
Third release of HyRec (May 2012): technical explanatory supplement

Yacine Ali-Häımoud
Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540

(Dated: May 3, 2012)

This explanatory supplement provides detailed explanations of the modifications done in the third release of HyRec
(May 2012): a more accurate numerical solution of the radiative transfer equations, and the inclusion of the explicit
dependence of the recombination history on the fine structure constant and the electron mass.

I. IMPROVED NUMERICAL INTEGRATION

The modifications described below do not change the accuracy of the free-electron fraction in a significant way (at
the level of a few 10−4 at most). However, they improve the accuracy of the Lyman-line distortion (which could be
extracted from the code if desired), especially at early times when the radiation field is close to being thermal.

A. Improved post-Saha expansion at early phases of hydrogen recombination

At the highest redshifts, the ODE describing hydrogen recombination is stiff, and we follow the recombination
history using perturbation theory around the Saha approximation, which we describe here. The free electron fraction
is very close to the Saha equilibrium value: xe = xSe + ∆xe. We can therefore Taylor-expand the derivative of the
free-electron fraction:

ẋe(xe, z) ≈ ẋe(xSe , z) + ∆xe
∂ẋe
∂xe

∣∣∣
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e

. (1)

On the other hand, we have

ẋe(xe, z) ≈
d(xSe)

dt
. (2)

This allows us to obtain an estimate of the departure from Saha equilibrium:

∆xe ≈
[
d(xSe)

dt
− ẋe(xSe , z)

]/∂ẋe
∂xe
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. (3)

In the previous version of the code, it was assumed that ẋe(x
S
e , z) = 0. In fact, the rate of change of the free electron

fraction ẋe(xe, z,∆fν) also depends on the photon distortion ∆fν(z; ∆xe(z
′ > z)), which itself depends on the free

electron fraction at earlier times. Therefore, at a given time z, and for ∆fν 6= 0, the function ẋe evaluated at xSe does
not vanish in general, and it is explicitly evaluated in the new version of the code, making the post-Saha expansion
more accurate.

We use the post-Saha expansion until the departure from Saha equilibrium reaches ∆xe = 3 × 10−4, after which
we switch to the numerical integration of the recombination ODE. We checked that the error during the post-Saha
phase is at most |∆xe| ∼ 5× 10−5 by comparing against a much finer time-step computation where one can avoid the
post-Saha expansion.

B. Numerical radiative transfer equations in terms of departures from equilibrium

The numerical radiative transfer equations solved in the previous version of the code involved the absolute excited
level populations xi and photon occupation number fν or equivalently the virtual level populations xb ≡ x1sfνb . At
the beginning of hydrogen recombination, the excited states are very close to Boltzman equilibrium with the ground
state, and the radiation field is nearly thermal. The net rate of decays to the ground state therefore depends on
nearly cancelling terms. A better accuracy can be reached by rewriting the radiative transfer equations in terms of
departures from thermal equilibrium with the ground state, using the variables

∆xi ≡ xi − x1s
gi
g1s

e−Ei1/Tr , ∆xb ≡ xb − x1se−hνb/Tr ≡ x1s∆fνb , ∆(x2e) ≡ x2e −
(xSe )2

1− xSe
x1s ≡ x2e − s(Tr)x1s, (4)
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where

s(Tr) ≡
(2πµeTr)

3/2

h3nH
e−EI/Tr =

(xSe)2

1− xSe
. (5)

We also use the departures of the effective recombination coefficients from their values if matter and radiation had
the same temperature Tr,

∆Ai ≡ Ai(Tm, Tr)−Ai(Tm = Tr, Tr). (6)

With these new variables, several terms cancel out of the recombination equation, and we are left with the following
new equations:
• The discretized radiative transfer equation (Eqs. (86), (84) and (81) of Ref. [1]) becomes

Tb,2s∆x2s + Tb,2s∆x2p +

b+1∑
b′=b−1

Tb,b′∆xb = Πbx1s∆fνb+εTb,b. (7)

• The rate equation for each state i = 2s, 2p (Eqs. (93), (92) of Ref. [1]) becomes∑
j=2s,2p

