Kicking Chameleons: Early Universe Challenges for Chameleon Gravity

Adrienne Erickcek CITA & Perimeter Institute with Neil Barnaby, Clare Burrage, and Zhiqi Huang PI Cosmology Seminar October 25, 2012

Overview: A Chameleon Catastrophe

Part I: Chameleon Cosmology Crash Course

What is chameleon gravity? What is the chameleon's initial state? What are the "kicks" and why are they important?

Part II: Classically Kicking Chameleons

How do chameleons respond to kicks? How much do the chameleons move? How fast do the chameleons move?

Part III: Quantum Chameleon Kicks

Why do rapid mass changes generate perturbations? What perturbations result from the kicks? Why is the chameleon in trouble? Part I Chameleon Cosmology Crash Course

Chameleon Gravity

Scalar-Tensor Gravity: we must hide the scalar! Chameleon Gravity: scalar's mass depends on environment Khoury & Weltman 2004

Chameleon Gravity: Nuts and Bolts

Chameleon gravity: a screened scalar-tensor theory Khoury & Weltman 2004

$$S = \int d^4x \sqrt{-g_*} \left[\frac{M_{\rm Pl}^2}{2} R_* - \frac{1}{2} (\nabla_* \phi)^2 - V(\phi) \right] + S_m \left[\tilde{g}_{\mu\nu}, \psi_m \right]$$

Einstein frame: standard GR + scalar field (chameleon field)

Matter couples to different metric (Jordan Frame)

$$\tilde{g}_{\mu\nu} = e^{2\beta\phi/M_{\rm Pl}}g^*_{\mu\nu}$$

Chameleon Gravity: Nuts and Bolts

Chameleon gravity: a screened scalar-tensor theory Khoury & Weltman 2004 $\int M_{\rm Pl}^2 = 1$

$$S = \int d^4x \sqrt{-g_*} \left[\frac{M_{\rm Pl}}{2} R_* - \frac{1}{2} (\nabla_* \phi)^2 - V(\phi) \right] + S_m \left[\tilde{g}_{\mu\nu}, \psi_m \right]$$

Einstein frame: standard GR + scalar field (chameleon field)

Matter couples to different metric (Jordan Frame)

$$T^{\mu}{}_{\nu} \equiv \operatorname{diag}\left[-\rho, p, p, p\right]$$
$$T^{\mu}{}_{*\nu} \equiv \operatorname{diag}\left[-\rho_{*}, p_{*}, p_{*}, p_{*}\right]$$
$$T^{\mu}{}_{*\nu} = \left(e^{4\beta\phi/M_{\mathrm{Pl}}}\right)\tilde{T}^{\mu}{}_{\nu}$$

 $\tilde{g}_{\mu\nu} = e^{2\beta\phi/M_{\rm Pl}}g^*_{\mu\nu}$

Assume FRW in both frames: $\tilde{a} = e^{\beta \phi / M_{\rm Pl}} a_*$ $d\tilde{t} = e^{\beta \phi / M_{\rm Pl}} dt_*$ scale factorproper time

Key parameter: the chameleon coupling constant β

Adrienne Erickcek

The Effective Potential

Vary action w.r.t. Einstein metric: $G_{\mu\nu} = 8\pi G \left(T^*_{\mu\nu} + T^{\phi}_{\mu\nu} \right)$ Vary action w.r.t. chameleon field:

 $\left(\tilde{g}_{\mu\nu} = e^{2\beta\phi/M_{\rm Pl}}g^*_{\mu\nu}\right)$ $\ddot{\phi} + 3H_*\dot{\phi} = -\left[\frac{dV}{d\phi} + \frac{\beta}{M_{\rm Pl}}(\rho_* - 3p_*)\right]$ derivative of effective potential Thin shell mechanism: Khoury & Weltman 2004 $\frac{\phi_{\min}^{\text{ext}} - \phi_{\min}^{\text{int}}}{M_{\text{Pl}}} \lesssim \beta \frac{\overline{GM_s}}{R_s}$ Inside an massive body, $\phi \simeq \phi_{\min}^{
m int}$ and the scalar force outside the massive body is suppressed because

$$m_{\rm int} = \sqrt{V_{\rm eff}''(\phi_{\rm min}^{\rm int})} \gg R_s$$

Adrienne Erickcek

Fiducial Chameleon Potential: $V(\phi) = M^4 \exp\left[\left(\frac{M}{\phi}\right)^n\right] \stackrel{\phi \gg M}{\simeq} M^4 \left[1 + \left(\frac{M}{\phi}\right)^n\right]$ Evade Solar System gravity tests and provide dark energy:

