The Power of Small Scales to Probe Inflation

Adrienne Erickcek
CITA
Perimeter Institute

CMU Cosmic Acceleration Workshop August 25, 2012

Several inflationary models predict excess small-scale power.

Several inflationary models predict excess small-scale power.

- inflaton interactions: particle production or coupling to gauge fields
 - Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011
- multi-stage and multi-field inflation with bends in inflaton trajectory
 - Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation
 - Stewart 1997; Covi+1999; Covi & Lyth 1999
- hybrid models that use a "waterfall" field to end inflation

Several inflationary models predict excess small-scale power.

- inflaton interactions: particle production or coupling to gauge fields
 - Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011
- multi-stage and multi-field inflation with bends in inflation trajectory
 - Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation
 - Stewart 1997; Covi+1999; Covi & Lyth 1999
- hybrid models that use a "waterfall" field to end inflation

Several inflationary models predict excess small-scale power.

- inflaton interactions: particle production or coupling to gauge fields
 - Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011
- multi-stage and multi-field inflation with bends in inflation trajectory
 - Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation
 - Stewart 1997; Covi+1999; Covi & Lyth 1999
- hybrid models that use a "waterfall" field to end inflation

Several inflationary models predict excess small-scale power.

- inflaton interactions: particle production or coupling to gauge fields
 - Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011
- multi-stage and multi-field inflation with bends in inflaton trajectory
 - Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation
 - Stewart 1997; Covi+1999; Covi & Lyth 1999
- hybrid models that use a "waterfall" field to end inflation

Outline

Part I: What can small scales tell us about reheating? Collaborators: Kris Sigurdson (UBC)

Part II: Probing small scales with astrometric lensing by UCMHs Collaborators: Fangda Li (UT undergrad) & Nicholas Law (DI Fellow)

Part III: Probing small scales with CMB spectral distortions Collaborators: Jens Chluba (CITA) & Ido Ben-Dayan (CITA/PI)

What Happened Before BBN?

The (mostly) successful prediction of the primordial abundances of light elements is one of cosmology's crowning achievements.

- The elements produced during Big Bang Nucleosynthesis are our first window on the Universe.
- They tell us that the Universe was radiation dominated during BBN.

But we have good reasons to think that the Universe was not radiation dominated before BBN!

- Primordial density fluctuations point to inflation.
- During inflation, the Universe was scalar dominated.
- Other scalar fields may dominate the Universe after the inflaton decays.
- The string moduli problem: scalars with gravitational couplings come to dominate the Universe before BBN.

Carlos, Casas, Quevedo, Roulet 1993 Banks, Kaplan, Nelson 1994 Acharya, Kane, Kuflik 2010

Scalar Domination after Inflation

The Universe was once dominated by an oscillating scalar field.

- reheating after inflation
- curvaton domination
- string moduli

Scalar domination ended when the scalar decayed into radiation, reheating the Universe.

- assume perturbative decay; requires small decay rate
- scalar decays can also produce dark matter
- Unknown reheat temperature: $T_{
 m RH}\gtrsim 3~{
 m MeV}^{lchikawa,~Kawasaki,~Takahashi~2005;~2007;}$ de Bernardis, Pagano, Melchiorri~2008

For $V \propto \phi^2$, oscillating scalar field \simeq matter.

- over many oscillations, average pressure is zero.
- density in scalar field evolves as $ho_{\phi} \propto a^{-3}$
- ullet scalar field density perturbations grow as $\delta_\phi \propto a$

Jedamzik, Lemoine, Martin 2010; Easther, Flauger, Gilmore 2010

What happens to these perturbations after reheating?

Microhalos from Reheating

Erickcek & Sigurdson PRD 84, 083503 (2011)

Reheating $T_{\mathrm{RH}} \gtrsim 3~\mathrm{MeV}$

Radiation Domination

Matter Domination

Λ

Perturbative Scalar Decay

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_r + 4H\rho_r = (1 - f)\Gamma_\phi\rho_\phi$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho_{\mathrm{dm}} + 3H\rho_{\mathrm{dm}} = f\Gamma_\phi\rho_\phi$$

The Matter Perturbation

Scalar domination affects the growth of density fluctuations.

