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Outline

• Open questions

• Previous surveys (Ovi and Ov absorbers)

• The VLT Ovi sample and the subsamples defined by the expected high/low oxygen
abundances

• Line widths of Ovi absorbers : constraints on temperature and ionization process

• Line Abundances : confirmation of two different types of Ovi absorbers

– low abundance absorbers : tracers of the low density IGM
– high abundance absorbers : tracers of outflows close to overdense regions

• Ωb(Ovi) and Column density distribution, f (N)(Ovi)

– dn/dz, Ωb(Ovi) corrected for incompleteness and Ωb(O)

• Gas density of the Ovi absorbers under various assumptions

– the highly metal-rich Ovi absorbers are not in hydrostatic equilibrium

• Conclusions
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Open questions

• Where are the baryons at low redshift, z ∼ 0-0.5?
The baryon budget at low z (stars, interstellar atomic and molecular gas, warm
plasma in groups and clusters of galaxies) implies that ∼50% of the baryons are still in
the form of ionized gas in the IGM. (Fukugita et al. 1998)

• Where are the metals at high redshift, z ∼ 3?

– At high z, at least ∼90% of the baryons are in the Ly-α forest.
– only ∼10% of the metals expected from star-formation activity in Lyman Break

Galaxies (Pettini 1999) have been measured up to now.

• In both cases, hot and/or highly-ionized gas might be the answer
as suggested :

– low z : hydrodynamic simulations of galaxy formation (e.g. Cen & Ostriker 1999; Davé
et al. 2001) and the Ovi absorber surveys (this conference).

– high z : large-scale outflows of metal-rich gas around star-forming galaxies (e.g.
Pettini 1999; Bruscoli et al. 2003).
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Previous high-ionization absorber surveys

• O vi absorbers at z ∼ 2.0-2.5
Surveys of Oviλλ1031, 1037 absorption systems have been conducted at the VLT and
Keck telescopes. (Carswell et al. 2002 [2 sightlines]; Simcoe et al. 2002, 2004 [7
sightlines]; Bergeron et al. 2002 [1 sightline]).

– A non-negligible fraction, ∼ 1/3, of the Ovi absorptions associated with the Ly-α
forest have line widths b < 14 km s−1, thus T < 2× 105 K, which favors a radiative
ionization process.

– A hard UV background flux, small discontinuity at 4 Ryd (Haardt & Madau 1996),
reproduces well the observed ionic ratios for –3 < [Z/H] < –0.5.

– The inferred values of Ωb(Ovi) of the above surveys are ≈ 1.1× 10−7

( ΩΛ, Ωm, Ωb, h = 0.7, 0.3, 0.04, 70).
– A conservative ionization correction, Ovi/O=0.16, leads to a mean oxygen

abundance of [O/H] = –2.8.
– The inferred overdensity of the Ovi absorbers is δ ≡ (ρ/ρ) = 2 to 40.
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Previous high-ionization absorber surveys (cont.)

• O v absorbers at z ∼ 2.2
Stacked composite absorption spectra from HST-FOS data [4 sightlines] created to
search for Ovλ630 systems associated with the Ly-α forest and other EUV absorption
lines (Telfer et al. 2002).

– Detection of Ov over a large range of N(H i) (from Keck data of the Ly-α forest)
down to N(H i) = 1013.2 cm−2.

– O ivλλ544, 788 lines are only detected in absorbers of high N(H i) (> 1016.0 cm−2),
which suggests a hard ionizing metagalactic flux.

– For photoionization, the oxygen abundance in the IGM is [O/H] ≈ –2.2 to –1.3.

– Comparison with C iv studies suggests a possible overabundance of oxygen relative
to carbon, [O/C] ≈ 0.3 to 1.2.
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The VLT O vi sample

• The UVES Large Programme (PI : J. Bergeron, 334 hr)

– 21 bright QSOs (most with V < 17), of which 19 at 2 < z < 4,
observed with dichroics blue and red,

– Resolution = 45,000 or b = 6.6 km s−1,
– Exposure time per setting per QSO (2 settings per QSO) : 6 to 10 hr,

– S/N ∼ 30, 100 at 3200, 5500 Å respectively.