 $M \simeq 0.001 \, \text{eV} \simeq (\rho_{\text{de}})^{1/4}$

Adrienne Erickcek

PI Cosmology: October 25, 2012

Chameleon Initial Conditions

 $\begin{array}{ll} \mbox{During inflation: } \rho - 3p \simeq 4\rho_{\rm infl} \mbox{ pins chameleon } \phi \ll M & \mbox{Brax et al. 2004} \\ \mbox{After reheating: } \rho - 3p \simeq 0 \mbox{ the chameleon quickly slides down its} \\ \mbox{bare potential and rolls to } \phi \gg \phi_{\rm min} \\ \ddot{\phi} + 3H_*\dot{\phi} = -\frac{\beta}{M_{\rm Pl}}(\rho_* - 3p_*) \implies \Delta\phi \simeq \frac{\dot{\phi}_i}{H_i} = M_{\rm Pl}\sqrt{6\Omega_{\dot{\phi},i}} \\ \mbox{Chameleon rolls out to } \phi_{\rm min} \ll \phi \lesssim M_{\rm Pl} \end{array}$

Hubble friction prevents the chameleon from rolling back to ϕ_{\min}

Chameleon Initial Conditions

During inflation: $ho - 3p \simeq 4
ho_{
m infl}$ pins chameleon $\phi \ll M$ Brax et al. 2004 After reheating: $ho - 3p \simeq 0$ the chameleon quickly slides down its bare potential and rolls to $\phi \gg \phi_{\min}$ For $\phi \gg \overline{\phi}_{\min}$ $\ddot{\phi} + 3H_*\dot{\phi} = -\frac{\beta}{M_{\rm Pl}}(\rho_* - 3p_*) \implies \Delta\phi \simeq \frac{\phi_i}{H_i} = M_{\rm Pl}\sqrt{6\Omega_{\dot{\phi},i}}$ Chameleon rolls out to $\phi_{\min} \ll \phi \lesssim M_{\rm Pl}$ Hubble friction prevents the chameleon from rolling back to ϕ_{\min} We have a problem! (Potential) Free-falling chameleon ϕ cannot vary much between now and BBN: Stuck chameleon! $\frac{\beta}{M_{\rm Pl}}\Delta\phi \simeq \left|\frac{\Delta m_p}{m_p}\right| \lesssim 0.1$ ϕ_{\min} $V(\phi)$ $\phi_{\rm BBN} \lesssim 0.1 \frac{M_{\rm Pl}}{\beta}$ (Chameleon) Φ

Unsticking the Chameleon

Kicks from the Standard Model

- Every particle in the Standard Model (and beyond) kicks the chameleon.
- there are 4 distinct "combo-kicks" with increasing amplitude
- there is a kick during BBN between n,p freeze-out and helium production • kicks dominate over dark matter: $\rho_{*R}\Sigma \gg \rho_{*M}$ for $T_J \gtrsim 0.024 \,\mathrm{MeV}$
- Ouring the kicks, $\phi_{
 m min} \lesssim M$

Adrienne Erickcek

The Old Story

The kicks save the chameleon: $\Delta \phi \simeq -\beta M_{\rm Pl}$ prior to BBN. Brax et al. 2004 • treat kicks individually and assume that $|\beta \Delta \phi| \ll M_{\rm Pl} \Leftrightarrow \beta^2 \ll 1$ • BBN requirement ($\phi_{\rm BBN} \lesssim (0.1/\beta) M_{\rm Pl}$) is satisfied for

 $\phi_i \lesssim \left(\beta + \frac{0.1}{\beta}\right) M_{\rm Pl}$

For a wide range of initial conditions, the chameleon reaches the minimum of its effective potential and happily lives there for the rest of its days.

No happily ever after!

The standard chameleon story misses several important features:

- I. Ignoring the feedback of $\Delta\phi$ on T_J severely underestimates chameleon motion for $\beta\gtrsim 1.8$.
- 2. Nearly all chameleons reach ϕ_{\min} with a large velocity and climb up their bare potentials.
- 3. The classical picture is incomplete because the rebound is violent enough to excite quantum perturbations.

Part II: Classical Kicks What is the chameleon's velocity when it reaches ϕ_{\min} ?

Part III: Quantum Kicks What happens to the chameleon when it rebounds?