Evolution of the Matter Density Perturbation

The Matter Perturbation

The Matter Density Perturbation during Radiation Domination

$$k_{\rm RH} = 35 \ (T_{\rm RH}/3 \,{\rm MeV}) \ {\rm kpc}^{-1}$$

Wavenumber of mode that enters horizon at reheating

RMS Density Fluctuation

- Enhanced perturbation growth affects scales with $R \lesssim k_{\rm RH}^{-1}$
- Define $M_{\rm RH}$ to be dark matter mass within this comoving radius.

$$M_{
m RH} \simeq 32.7 M_{\oplus} \left(rac{10 \, {
m MeV}}{T_{
m RH}}
ight)^3$$

Microhalos at High Redshift

We used the Press-Schechter mass function to calculate the fraction of dark matter contained in halos of mass M.

Microhalos at High Redshift

We used the Press-Schechter mass function to calculate the fraction of dark matter contained in halos of mass M.

Most dark matter is bound into microhalos after z=100!

Fraction bound in halos with $M>0.1\,M_{\bigoplus}$

Z	Std	8.5 MeV
100	10^{-10}	0.49
50	10^{-3}	0.71
25	0.06	0.83

Detection Prospects

The only guaranteed signatures are gravitational.

- Astrometric Microlensing
- Pulsar Timing Residuals
- Photometric Microlensing

ALE & Law 2011; Li, ALE & Law 2012

Baghram, Afshordi, Zurek 2011

Ricotti & Gould 2009

If dark matter self-annihilates...

Part II Ultracompact Minihalos and the Primordial Power Spectrum Li Frielesch & Law PRD 86 043519 (2012)

Li, Erickcek & Law PRD 86 043519 (2012)

Fangda Li U of Toronto 3rd year undergrad

UCMH=Ultra-Compact Mini-Halo

If a region enters the cosmological horizon with an overdensity $\delta \gtrsim 10^{-3}$ the dark matter in this region collapses prior to $z \sim 1000$ and forms an UCMH.

- much lower overdensity than required to form a primordial black hole
- if dark matter self-annihilates, these UCMHs are gamma-ray sources
 Scott & Sivertsson 2009
- the absence of UCMHs constrains the amplitude of the primordial power spectrum on small scales

 Bringmann, Scott, Akrami 2011

UCMH=Ultra-Compact Mini-Halo

If a region enters the cosmological horizon with an overdensity $\delta \gtrsim 10^{-3}$ the dark matter in this region collapses prior to $z\sim 1000$ and forms an UCMH.

- much lower overdensity than required to form a primordial black hole
- if dark matter self-annihilates, these UCMHs are gamma-ray sources

UCMH=Ultra-Compact Mini-Halo

If a region enters the cosmological horizon with an overdensity $\delta \gtrsim 10^{-3}$ the dark matter in this region collapses prior to $z\sim 1000$ and forms an UCMH.

- much lower overdensity than required to form a primordial black hole
- if dark matter self-annihilates, these UCMHs are gamma-ray sources

Astrometric Microlensing by UCMHs

As UCMH passes in front of a star, the star moves!

Trajectory depends on

- initial microhalo mass
- impact parameter
- core radius

4 yrs, monthly obs;

Lens distance: 50 pc; Source Distance: 2 kpc

Probing the Primordial Perturbations

Gaia is an ESO satellite scheduled to launch next year.

 astrometric precision per epoch: ~29 microarcseconds for its brightest targets (~7 million stars)

If Gaia doesn't detect microlensing by UCMHs,

- upper bound on number density of UCMHs
- upper bound on the amplitude of small-scale density fluctuations

Probing the Primordial Perturbations

Gaia is an ESO satellite scheduled to launch next year.

 astrometric precision per epoch: ~29 microarcseconds for its brightest targets (~7 million stars)

If Gaia doesn't detect microlensing by UCMHs,

- upper bound on number density of UCMHs
- upper bound on the amplitude of small-scale density fluctuations

Most conservative case: Fermi gives a stronger bound if DM self-annihilation diminishes lensing signal.