• Data reduction (B. Aracil)

– Upgrade of the ESO-UVES data-reduction pipeline and continuum fitting

• Our analyzed sample

– 10 QSOs at 2.1 < z < 2.8 (excluding those in Carswell et al. 2002)
– data analysis using VPFIT
(http://www.ast.cam.ac.uk/~rfc/)

– sample of 136 detected Ovi absorbers, 12.7 < log N(Ovi) < 14.6.
– 51 individual H i components associated with this Ovi sample.
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The O vi subsamples

• A few systems with high ionic ratios, N(O vi)/N(H i) > 0.5, are present
in the samples analyzed by Carswell et al. (2002) and Bergeron et al. (2002).
They have low H i column densities, log N(H i) < 13.0 (underrepresented in the survey
of Simcoe et al. (2004), log N(H i) > 13.6).

• These systems have high abundances, [O/H] > –1 (or even [O/H] > 0).

– They trace highly metal-enriched sites, not the IGM.
– They are not present in every sightline : A large QSO sample is mandatory

• As several of these Ovi absorbers have small line widths, b < 12 km s−1,
results from photoionization models with [O/H] = –1 are used to derive an
observational identification criterion :

– N(O vi)/N(H i) > 0.25 defines the O vi type 1 subsample

• A similar criterium is derived for C iv absorbers : N(C iv)/N(H i) > 0.015.

– The C iv-only type 1 absorbers are those without Ovi detection (Ovi either
outside the observed range (z < 2) or fully blended with strong Lyman lines.)
There are 18 C iv-only type 1 absorbers, 11.8 < log N(C iv) < 13.8, with 8
distinct H i components.
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The O vi subsamples
O vi & C iv Column Densities vs H i Column Density
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• The Ovi subsamples

– Type 0 : low abundance

– Type 1 : high abundance
Ovi and/or C iv

– Type 2 : less certain Ovi

• The C iv only, high [C/H] sub-
sample

– Type 1 : high abundance

• Red dashed line :
N(Ovi)/N(H i) = 0.25

• Black dashed line :
N(C iv)/N(H i) = 0.015
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Examples of type 1 O vi absorbers

Velocity (km s−1) Velocity (km s−1)

Weak N(H i) absorbers
z =2.468
(left panel)

Strong N(H i) absorbers
z ∼ 2.398

Ovi fit with Ly blends
(right panel)
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Examples of types 0 and 2 O vi absorbers

Velocity (km s−1) Velocity (km s−1)

Type 0 absorber
z = 2.089
(left panel)

Type 2 absorber
z = 2.314
(right panel)
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Examples of type 1 C iv-only absorbers

Velocity (km s−1) Velocity (km s−1)

Lower z absorbers
z = 1.727 & 1.729

Ovi outside range
(left panel)

Higher z absorber
z = 2.415

Ovi fully blended
(right panel)
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Distribution of O vi line widths

• Number of Ovi absorbers :
81, 39, 16 for the types 0, 1, 2

• The b distributions of the
types 0 & 1 overlap

– but a Kolmogorov-Smirnov test
shows that there are different
at the 98% confidence level.

• 43% of the absorbers have
b<12 km s−1 (log T<5.14)
→ implies photoionization

• Very few Ovi absorbers with
b>16 km s−1 are unambiguously
broad systems

0 4 8 12 16 20 24 28 32 36 40 44 48
b (km s−1)

0

10

20

30

40

N
um

be
r

0
1
2

12



Abundances
• Radiative ionization process

– Photoionization by a hard UV metagalactic flux (Haardt & Madau 1196).
– Ionization parameter, U, fixed by the ionic ratio (Ovi/O)/(C iv/C), assuming [O/C]

= 0.
– is only true if Ovi and C iv are in the same phase : should be mostly the case as

Si iv is not detected, except in a few systems with high N(H i) (> 1015 cm −2).