Adrienne Erickcek

Part II Classically Kicking Chameleons

The Equation of Motion Revisited

$$\ddot{\phi} + 3H_*\dot{\phi} = -\left[\frac{dV}{d\phi} + \frac{\beta}{M_{\rm Pl}}\rho_{*R}\left(\Sigma + \frac{\rho_{*M}}{\rho_{*R}}\right)\right]$$
• change variables: $p = \ln(a_*)$ $\varphi \equiv \phi/M_{\rm Pl}$ $\varphi'(p) = \sqrt{6\Omega_{\dot{\phi}}}$
• assume $\phi \gg \phi_{\rm min}$ and neglect the bare potential
• recall that $(\rho_{*M}/\rho_{*R}) \ll \Sigma \lesssim 0.1$ and keep only first order in Σ
• use Friedmann eqn. in Einstein frame
 $\varphi'' + \varphi' \left[1 - \frac{(\varphi')^2}{2}\right] = -3\beta \left[1 - \frac{(\varphi')^2}{2}\right] \Sigma(T_I)$

Jordan-frame temperature: $g_{*S}(T_J)\tilde{a}^3T_J^3 = \text{constant}$

6

$$T_J \left[\frac{g_{*S}(T_J)}{g_{*S}(T_{J,i})} \right]^{1/3} = T_{J,i} \frac{\tilde{a}_i}{\tilde{a}} = \frac{T_{J,i}}{a_*} e^{\beta(\varphi_i - \varphi)}$$

 $\mathbf{0}$

compute and invert numerically

Adrienne Erickcek

old story: $e^{-\beta\Delta\varphi}\simeq 1$

The Surfing Solution

Keeping the full expression for T_J reveals a new solution!

$\varphi = \frac{-p + \lambda}{\beta} \quad \Rightarrow T_J \left[\frac{g_{*S}(T_J)}{g_{*S}(T_{J,i})} \right]^{1/3} = T_{J,i} e^{\beta(\varphi_i - \varphi) - p} = T_{J,i} e^{\beta\lambda}$

The temperature is constant in the Jordan frame!

The Surfing Solution

Keeping the full expression for T_J reveals a new solution!
$$\begin{split} \varphi &= \frac{-p + \lambda}{\beta} \Rightarrow T_J \left[\frac{g_{*S}(T_J)}{g_{*S}(T_{J,i})} \right]^{1/3} = T_{J,i} e^{\beta(\varphi_i - \varphi) - p} = T_{J,i} e^{\beta\lambda} \\ p &= \ln(a_*) \end{split}$$
The temperature is constant in the Jordan frame!
$$\begin{split} \varphi'(p) &= -\frac{1}{\beta} \text{ solves } \varphi'' + \varphi' \left[1 - \frac{(\varphi')^2}{6} \right] = -3\beta \left[1 - \frac{(\varphi')^2}{6} \right] \Sigma \\ provided that \beta &= \sqrt{\frac{1}{3\Sigma(T_J)}} \text{ for some value of } T_J. \end{split}$$

The Surfing Solution

Keeping the full expression for T_J reveals a new solution! $\varphi = \frac{-p + \lambda}{\beta} \Rightarrow T_J \left[\frac{g_{*S}(T_J)}{g_{*S}(T_{J,i})} \right]^{1/3} = T_{J,i} e^{\beta(\varphi_i - \varphi) - p} = T_{J,i} e^{\beta\lambda}$ The temperature is constant in the Jordan frame! $\varphi'(p) = -\frac{1}{\beta} \text{ solves } \varphi'' + \varphi' \left[1 - \frac{(\varphi')^2}{6} \right] = -3\beta \left[1 - \frac{(\varphi')^2}{6} \right] \Sigma$ provided that $\beta = \sqrt{\frac{1}{3\Sigma(T_J)}}$ for some value of T_J . 0.1 $\beta > 1.82 \qquad \beta > 1.99 \qquad \beta > 2.74 \qquad \beta > 3.04$ $\frac{0.1}{0.08}$ The surfing solution only exists if - d)≡ 0.04 $\beta \ge \sqrt{\frac{1}{3\Sigma}}$ 0.02 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 0.1 10 10² 10³ 10^{4} Temperature (GeV)

Adrienne Erickcek

Surfing Chameleons

 $\begin{array}{l} \textbf{Chameleons that can surf, do surf!}\\ \bullet \text{valid for any } \phi_i \gg \phi_{\min} \text{ and } \Omega_{\dot{\phi}} \lesssim 0.5\\ \bullet \text{ solution holds until } \phi \simeq \phi_{\min} \lesssim M \end{array}$

Adrienne Erickcek

Surfing Velocity

Adrienne Erickcek

PI Cosmology: October 25, 2012

What if the chameleon can't surf?

Return to chameleon equation of motion for $\phi \gg \phi_{\min}$:

$$\frac{1}{a^3} \frac{d}{dt} \left(a_*^3 \dot{\phi} \right) = -\frac{\beta}{M_{\rm Pl}} \rho_{*R} \Sigma(T_J)$$

Integrate twice: $\frac{\Delta \phi}{M_{\rm Pl}} = -3\beta \int_1^{e^p} \frac{dx}{x^2} \int_1^x \Sigma(T_J[\phi(a_*, a_*]) da_*)$
But we can't use that because T_J depends on chameleon's motion:
 $T_J \left[\frac{g_{*S}(T_J)}{g_{*S}(T_{J,i})} \right]^{1/3} = \frac{T_{J,i}}{a_*} e^{\beta(\phi_i - \phi)/M_{\rm Pl}}$
 0.4

Adrienne Erickcek

PI Cosmology: October 25, 2012

What if the chameleon can't surf?

