-type galaxies

The 'standard' model:

- Cold gas settles into a disk
- Star formation and feedback: $\dot{M}_{\star} = M_{\rm cold}/\tau$; $\dot{M}_{\rm wind} = \beta \dot{M}_{\star}$; $\beta = (200 {\rm km s^{-1}}/V_h)^2$
- Cold gas is being depleted by star formation until disk becomes stable:

$$\Sigma_{ ext{crit}} = rac{\sigma\kappa}{\pi G Q_{ ext{crit}}}$$

 $\sigma \sim 6 {
m km s^{-1}}$, $Q_{
m crit} \sim 1.5$

Such model predict too much HI mass in halos with masses below $\sim 10^{11} h^{-1} {
m M_{\odot}}!$

Photoionization heating by UV background

 $f_{\text{gas}} = f_B / [1 + (M_0 / M)^{\alpha}],$ $M_0 \sim 10^{10} h^{-1} M_{\odot}, \alpha \sim 1$ (Hoeft et al 2005).

Formaion in preheated media

If the ISM is preheated to some high entropy, then $f_{\rm gas} = f_B / [1 + (M_0/M)^{\alpha}]$ where $\alpha \sim 1$, and $M_0 \sim 10^{11.5} h^{-1} M_{\odot}$ describes the level of preheating (Lu & Mo 2005): $s \sim 10 \text{kev cm}^2$.

Assuming mass loss is insignificant:

Gas fraction and metallicity

Metallicity is expected lower in lower mass systems. Lower-mass systems must have lost larger fraction of metal in order to explain their lower metal yield, but not much gas mass.

Conclusions

- The observed HI mass in the universe is not consistent with the standard model in which gas first settles into disks and star formaion ejects gas from dark halos.
- A large fraction of the IGM associated with low-mass halos may have never collapsed into dark halos.
- A consistent model can be found if galactic-sized halos accrete gas from a medium that is mildly preheated.