Fast Mocks in the Very Large Survey Era with the Peak Patch Approach

George Stein

Collaborators Marcelo Alvarez, Dick Bond, Phillipe Berger, Nick Battaglia, Anita Bahmanyar

Canadian Institute for Theoretical Astrophysics L'institut Canadien

Mocking Heaven Motivation

- Future surveys will cover extremely large volumes of the universe. eg. Euclid, LSST, CHIME, etc...
 - clustering measurements require an estimate of their covariance matrix for reliable cosmological constraints

- Determine impact of various systematic effects
- Pipeline Analysis

N-body

Eulerian

Lagrangian

Peak-Patch

On the fly Light Cones

- Scale ICs by linear growth factor
- Calculate Ellipsoidal collapse at z_{pk}

Save Halo

Peak Patch Full Sky Maps

 $\begin{array}{l} & 8 Gpc \ Box, \ 4096 \ ^3 \ cells \\ & t \ \sim 10 \ minutes \ on \ 1024 \ cores \\ & \ \sim 60 \ million \ halos \\ & Complete \ to \ z \ < 1.25, \ M \ > \ 2.6 \ \times \ 10^{13} \ M_{sun} \\ & \ \sim 560 \ maps \end{array}$

Halo Population

1.) Point Sources

2.) Extended Sources

Optical

- Manera et al. 2012
 CIB
- Shang et al. 2012 Intensities
 - HI, CO, C₂

tSZ • BBPS 2011

kSZ • BBPS 2011

Empirical Pressure & Gas Density Profiles

- Suite of hydrodynamical TreePM-SPH simulations that include:
- radiative cooling
- star formation
- supernova feedback
- energetic feedback from AGN

Battaglia, Bond, Pfrommer, Sievers (2011)

Optical HOD

 Calibrated to reproduce the clustering measurements on scales between 30 and 80 h⁻¹Mpc

 Satellites laid down according to excluded poisson on top of NFW profile

Manera et al. 2012

6

Peak Patch Full Sky Model

Multi-tracers

Many galaxy and halo observables are correlated.

CMB is correlated with galaxy surveys

Optical x tSZ

Redshift Evolution

- Cross-correlation in each redshift slice picks out contribution from that slice
- Can infer growth of structure

Optical

0.00 < z < 1.25

CIB

0.00 < z < 0.25

Optical

CIB

kSZ

Statistics of Extrema in Large Scale Structure

4.1.

Lorentz Centre 7-11 March 2016

Optical

Statistics of Extrema in Large Scale Structure

0.25 < z < 0.50

Lorentz Centre 7-11 March 2016

CIB

Optical

0.50 < z < 0.75

CIB

Optical

Statistics of Extrema in Large Scale Structure

0.75 < z < 1.00

Lorentz Centre 7-11 March 2016

CIB

Optical

Statistics of Extrema in Large Scale Structure

1.00 < z < 1.25

Lorentz Centre 7-11 March 2016

CIB

Summary

application to Planck all-sky, Advanced ACTpol - (talk Feb. 20 Princeton ACT mtg - Battaglia, Bond) CMB Stage 4 - (talks Mar. 7,9 Berkeley S4 - Battaglia, Bond)

- Peak Patch Monte Carlo mocks provide a wealth of cosmological information for parameter estimation, analyzing systematic effects, and testing pipelines
- Extremely efficient light cone simulations and halo profiles with accurate statistics
- Mocks + Mapmaking pipeline has numerous applications. tSZ, kSZ, CIB, Optical, Lensing
- Cosmic parmeters dynamical dark energy/modifed gravity, neutrino mass, primordial NG (perturbative and intermittent), ...