Return to chameleon equation of motion for $\phi \gg \phi_{\min}$:

 $\frac{1}{a^3} \frac{d}{dt} \left(a_*^3 \dot{\phi} \right) = -\frac{\beta}{M_{\rm Pl}} \rho_{*R} \Sigma(T_J)$ Integrate twice: $\frac{\Delta\phi}{M_{\rm Pl}} = -3\beta \int_{1}^{e^p} \frac{dx}{x^2} \int_{1}^{x} \Sigma(T_J[\phi(a_*, a_*])da_*)$ But we can't use that because T_J depends on chameleon's motion: $T_J \left[\frac{g_{*S}(T_J)}{g_{*S}(T_{I_i})} \right]^{1/3} = \frac{T_{J,i}}{a_*} e^{\beta(\phi_i - \phi)/M_{\rm Pl}}$ $|\mathbf{f}\,\beta|\Delta\phi|\ll M_{\rm Pl},$ 0.4 $\Delta \phi \simeq -1.58 \beta M_{\rm Pl}$ 0.3 $\Delta \phi = -0.32 M_{\rm Pl}$ 0.2 \bullet works well for eta < 0.70.1 •underestimates $\Delta \phi$ for larger eta0 5 25 10 15 20 ()

Adrienne Erickcek

PI Cosmology: October 25, 2012

 $ln(a_{*})$

What if the chameleon can't surf?

For larger β values: • motion of ϕ affects T_J • slows Jordan-frame cooling • extends duration of kicks • $|\Delta \phi| > 1.58\beta M_{\rm Pl}$ • the surfer is the limit

Impact is difficult to avoid!

The kicks move the chameleon toward the minimum of its effective potential, but does the chameleon always reach it? • first 3 combo kicks give $\Delta\phi\gtrsim-eta M_{
m Pl}$ prior to BBN • last kick gives $\Delta\phi\gtrsim-0.56eta M_{
m Pl}\,$ during BBN • to avoid messing with BBN, $\phi_{\rm BBN} \lesssim (0.1/\beta) M_{\rm Pl}$ • for $\beta > 0.42, \, \phi_{
m BBN} \leq 0.56 M_{
m Pl}$: the last kick takes $\phi < \phi_{
m min}$ • for smaller β values, avoiding impact requires $(\Delta + 0.56)\beta < \frac{\phi_i}{M_{\rm Pl}} < \Delta + \frac{0.1}{\beta}$

with $\Delta \simeq 1$ for the standard model. Only weakly coupled ($\beta < 0.42$) chameleons can avoid impact, and the initial condition must be finely tuned based on the entire particle content of the Universe! PI Cosmology: October 25, 2012

Adrienne Erickcek

Fast-Moving Chameleons

Now that $\phi \simeq \phi_{\min}$, we need to consider the chameleon potential: $V(\phi) = M^4 \exp\left[\left(\frac{M}{\phi}\right)^2\right]$ with $M = 0.001 \,\mathrm{eV}$

During the kicks, $0.13M \lesssim \phi_{\min} \lesssim 0.62M$, but the chameleon doesn't stop there - it's moving too fast! The chameleon rolls up its potential until $V(\phi_b) = \dot{\phi}^2/2$

$$0.085M \lesssim \left(\phi_b = M \left[\ln \left(\frac{\dot{\phi}^2}{2M^4}\right) \right]^{-1/2} \right) \lesssim 0.11M$$

Now that $\phi \simeq \phi_{\min}$, we need to consider the chameleon potential: $V(\phi) = M^4 \exp\left[\left(\frac{M}{\phi}\right)^2\right]$ with $M = 0.001 \,\mathrm{eV}$

During the kicks, $0.13M \lesssim \phi_{\min} \lesssim 0.62M$, but the chameleon doesn't stop there - it's moving too fast! The chameleon rolls up its potential until $V(\phi_b) = \dot{\phi}^2/2$

 $\begin{array}{l} 0.085M \lesssim \left(\phi_b = M \left[\ln \left(\frac{\dot{\phi}^2}{2M^4} \right) \right]^{-1/2} \right) \lesssim 0.11M \\ \text{We are interested in } \Delta \phi \lesssim M \ \& \ \Delta t \lesssim M/\dot{\phi} \\ \text{\bullet short time scale: } H_* \Delta t \lesssim M/\phi'(p) \lesssim \beta M/M_{\mathrm{Pl}} \\ \text{\bullet Hubble friction + kicks: } \Delta \dot{\phi} \simeq (M/M_{\mathrm{Pl}})\dot{\phi} \\ \text{\bullet bare potential dominates } V_{\mathrm{eff}}''(\phi) \ \& V_{\mathrm{eff}}'''(\phi) \end{array}$