Ti,j∆xj +
∑
b

Ti,b∆xb = ∆Si, where (8)

∆Si ≡ nH
[
sx1s∆Ai +Ai∆(xe)

2
]

+ 3
∑
n≥2

RLynP
i
np∆f

+
np. (9)

• Finally, the rate of change of the free electron fraction (Eq. (39) of Ref. [1]) becomes

ẋe = −
∑

i=2s,2p

{
nH
[
sx1s∆Ai +Ai∆(xe)

2
]
−∆xiBi

}
. (10)

As a result of this improved numerical treatment, the user can extract an accurate distortion field, as is shown
in Fig. 1. Note that distortion photons from Helium recombination are not included (but they are followed in our
analytic treatment of Helium recombination), and neither are photons emitted by neutral hydrogen while helium
recombines (see Ref. [2]).

II. DEPENDENCE OF THE RECOMBINATION HISTORY ON FUNDAMENTAL CONSTANTS

Various theories can result in the variations of some fundamental constants (for a review, see e.g. Ref. [3]), and
the CMB can and has been used to test for the variations of the fine structure constant αfs and the electron mass1

me, which affect the rate of recombination as well as the scattering rate by free electrons. Here we assume that the
fine-structure constant and the electron mass may have a different value at recombination than today (and for the
purpose of simplicity we assume these values to be constant during the whole recombination process).

We summarize the dependencies below:

• Transition frequencies:

ν ∝ α2
fsme (11)

• Einstein-A coefficients (single photon electric dipole transitions):

A ∝ α5
fsme (12)

• Two-photon decay rate:

dΛ

dν
∝ α6

fs, (13)

Λ ∝ α8
fsme (14)

1 To be exact, all quantities related to the hydrogen atom depend on the reduced mass of the electron-proton system, µe = me/(1+me/mp)
rather than me. However, ∆µe/µe = ∆me/me [1 + O(∆me/mp)], and therefore we assume that ∆µe/µe = ∆me/me. Note however
that HyRec uses the correct reduced mass for all zeroth order quantities.
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FIG. 1. Number of Lyman-distortion photons per hydrogen atom per log-frequency interval, as a function of redshift. The
three vertical dashed lines show the position of the Ly-α, Ly-β and Ly-γ lines. The sudden drops on the red side of Ly-α and
Ly-β at early times are unphysical and arise because we only start following hydrogen recombination (hence the spectrum) at
z = 1700. Note that distortion photons emitted during helium recombination, both by helium and hydrogen (see for example
Ref. [2]), are not accounted for, and would be dominant redward of these discontinuities at early times.

• Lyman-α escape rate:

RLyα ∝ ν3Lyα ∝ α6
fsm

3
e. (15)

• Recombination coefficients and photoionization rates:

α =
α2
fs

m2
e

F

[
Tm
α2
fsme

,
Tr

α2
fsme

]
, (16)

β = α5
fsme G

[
Tr

α2
fsme

]
, (17)

where F and G are some functions. Since the prefactors in β are the same as those of the Einstein-A coefficients, the
probabilities P 2l

nl defined in Ref. [4] are only functions of Tr/(α
2
fsme), without any prefactors. The dependencies given

above therefore carry over to the effective recombination and photionization rates to 2s and 2p defined in Ref. [4] and
used in HyRec. The effective 2p→ 2s transition rate has the same prefactor as the Einstein-A coefficient.
• Photoionization cross-section from the ground state of hydrogen (required for helium recombination):

σpi ∝ αfsa
2
0 ∝

1

αfsm2
e

, (18)

• Thomson cross-section:

σT ∝
α2
fs

m2
e

(19)

Note that the Thomson cross-section is used in HyRec only to compute the matter temperature evolution. Obviously,
it should also be modified in the Boltzmann code calling HyRec when computing CMB anisotropies.

We show the impact of changes in αfs and me on the recombination history and the visibility function in Fig. 2.
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FIG. 2. Changes to the recombination history (left) and the visibility function (right) due to a variation of the fine-structure
constant or the electron mass.
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