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Introduction

Single-field, slow-roll inflation predicts nearly Gaussian random initial density fluctuations.

Intermittent Component

Gaussian Component

Therefore, detecting any primordial non-Gaussianity (NG) would provide invaluable information
on the physical processes in the early universe. We focus on NG from multi field models

To date the Cosmic Microwave Background (CMB) has provided the strongest constraints
on the level of non-Gaussianity, but the Large Scale Structure (LSS) of the universe
has the potential to provide drastic improvements on these constraints through future and
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current surveys. : T e
== 1 0n-Gaussian Initial Conditions

We use the modern Peak Patch algorithm, a monte carlo method to generate mock dark matter

halo catalogues, to explore the detectability of both intermittent (spatially sporadic) and

Bond, Frolov, Huang,
conventional perturbative varieties of non-Gaussianity in LSS.

Kofman (2009)

Key Observables: i.) Halo Clustering ii.) Halo mass function iii.) largest virialized objects iv.) Intermittency
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Subgrid Halos + Neutral
Hydrogen Prescription

Battaglia et al. (2012) fits

Results I - Local non-Gaussianity
for Pressure Profiles

Arises from a class of models known as “spectator field” models
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increase in structure when compared to the Gaussian. e 3
small values of k. This is very promising for

8 Gpc box, 40963 cells. Wall clock ~10 mins each on 1024 cores. ~60
million halos. Complete for Mhaio > 3 x 1013 Mgyn
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case. Strong changes are only seen for large future LSS surveys
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Results II - Intermittent on—Gaussianity

Arise from “Chaotic Billiards” models * The signatures of non-Gaussianity in large scale structure need to be

e NG from post-inflation preheating behaviour of a non-inflaton light field well understood through simulations

elarge-sky cosmological surveys such as CHIME need efficient mocks

10 *The Peak Patch method is a great tool for LSS investigation
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