Now that $\phi \simeq \phi_{\min}$, we need to consider the chameleon potential: $V(\phi) = M^4 \exp\left[\left(\frac{M}{\phi}\right)^2\right]$ with $M = 0.001 \,\mathrm{eV}$ $\sim 0.62M$, but the chameleon During the kicks, **D** doesn't stop • fast! The chame Classically, the impact until $V(\phi_b) = \phi^2/2$ is a reflection! 10 $0.085M\lesssim$ $\lesssim 0.11 M$ ϕ_b 8 (Potential) We are interested in $\Delta\phi \lesssim M$ & $\Delta t \lesssim M/\phi$ 6 • short time scale: $H_*\Delta t \lesssim M/\phi'(p) \lesssim \beta M/M_{\rm Pl}$ $rac{V(\phi)}{M^4}$ 2 • Hubble friction + kicks: $\Delta \phi \simeq (M/M_{\rm Pl})\phi$ • bare potential dominates $V_{
m eff}''(\phi)$ & $V_{
m eff}'''(\phi)$ 0 (Chameleon)

Now that $\phi \simeq \phi_{\min}$, we need to consider the chameleon potential: $V(\phi) = M^4 \exp\left[\left(\frac{M}{\phi}\right)^2\right]$ with $M = 0.001 \,\mathrm{eV}$ $\sim 1000 \text{ min} \lesssim 0.62M$, but the chameleon During the kicks, **D** doesn't stop o fast! The chame Classically, the impact until $V(\phi_b) = \dot{\phi}^2/2$ is a reflection! 2×10^{17} $\dot{\phi} = 100 \,\mathrm{GeV}^2$ $0.085M\lesssim$ $\lesssim 0.11M$ ϕ_b We are interested in $\Delta \phi \lesssim M$ & $\Delta t \lesssim M/\dot{\phi}$ • short time scale: $H_*\Delta t \lesssim M/\phi'(p) \lesssim \beta M/M_{\rm Pl}$ • Hubble friction + kicks: $\Delta \dot{\phi} \simeq (M/M_{\rm Pl})\dot{\phi}$ • bare potential dominates $V_{
m eff}''(\phi)$ & $V_{
m eff}'''(\phi)$ ()-0.003 0.003 ()t [10⁻¹⁴ GeV⁻¹]

Part III Quantum Chameleon Kicks

Adrienne Erickcek

PI Cosmology: October 25, 2012

 $\phi = 100 \,\mathrm{GeV}^2$

0.003

Adrienne Erickcek

Adrienne Erickcek

Let's treat the spike in $V''(\phi)$ as a δ - function:

$$\ddot{\phi}_k + \left[k^2 + \Lambda\delta(t - t_*)\right]\phi_k = 0$$

If we start with no perturbations, then

$$\beta_k(t > t_*) = i \frac{\Lambda}{2k} e^{-2ikt_*} \frac{\Lambda^2}{\Lambda^2}$$

After the bounce: $n_k = \frac{\pi}{4k^2}$ $E_k = \frac{\pi^2}{8\pi^2}k^2$

Wait, perturbations are excited at infinitely high wavenumbers?

No, modes with $k \gg 1/\Delta t$ are not excited:

$$\frac{|\dot{\omega}_k|}{\omega_k^2} \ll 1 \text{ for } k \gg \frac{1}{\Delta t}$$

Let's treat the spike in $V''(\phi)$ as a δ - function:

$$\ddot{\phi}_k + \left[k^2 + \Lambda\delta(t - t_*)\right]\phi_k = 0$$

If we start with no perturbations, then

$$\beta_k(t > t_*) = i \frac{\Lambda}{2k} e^{-2ikt_*}$$
After the bounce: $n_k = \frac{\Lambda^2}{4k^2}$ $E_k = \frac{\Lambda^2}{8\pi^2}$

Wait, perturbations are excited at infinitely high wavenumbers?

No, modes with $k \gg 1/\Delta t$ are not excited: $\frac{|\dot{\omega}_k|}{\omega_k^2} \ll 1$ for $k \gg \frac{1}{\Delta t}$ Estimate Δt : $\frac{|\Delta V''(\phi)|}{V''(\phi_b)} \simeq 1 \iff \bar{\phi}(t) - \phi_b \simeq \left|\frac{V''(\phi_b)}{V'''(\phi_b)}\right|$ $\bar{\phi}(t) - \phi_b \simeq -\frac{1}{2}V'(\phi_b)t^2$ $\Delta t = 2\sqrt{\frac{2V''(\phi_b)}{V'(\phi_b)V'''(\phi_b)}}$

Adrienne Erickcek

How much energy in perturbations?