• sample : numbers of Ovi-H i systems of 31, 14, 6 for the types 0, 1, 2.

• Types 0 and 1 : populations with markedly different metallicities

– To confirm the difference in metallicity for the types 0 (IGM) and 1 (metal-enriched
sites), we investigate other ionization processes for the type 1 population :

∗ Gas temperature fixed by b(major Ovi component) of the system, plus
photoionization by a hard UV metagalactic flux. The corresponding value of
U is then derived (same assumptions as above for (Ovi/O)/(C iv/C)).
No solution for T ≥ 2.0× 105 K.

∗ Constant gas density thus constant U (log U = –0.5 or an overdensity
δ ≈ 10).
In a large fraction of the cases, Ovi and C iv do not trace the same phase.
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Abundances : photoionization case

• [O/H] distribution :
Confirmed existence of two
distinct populations

– median [O/H]
type 0, 1, 2
–2.07, –0.33, –1.56

• Type 2 [O/H] distribution :
spans a small range in between
those of the types 0 and 1 pop-
ulations.
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Abundances for the type 1 population
different ionization assumptions

• The three cases shown are :

– 1. photoionization : U(Ovi/C iv)
(top panel)

– 2. photoionization : log U = –0.5
thus fixed gas density
(middle panel)

– 3. T fixed by b(Ovi) &
photoionization : U(Ovi/C iv)
(bottom panel)

• Although [O/H] is smaller for cases
2 & 3 than case 1,
it remains far higher than the
type 0 value (case 1)

– median [O/H]
type 0 (case 1) : –2.07
type 1(case 1), 1(case 2), 1(case 3) :
–0.33 , –0.80, –0.35
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Weak O vi absorption

• From a pixel analysis of UVES-LP QSO spec-
tra, Aracil et al. (2004) found that weak Ovi
absorption is predominantly detected in the
vicinity (small ∆v) of strong Ly-α absorption.

– For ∆v ≤ 300 km s−1, a signal is present
at 0.2 < τ (H i) < 1 (or 12.9 < log N(H i)
< 13.6 for b(H i) = 30 km s−1).

• This suggests that the O vi absorption
arising in regions spatially close to
strong Ly-α absorption may be part of
outflows from overdense regions.
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Type 1 population : Nearest strong H i absorber

• The Ovi type 1 population should
exhibit the same property as the
weak Ovi absorptions (from pixel
analysis), since there is an overlap
in their N(H i) range.

• Distribution of ∆v between Ovi
and C iv type 1 systems and the
nearest strong Ly-α system :

– 57%, 75% of the Ovi, C iv type
1 systems have a strong Ly-α
system at ∆v ≤ 450 km s−1.

• Pixel analysis and study of
individual O vi systems both
suggest a link to gas outflows.
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Ωb(O vi) and the column density distribution

• Ωb(O vi)

– Ωb(O vi) = {H0mO/cρcrit}{
∑

N(O vi)/
∑

i ∆Xi}
= 2.2 × 10−22{

∑
N(O vi)/

∑
i ∆Xi}

H0: Hubble constant, mO: oxygen atomic mass, ρcrit: critical density,
∑

i ∆Xi: total
redshift path.

For the adopted cosmological parameters (ΩΛ, Ωm, h = 0.7, 0.3, 70)
dX ≡ (1 + z)2{0.7 + 0.3(1 + z)3}−0.5 ∼= {(1 + z)/0.3}0.5 when z > 1.

– For our sample of 10 QSOs we obtain :
Ωb(O vi)= 1.51 × 10−7

• O vi Column density distribution

– f(N)dNdX = {n/(∆N
∑

i ∆Xi)}dNdX
n : number of Ovi absorbers in a column density bin ∆N centered on N for a
sample of QSOs with total redshift path

∑
i ∆Xi.

