Primordial non-Gaussianity with Large Scale Structure

HI

George Stein

kSz

Collaborators: Dick Bond, Marcelo Alvarez, Zhiqi Huang, Phillipe Berger

Optical

CITA Canadian Institute for Theoretical Astrophysics L'institut Canadien d'astrophysique théorique

CIB

tSZ

1.) Primordial non-Gaussianity contains information on the fundamental physics of inflation **Peak Patch Full Sky** Model **FSZ** 2.) How can we try to observe this? i) Halo Clustering ii) Halo Mass Function iii) Intermittency

Classical Inflation Single-Field Slow-Roll

- Motion of inflaton drives accelerated expansion
- Simple & Computable

Credit: Daniel Baumann

 $\mathcal{L}_{\Phi} = -\frac{1}{2} (\partial \Phi)^2 - V(\Phi)$

Great Lakes Cosmology and Galaxies 2016

George Stein

Classical Inflation Single-Field Slow-Roll

Single-Field Slow-Roll Predicts: Gaussian Initial Conditions drives Scale Invariant

Simple & Computable

Credit: Daniel Baumann

Great Lakes Cosmology and Galaxies 2016

George Stein

 $\mathcal{L}_{\Phi} = -\frac{1}{2} (\partial \Phi)^2 - V(\Phi)$

$\sigma(\chi) \quad \text{Multi Field Inflation} \\ \text{Sincle Field Slow-Roll}$

1. Spectator Field σ

- Local non-Gaussianity f_{NL}
- Scale dependent bias

$$\Phi(x) = \phi(x) + f_{NL}(\phi^2 - \langle \phi^2 \rangle)$$

Salopek and Bond (1990) Komatsu et al. (WMAP) Dalal et al. (2008) Grossi et al. (2009) Pillepich et al. (2009)

2. Non-Inflaton Light Field χ • Intermittent non-Gaussianity $\zeta(x) = F_{NL}(\chi(x))$

Bond, Frolov, Huang, Kofman (2009)

Great Lakes Cosmology and Galaxies 2016

George Stein

Gravitational Potential Maps Gaussian Component Intermit

Bond, Frolov, Huang, Kofman (2009) Intermittent Component

Case Study 1: "Classic" Local f_{NL}

non-Gaussian Initial Conditions

Intermittent non-Gaussianity

-30

Great Lakes Cosmology and Galaxies 2016

George Stein

CMB Example: Gravitational Potential Maps

Gaussian Component

Intermittent Component

30

30 -6 non-Gaussian Initial Conditions

+

Bond, Frolov, Huang, Kofman (2009)

Great Lakes Cosmology and Galaxies 2016

George Stein

Halo Mass Function is strongly affected only for large f_{NL}

Peak Patch Sims: 2048 Mpc box, 1024³ cells 900 realizations, ~3 mins each on 64 cores

George Stein

Instead look at power spectrum and scale dependent bias

Local non-Gaussianity $\Phi(x) = \phi(x) + f_{NL}(\phi^2 - \langle \phi^2 \rangle)$

Peak Patch Sims: 2048 Mpc box, 1024³ cells 900 realizations, ~3 mins each on 64 cores

Large Scale Halo bias fits very Local Type **Local non-Gaussianity effects:** 1.) Increased (decreased) number of most

massive halos for $f_{NL} > 0$ (< 0)

2.) Scale Dependent Bias ~1/k² at low k

These have been seen before - but not to such high halos masses or for such large volumes

k [Mpc⁻¹

Peak Patch Method Viable for NG simulation

Great Lakes Cosmology and Galaxies 2016

10

Halo Mass Function is weakly affected for intermittent cases

Intermittent non-Gaussianity $\zeta(x) = F_{NL}(\chi(x))$

Peak Patch Sims: 2048 Mpc box, 1024³ cells 900 realizations, ~3 mins each on 64 cores

Great Lakes Cosmology and Galaxies 2016

non-Gaussianity in a Full-Sky Lightcone

8 Gpc box, 4096^3 cells Wall clock ~10 mins each on 1024 cores Full-sky light cone with ~60 million halos Complete for M_{halo} > 3 x 10¹³ M_{sun}

f_{NL}, f_{NL} uncorrelated, Spike, Chaotic Billiards

Great Lakes Cosmology and Galaxies 2016

Battaglia et al. (2012) fits for Pressure Profiles Matt Young - Poster

Subgrid Halos + Neutral Hydrogen Prescription Phillipe Berger

Battaglia et al. (2012) fits for Pressure Profiles Matt Young - Poster

Subgrid Halos + Neutral Hydrogen Prescription Phillipe Berger

Great Lakes Cosmology and Galaxies 2016

George Stein

Battaglia et al. (2012) fits for Pressure Profiles Matt Young - Poster

Subgrid Halos + Neutral Hydrogen Prescription Phillipe Berger

Summary

Primordial non-Gaussianity would tell us about the precise physics of inflation

The signatures of NG in large scale structure need to be well understood through simulations

 Iarge-sky cosmological surveys such as CHIME need

 efficient mocks

 Optical KSZ

Future Directions

Intermittent non-Gaussian classification Mocks tailored to individual surveys

Great Lakes Cosmology and Galaxies 2016