How much energy in perturbations? WAY TOO MUCH!!

$$\frac{E_{k,\text{peak}}}{E_i} = \frac{1}{16\pi^2} \left(\frac{\dot{\phi}_i}{M^2}\right)^2 \ln^6 \left[\frac{\dot{\phi}_i^2}{2M^4}\right]$$

Adding in Backreaction

Since the energy in perturbations is significant, we must revisit the chameleon equation of motion: $(\partial_t^2 - \nabla^2)\phi + V'(\phi) = 0$ $\phi(t, \vec{x}) = \bar{\phi}(t) + \delta\phi(t, \vec{x})$ split field into background and perturbation $(\partial_t^2 - \nabla^2)(\bar{\phi} + \delta\phi) + V'(\bar{\phi}) + \sum_{n=1}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi})\delta\phi^n = 0$ Take spatial average: $\bar{\phi} + V'(\bar{\phi}) + \frac{1}{2} V'''(\bar{\phi})\langle\delta\phi^2\rangle + \sum_{n=4}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi})\langle\delta\phi^n\rangle = 0$

Adding in Backreaction

Since the energy in perturbations is significant, we must revisit the chameleon equation of motion: $(\partial_t^2 - \nabla^2)\phi + V'(\phi) = 0$ $\phi(t, \vec{x}) = \phi(t) + \delta \phi(t, \vec{x})$ split field into background and perturbation $(\partial_t^2 - \nabla^2)(\bar{\phi} + \delta\phi) + V'(\bar{\phi}) + \sum \frac{1}{n!} V^{(n+1)}(\bar{\phi})\delta\phi^n = 0$ Take spatial average: drop higher order backreaction $\ddot{\phi} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle + \sum_{n}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi})\langle\delta\phi^n\rangle = 0$ Linear perturbations with first-order backreaction: $\ddot{\bar{\phi}} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle = 0$ background equation with backreaction $\ddot{\phi}_k + \left[k^2 + V''(\bar{\phi})\right]\phi_k = 0$ linearized perturbation equations $\langle \delta \phi^2 \rangle = \int \frac{d^3 k}{(2\pi)^3} \left(|\phi_k|^2 - \frac{1}{2\omega_k} \right) \quad \omega_k^2 \equiv k^2 + V''(\bar{\phi})$

Adrienne Erickcek

Adding in Backreaction

Since the energy in perturbations is significant, we must revisit the chameleon equation of motion: $(\partial_t^2 - \nabla^2)\phi + V'(\phi) = 0$

$$\begin{split} \phi(t,\vec{x}) &= \phi(t) & \text{teround and perturbation} \\ (\partial_t^2 - \nabla^2) & \text{This system conserves energy:} \\ (\bar{\partial}_t^2 - \nabla^2) & \frac{d}{dt} \langle E_{\text{pert}} \rangle = -\frac{d}{dt} \begin{bmatrix} \frac{1}{2} \dot{\phi}^2 + V(\bar{\phi}) \end{bmatrix} & \bar{\phi} \rangle \delta \phi^n = 0 \\ \frac{d}{dt} \langle E_{\text{pert}} \rangle &= -\frac{d}{dt} \begin{bmatrix} \frac{1}{2} \dot{\phi}^2 + V(\bar{\phi}) \end{bmatrix} & \text{higher order backreaction} \\ (\bar{\phi}) \langle \delta \phi^n \rangle = 0 \end{split}$$

Linear perturbations with first-order backreaction: $\ddot{\phi} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle = 0 \qquad \text{background equation with backreaction}$ $\ddot{\phi}_k + \left[k^2 + V''(\bar{\phi})\right]\phi_k = 0 \qquad \text{linearized perturbation equations}$ $\langle\delta\phi^2\rangle = \int \frac{d^3k}{(2\pi)^3} \left(|\phi_k|^2 - \frac{1}{2\omega_k}\right) \quad \omega_k^2 \equiv k^2 + V''(\bar{\phi})$

Adrienne Erickcek

Hello Computer

$$\begin{split} & \ddot{\phi} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle = 0 & \text{background equation with backreaction} \\ & \ddot{\phi}_k + \left[k^2 + V''(\bar{\phi})\right]\phi_k = 0 & \text{linearized perturbation equations} \\ & \langle\delta\phi^2\rangle = \int \frac{d^3k}{(2\pi)^3} \left(|\phi_k|^2 - \frac{1}{2\omega_k}\right) & \omega_k^2 \equiv k^2 + V''(\bar{\phi}) \end{split}$$

- This is a closed system, so we can solve it numerically. • initial conditions: $\phi = 2M$, $\dot{\phi} = \dot{\phi}_i$, $n_k = 0 \forall k$
- solve for a number of k values with $k_{\text{IR}} \leq k \leq k_{\text{max}}$
- choose $k_{
 m max} \gg k_{
 m peak}$ -- these modes aren't excited

•results depend on $k_{\rm IR}$: the longest wavelength perturbation that is treated linearly. Neglecting its interactions with other modes introduces errors, so chose $k_{\rm IR} \lesssim 0.1 k_{\rm peak}$

Adrienne Erickcek

Numerical Results

The numerical results confirm our expectations.