– Fit of f (N) used to
(i) estimate the incompleteness correction factor for Ωb(Ovi),
(ii) derive the number of Ovi absorbers per unit redshift.
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Column density distribution of O vi absorbers

• Assuming a power law distribution
: f(N) = KN−α

we obtain α = 1.71

• The majority of the Ovi absorbers
have column densities in the range
13.0 < log N(Ovi) < 14.0.

– Incomplete, sample variance
at log N(Ovi) < 13 and
> 14.0, respectively.

– Shifting the ∆N bins by 0.1
dex yields the uncertainty in α
α = 1.71±0.48

0.47,
which leads to
f(N) = 2.3 × 10−13,
at log N(Ovi) = 13.5, with a
∼30% uncertainty.
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Column density distribution of C iv absorbers

• For comparison, we show the C iv
(and Si iv) column density distri-
bution obtained for 19 UVES-LP
QSO spectra (Scannapieco et al.
2005).
The green dashed line is the fit
measured by Songaila (2001) with
α = 1.8.

• f (N)(Ovi) at log N(Ovi) = 13.5
is larger than
f (N)(C iv) at log N(C iv) = 13.5
by a factor 4 & 8
compared to Scannapieco et al. &
Songaila values, respectively.
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O vi absorbers : dn/dz

• We now use the derived f (N) to (i) estimate the number density per unit z of Ovi
absorbers, (ii) correct Ωb(Ovi) for incompleteness.

• O vi : dn/dz

– dn/dz = (dX/dz)
∫

f(N)dN
– using the fit with α = 1.71 and log N(Ovi) limits of 13.0 and 15.0, we get :

dn/dz ≈ 73 at z = 2.2

– at z = 0.1, dn/dz ≈ 13 for wr,min = 50 mÅ (Sembach et al. 2004).
For this wr,min (N(Ovi) = 1013.6), we get dn/dz ≈ 26 at z = 2.2

– Comparison between these two values of dn/dz is not straightforward as Ovi
absorbers may not trace the same population at low and high z.

• H i : dn/dz

– We use the analysis of Kim et al. (2001) to derive dn/dz for (H i).
The lowest H i column density associated with z = 2.2 Ovi absorbers is
log N(H i) = 12.80.
We then use a log N(H i) range of 12.8 to 16.0, and get :
dn/dz ≈ 620 for H i at z = 2.13

– Note : in many cases, we find several Ovi components per H i system (unresolved
individual H i components).
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O vi absorbers : corrected Ωb

• Ωb(O vi)

– Ωb = 2.20 × 10−22
∫

Nf(N)dN
– using again the fit with α = 1.71 and log N(Ovi) limits of 13.0 and 15.0, we get :

Ωb(O vi) ≈ 3.5 × 10−7

i.e. an incompleteness correction factor of 2.3 at z = 2.2.

• Ωb(O)

– using a conservative ionization correction factor, (Ovi/O) = 0.16, yields
Ωb(O) = 2.2 × 10−6

– Using the solar abundances of Anders & Grevesse (1989), we get
Ωb(O)/Ωb(O)� = 0.9 × 10−2

• The above values of dn/dz and Ωb(O) are lower limits, as we have not
yet included the O vi absorbers without associated H i absorption.
This requires a statistical analysis of “pseudo” Ovi doublets in simulated spectra of the
Ly-α forest (work in progress).

22



Gas density of O vi absorbers

• The gas overdensity of the O vi absorbers, δ ≡ (ρ/ρ) , is estimated for
two cases :

– photoionization by a hard UV metagalactic flux,
– hydrostatic equilibrium (Schaye 2001).

• Photoionization

– U is fixed by the Ovi/C iv ionic ratio (assuming [O/C] solar)
ρ is the mean baryonic density at each z(Ovi)

– δ(U) = 4.0 U−1([1 + z]/3)−3.

