Chern-Simons Gravity: its effects on bodies orbiting the Earth

> Adrienne Erickcek (Caltech) Tristan Smith (Caltech) Robert Caldwell (Dartmouth) Marc Kamionkowski (Caltech)

arXiv: 0708.0001, to appear in PRD

A Brief Outline

- I. Introducing Chern-Simons Gravity What is it and why do we care?
- II. Hunting for Chern-Simons Gravity Where do we look for modifications?
- III. Chern-Simons Gravitomagnetism Gravito-what??
- IV. Constraining Chern-Simons Gravity Do we know anything?

Defining Chern-Simons Gravity

 $\theta = v_{\mu} x^{\mu}$ is an external field

Why Chern-Simons?

- I. A simple way to add parity violation to gravity
 - $R\tilde{R}$ is a pseudoscalar $(R\tilde{R} \rightarrow -R\tilde{R})$
 - use CS gravity to explore and constrain parity-violating gravitational effects

II. Connected to string theory

The effective 4D action for heterotic and type II string theory yields the same field eqns. as CS gravity Campbell, Duncan, Kaloper, Olive 1990, 1991

III. Gives a mechanism for leptogenesis

Alexander, Peskin, Sheikh-Jabbari 2006 Alexander, Gates 2006

The CS Field Equations

We treat θ as a dynamical scalar field

$$S = \int \frac{d^4x \sqrt{-g}}{Volume} \begin{bmatrix} -\frac{1}{16\pi G}R + \frac{\ell}{12}\theta R\tilde{R} - \frac{1}{2}(\partial\theta)^2 - V(\theta) + \mathcal{L}_{mat} \end{bmatrix}$$
Action Volume Standard GR Chern-Simons Scalar Lagrangian

Vary this action with respect to $g_{\mu\nu}$

$$G_{\mu\nu} - \frac{16}{3} \ell \pi G C_{\mu\nu} = -8\pi G T_{\mu\nu},$$

Einstein
Curvature
Curvature

$$Stress-Energy$$

$$C^{\mu\nu} = \frac{1}{2} \left[\left(\partial_{\sigma} \theta \right) \left(\epsilon^{\sigma\mu\alpha\beta} \nabla_{\alpha} R^{\nu}_{\beta} + \epsilon^{\sigma\nu\alpha\beta} \nabla_{\alpha} R^{\mu}_{\beta} \right) + \nabla_{\tau} \left(\partial_{\sigma} \theta \right) \left(\tilde{R}^{\tau\mu\sigma\nu} + \tilde{R}^{\tau\nu\sigma\mu} \right) \right]$$

Derivatives of Ricci tensor Dual of Riemann Tensor

Hunting for CS Gravity

$$\begin{array}{ll} G_{\mu\nu} - \frac{16}{3} \ell \pi G C_{\mu\nu} = -8\pi G T_{\mu\nu}, \\ \text{Einstein} \\ \text{Curvature} \end{array} \quad \begin{array}{ll} \text{Stress-Energy} \end{array}$$

The Cotton tensor vanishes in spherically symmetric spacetimes. Campbell, Duncan, Kaloper, Olive 1991

The Schwarzschild spacetime is still the solution for a non-rotating star. Nearly all Solar System tests of gravity cannot distinguish between CS gravity and General Relativity.

The Friedmann-Robertson-Walker spacetime is still the solution for a homogeneous and isotropic expanding universe. Probes of cosmic evolution cannot distinguish between CS gravity and General Relativity.

Hunting for CS Gravity

We need to break spherical symmetry if we want to differentiate between CS gravity and General Relativity!

- I. Gravitational waves are produced differently
 - Binary systems produce circularly polarized gravitational waves. Jackiw, Pi 2003
 - The gravitational wave background from inflation could also be circularly polarized. Lue, Wang, Kamionkowski 1999 Satoh, Kanno, Soda 2007

II. What about spinning masses in the Solar System?

- Spinning masses source a gravitomagnetic field.
- Current and future satellites probe the Earth's gravitomagnetic field.
- Can we use measurements of the Earth's gravitomagnetic field to constrain CS gravity? YES!

Introducing Gravitomagnetism

Start with a perturbed metric: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

Define the vector potential:
$$A_{\mu} \equiv -\frac{1}{4} \left(h_{0\mu} - \frac{1}{2} \eta_{0\mu} h \right)$$

 $\partial_{\mu} A^{\mu} = 0$ Lorenz gauge density
Define the mass current density: $J_{\mu} \equiv -T_{\mu 0} = (-\stackrel{\downarrow}{\rho}, \stackrel{\downarrow}{J})$

The Einstein and geodesic equations have familiar forms:

$$\begin{split} \Box A_{\mu} &= -4\pi G J_{\mu} & \vec{E} = \vec{\nabla} A_0 - \partial_t \vec{A} \\ \vec{a} &= -\vec{E} - 4\vec{v} \times \vec{B} & \vec{B} = \vec{\nabla} \times \vec{A} \\ &\uparrow & \uparrow & \downarrow \\ acceleration & velocity \end{split}$$

Chern-Simons Gravitomagnetism

Restrict to a homogeneous scalar field $\theta(t)$.

The Cotton tensor does not vanish: $C_{0i}^{\text{linear}} = -\dot{\theta} \ \partial^{\alpha} \partial_{\alpha} B_i$ <u>The New "Maxwell" Equations</u> $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \cdot \vec{E} = 4\pi G(\rho + \rho_{\theta})$

Chern-Simons Gravitomagnetism

Restrict to a homogeneous scalar field $\theta(t)$.

The Cotton tensor does not vanish: $C_{0i}^{\text{linear}} = -\dot{\theta} \ \partial^{\alpha} \partial_{\alpha} B_i$ The New "Maxwell" Equations $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \cdot \vec{E} = 4\pi G(\rho + \rho_{\theta})$ $\vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} - \frac{1}{m_{cs}} \square \vec{B} = 4\pi G \vec{J}$ Standard GR Mass Curre *m_{cs}* Mass Current Density New parityviolating term! m_{cs}

A Spinning Sphere

A homogeneous spinning sphere: $\vec{J} = \rho(\vec{\omega} \times \vec{r})\Theta(R-r)$

Solving the modified Ampère's Law and imposing continuity of the vector potential yields

 $\vec{B} = \vec{B}_{GR} + \vec{B}_{CS}$

• \vec{B}_{CS} is ocsillatory: $B_{CS} \propto y_{1,2}(m_{cs}r)$ • While \vec{B}_{GR} is purely poloidal, \vec{B}_{CS} has poloidal and toroidal components. Toroidal fields violate parity.

Constraints from Orbital Precession

Constraints from Orbital Precession

Constraints from Gyroscopic Precession

TASC: November 1, 2007

Summary

★ In Chern-Simons gravity, a spinning mass produces a parityviolating gravitomagnetic field.

 \star This gravitomagnetic field affects the orbits of satellites and the spin of freely-falling gyroscopes.

★ Using LAGEOS measurements of the precession of the satellites' line of nodes, we are able to constrain a combination of parameters of Chern Simons gravity:

$$\frac{3}{8\pi G\ell\dot{\theta}} \gtrsim 2 \times 10^{-22} \text{ GeV}$$

 \star Gravity Probe B will probably improve this bound by a factor of ten.