The chameleon bounces off its bare potential.

Perturbations are generated during the bounce, taking energy away from the background evolution.

• The perturbation energy spectrum is peaked; most of the energy is in modes with $k_{\text{peak}} \simeq (\Delta t)^{-1}$.

The occupation numbers remain small ($n_k \ll 1$).

PI Cosmology: October 25, 2012

Numerical Surprises

More Numerical Surprises

The numerical results confirm our expectations... except when they don't!

- At the bounce, all of the chameleon's energy is in perturbations.
- Shortly after the bounce, the perturbations return some of this energy to the background evolution.
- The amount of energy returned depends on the minimum wavenumber.

Adrienne Erickcek

Studying the backreaction of the perturbations on the chameleon background provides insight into these numerical surprises.

$$\begin{split} \ddot{\bar{\phi}} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle &= 0 \quad \text{background equation with backreaction} \\ \langle\delta\phi^2\rangle &= \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_k} \left(|\beta_k|^2 + \operatorname{Re}\left[\alpha_k \beta_k^* e^{-2i\int^t \omega_k(t')dt'}\right] \right) \quad \begin{array}{l} \text{Bogoliubov} \\ \text{expansion} \end{split}$$

Studying the backreaction of the perturbations on the chameleon background provides insight into these numerical surprises.

 $\ddot{\phi} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle = 0 \quad \text{background equation with backreaction} \\ \overset{\text{negligible}}{\langle\delta\phi^2\rangle} = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_k} \left(|\beta_k|^2 + \operatorname{Re}\left[\alpha_k \beta_k^* e^{-2i\int^t \omega_k(t')dt'}\right] \right) \quad \begin{array}{l} \text{Bogoliubov} \\ \text{expansion} \end{array} \\ \text{We know that the occupation numbers are small:} |\beta_k|^2 \ll 1 \& \alpha_k \simeq 1 \\ \dot{\omega}_k = 2i\int^t \omega_k(t')dt' = 2i\int^t \dot{\omega}_k(t') = 2i\int^{t'} \omega_k(t')dt'' = 1 \end{array}$

$$\dot{\beta}_{k} = \frac{\omega_{k}}{2\omega_{k}} e^{-2i\int^{t} \omega_{k}(t')dt'} \alpha_{k} \Longrightarrow \beta_{k}(t) = \int_{0}^{t} \frac{\omega_{k}(t')}{2\omega_{k}(t')} e^{-2i\int^{t} \omega_{k}(t'')dt''} dt' dt'$$
"perturbative" particle production

Studying the backreaction of the perturbations on the chameleon background provides insight into these numerical surprises.

 $\ddot{\phi} + V'(\bar{\phi}) + \frac{1}{2}V'''(\bar{\phi})\langle\delta\phi^2\rangle = 0 \quad \text{background equation with backreaction} \\ \langle\delta\phi^2\rangle = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_k} \left(|\beta_k|^{2} + \operatorname{Re}\left[\alpha_k \beta_k^* e^{-2i\int^t \omega_k(t')dt'}\right] \right) \quad \begin{array}{l} \text{Bogoliubov} \\ \text{expansion} \end{array}$

We know that the occupation numbers are small: $|eta_k|^2 \ll 1$ & $lpha_k \simeq 1$

$$\dot{\beta}_{k} = \frac{\dot{\omega}_{k}}{2\omega_{k}} e^{-2i\int^{t}\omega_{k}(t')dt'}\alpha_{k} \Longrightarrow \beta_{k}(t) = \int_{0}^{t} \frac{\dot{\omega}_{k}(t')}{2\omega_{k}(t')} e^{-2i\int^{t'}\omega_{k}(t'')dt''}dt$$
"perturbative" particle production $\dot{\omega}_{k} = \frac{V''\dot{\phi}}{2\omega_{k}(t')}$

$$\langle \delta \phi^2 \rangle(t) = \int_0^t \int \underbrace{\frac{d^3k}{(2\pi)^3} \frac{V'''[\bar{\phi}(t')]\dot{\bar{\phi}}(t')}{2\omega_k(t)\omega_k^2(t')} \cos\left[2\int_{t'}^t \omega_k(t'')dt''\right] dt'}_{\text{recall that we impose IR cut-off}}$$

This is the same nonlocal "dissipative" correction derived using in-in formalism by Boyanovsky, de Vega, Holman, Lee & Singh (1994).