• Hydrostatic equilibrium

– For Ωb/Ωm = 0.15, a gas temperature T = 4× 104 K and a photoionization rate
Γ(H i) ≈ 1.5× 10−12 s−1, we get :

– δ(G) = 4.8 × 10−9 N(H i)2/3([1 + z]/3)−3.
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Absorber density : photoionization case

• Distribution of δ(U).

– The median values of δ(U) for the
type 0 (metal-poor) and
type 1 (metal-rich) are equal :

δ(U) ≈ 22,
and ∼ 40% smaller for the type 2.

• The ranges of δ(U) are very similar for
the types 0 and 1 populations.

– a Kolmogorov-Smirnov test shows that
they have the same δ(U) distribution
at the 97% confidence level.
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Absorber density : hydrostatic equilibrium case

• Distribution of δ(G).
There is a marked difference between the
type 0 and type 1 populations.

– The median values of δ(G) are
53 and 6 for the type 0 and type 1
absorbers, respectively;
that for the type 2 is 11.

• The range of δ(G) for ≈80% of the
type 1 absorbers does not overlap with
the type 0 absorbers.
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Overdensity

• Different nature of the types 0 and
1 populations : δ(G) vs δ(U).

• For the type 0 absorbers,
δ(G) and δ(U) are correlated,
and δ(G) > δ(U)
may suggest that a large fraction
of H i is not in the Ovi phase.

– Type 0 absorbers probe the
IGM and hydrostatic equilib-
rium is roughly valid.

• For the type 1 absorbers,
δ(G) and δ(U) are uncorrelated:

– hydrostatic equilibrium does
not apply. Type 1 absorbers do
not trace the IGM, but rather
gas outflows in the vicinity of
overdense regions.
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Conclusions

• O vi absorbers comprise two populations that trace :

– The IGM - low metallicity absorbers (type 0) : [O/H] < −1.5,
– Gas outflows from overdense regions with strong star-formation activity -

high metallicity absorbers (type 1) : [O/H] > −1.0.

• Populations well defined by a simple observational criterion :
N(O vi)/N(H i) < 0.25 : type 0
N(O vi)/N(H i) > 0.25 : type 1

• [O/H] of the type 1 population remains high : median [O/H] ≈ −0.4
regardless of detailed ionization assumptions.

• ∼ 60% of the type 1 absorbers have a strong H i at ∆v < 450 km s−1;
also found for weak Ovi absorbers from pixel analysis.

– supports outflows
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Conclusions (cont.)

• Our O vi sample is large enough to derive a rough column density
distribution, f(N) = KN−α :

– α = 1.71±0.48
0.47 and

– f(N) = 2.3 × 10−13 at N(Ovi) = 1013.5 cm−2, ∼30% uncertainty.

• dn/dz, Ωb(O vi) and Ωb(O)
for 1013 < N(Ovi) < 1015 cm−2

– dn/dz = 73 (66-106) at z = 2.2 : f (N) fit
– Ωb(Ovi) = 1.5× 10−7 : Ovi sample (incomplete)

Ωb(O vi) = 3.5 (2.6-6.7) ×10−7 : f (N) fit
– Ωb(O) = 2.2 × 10−6 = 0.009 Ωb(O)� : f (N) fit

• Gas overdensity (δ ≡ (ρ/ρ))

– δ(U) : 4 to 100 (U ≡ photoionization)
δ(G) : 1 to 600 (G ≡ hydrostatic equilibrium)

– Hydrostatic equilibrium roughly valid for type 0 population : low metallicity/IGM,
but not for type 1 (high metallicity) population : strengthens further the outflow
suggestion.
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Prospectives

• Search for O vi doublets with very weak H i

– coupled to a statistical analysis of simulated spectra.

• Better constrain Ωb(O) : increase the sample

– Complete the analysis of the UVES-LP zQ < 3 sample (5 more)
– Include “partially” blended Ovi doublets

• Link observational results to models of radiatively cooling gas
(Heckman et al. 2002; Furlanetto et al. 2004)

• High metallicity absorbers : identification of associated starburst
galaxies (imaging & spectroscopy)
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