Probing the Primordial Perturbations

Gaia is an ESO satellite scheduled to launch next year.

 astrometric precision per epoch: ~29 microarcseconds for its brightest targets (~7 million stars)

If Gaia doesn't detect microlensing by UCMHs,

- upper bound on number density of UCMHs
- upper bound on the amplitude of small-scale density fluctuations

Most conservative case: Fermi gives a stronger bound if DM self-annihilation diminishes lensing signal.

Part III

Probing the Primordial Power Spectrum with CMB Spectral Distortions

Chluba, Erickcek & Ben-Dayan 1203.2681

COBE FIRAS

Spectral Distortions from Diffusion

Spectral Distortions from Diffusion

Energy stored in perturbations: $\langle \rho_{\gamma} \rangle = \frac{\pi^2}{15} \bar{T}^4 \left[1 + 4 \langle \frac{\delta T}{T} \rangle + 6 \langle \frac{\delta T}{\bar{T}} \rangle^2 \right]$

For diffusion after $z_{\mu} \simeq 2 \times 10^6$, CMB cannot re-thermalize!

Sunyaev & Zeldovich 1970; Hu, Scott, Silk 1994

1/3 of released energy sources spectral distortion. Chluba, Khatri, Sunyaev 2012

Spectral Distortions from Diffusion

Energy released when $k \simeq k_D(z) \simeq 4 \times 10^6 (1+z)^{3/2} \, {
m Mpc}^{-1}$

- Modes with $50\,{
 m Mpc}^{-1} \lesssim k \lesssim 10^4\,{
 m Mpc}^{-1}$ generate μ -distortions
- Modes with $k \lesssim 50\,{\rm Mpc}^{-1}$ dissipate at $z \lesssim 5 \times 10^4$, generating y-distortions Spectral distortions yield an integral constraint on the primordial power spectrum:

$$\mu \approx 2.2 \int_{k_{\min}}^{\infty} \mathcal{P}_{\zeta}(k) \left[\exp\left(-\frac{k \operatorname{Mpc}}{5400}\right) - \exp\left(-\left[\frac{k \operatorname{Mpc}}{31.6}\right]^{2}\right) \right] d \ln k$$

$$y \approx 0.4 \int_{k_{\min}=1 \,\text{Mpc}^{-1}}^{\infty} \mathcal{P}_{\zeta}(k) \exp\left(-\left[\frac{k \,\text{Mpc}}{31.6}\right]^{2}\right) d\ln k$$

COBE FIRAS

$$\mu \lesssim 9 \times 10^{-5}$$
$$y \lesssim 1.5 \times 10^{-5}$$

Fixsen et al. 1996

PIXIE

$$\mu \lesssim 2 \times 10^{-8}$$

$$y \lesssim 4 \times 10^{-9}$$
 Kogut et al. 2011

Constraining Inflation

Comparison to bounds from PBHs and UCMHs

- assume "local scale invariance"
- apply the same minimal assumption when computing bounds from spectral distortions

Constraining Inflation

Comparison to bounds from PBHs and UCMHs

- assume "local scale invariance"
- apply the same minimal assumption when computing bounds from spectral distortions

- match CMB on large scales
- different amplitude for $k \geq k_s$
- constant spectral index

Constraining Inflation

Comparison to bounds from PBHs and UCMHs

- assume "local scale invariance"
- apply the same minimal assumption computing bounds from crtions

We also consider

- particle production during inflation
- bends in the power spectrum
- running mass inflation: PIXIE 2x could rule out all remaining viable parameters

Constrain a step in the primordial power spectrum

- match CMB on large scales
- different amplitude for $k \ge k_s$
- constant spectral index

Summary: Small Scales Probe the EU

Part I:An early "matter" dominated era can produce numerous AE & Sigurdson PRD 84, 083503 (2011)

Part II: Astrometric microlensing by UCMHs: using Gaia, constrain $\mathcal{P}_{\mathcal{R}}(k \simeq 2700\,\mathrm{Mpc^{-1}}) \lesssim 10^{-5}$ Li, AE & Law PRD 86, 043519 (2012) Part III: Constrain $1\,\mathrm{Mpc^{-1}} \lesssim k \lesssim 10^4\,\mathrm{Mpc^{-1}}$ with CMB spectral distortions Chluba, AE & Ben-Dayan arXiv: 1203.2681, to appear in ApJ