Adrienne Erickcek

 $2\omega_k$

We now have a new equation of motion for the spatially averaged chameleon field: $\ddot{\phi} + V'(\bar{\phi}) + D(t) = 0$ $\ddot{\phi} + V'(\bar{\phi}) - \frac{V'''[\bar{\phi}(t)]}{16\pi^2} \int_{Q}^{t} V'''[\bar{\phi}(t')]\dot{\phi}(t') \operatorname{Ci}\left[2k_{\mathrm{IR}}(t-t')\right] dt' = 0$ $t_{\min} \simeq t_b - M/\dot{\phi} \quad \operatorname{Ci}(x) \equiv -\int_x^{\infty} \frac{\cos y}{y} dy \simeq \gamma_E + \ln(x) \text{ for } x \ll 1$

• the "dissipation" term D(t) is nonlocal; it has memory

- D(t) is strongly peaked near the bounce
- before the bounce, $k_{\rm IR}(t-t') \ll 1$ and D(t) acts like a friction term; it has the same sign as ϕ and it slows the chameleon down.
- but unlike friction, D(t) does not decrease as the chameleon slows down. D(t) is more like a potential, and it can turn the chameleon around!
- for a time after the bounce, D(t) is negative even though $\overline{\phi} > 0$; like a potential, D(t) returns **some** energy to the rebounding chameleon.

A new potential from perturbations

With some manipulation, we can see that the perturbation backreaction acts like a new potential as $\phi \rightarrow \phi_{\min}$. $\bar{\phi} + V'(\bar{\phi}) + D(t) = 0$ $D(t) = -\frac{V'''[\bar{\phi}(t)]}{16\pi^2} \int_{t_{\min}}^t \left[\frac{d}{dt'} V''[\bar{\phi}(t')] \right] \{\gamma_E + \ln\left[2k_{\mathrm{IR}}(t-t') \ll 1\right] \} dt'$ Integrate by parts, and approx. $\int_{t}^{t} \frac{V'' \left[\phi(t')\right]}{t - t'} dt' \simeq V'' \left[\overline{\phi}(t)\right] \int_{t}^{t} \frac{dt'}{t - t'}$ $D(t) \simeq -\frac{V''[\bar{\phi}(t)]}{16\pi^2} \left\{ V''\left[\bar{\phi}(t)\right] - V''\left[\bar{\phi}(t_{\min})\right] \right\} \left\{ \gamma_E + \ln\left[2k_{\mathrm{IR}}(t-t_{\min})\right] \right\}$ $D(t) \equiv V'_D(\bar{\phi}) = \kappa V'''(\bar{\phi})V''(\bar{\phi})$ $0.02 \lesssim \kappa \lesssim 0.05$ $V_D(\phi) = \frac{\kappa}{2} \left[V''(\bar{\phi}) \right]^2$ calibrate using numerical results For $\phi \leq M, V_D(\phi)$ dominates over the chameleon's bare potential! Adrienne Erickcek

New Models for a New Potential

 $V_D(\phi) = \frac{\kappa}{2} \left[V''(\bar{\phi}) \right]^2$ controls the chameleon's motion. Predict when the chameleon bounces: $V_D(\phi_b) = \dot{\phi}_i^2/2$

Adrienne Erickcek

New Models for a New Potential

Adrienne Erickcek

High-Energy Chameleons

Summary: A Chameleon Catastrophe AE, Barnaby, Burrage, Huang in prep.

What happens when you kick a chameleon?

It hits its bare potential at a fatal velocity, and then it shatters into pieces!

- The chameleon's interaction with standard model particles hurtles it toward the minimum of its effective potential.
- Chameleons with $\beta > 1.8$ surf toward ϕ_{\min}
- ullet $\beta < 0.42$ and a finely tuned ϕ_i is needed to avoid impact
- At impact, $\dot{\phi} \gtrsim {
 m GeV}^2$ and $\Omega_{\dot{\phi}} \lesssim 1/(6\beta^2)$
- Because $\dot{\phi} \gg M^2$, the rebound is highly nonadiabatic, and perturbations are excited.
- Most (maybe all?) the chameleon's energy goes into perturbations.
- The perturbations have wavenumbers $k \gtrsim 10^{13} \, {
 m GeV}$
- The perturbations interact with themselves and with matter: the final state is unknown.
- Chameleons demonstrate how the presence of an extreme hierarchy of scales can challenge a theory's stability. Are there other examples? PI Cosmology: October 25, 2012 Adrienne Erickcek

