Kicking Chameleons:

Early Universe Challenges for Chameleon Gravity

Adrienne Erickcek
CITA \& Perimeter Institute
with Neil Barnaby, Clare Burrage, and Zhiqi Huang
PI Cosmology Seminar
October 25, 20 I2

Overview: A Chameleon Catastrophe

Part I: Chameleon Cosmology Crash Course

What is chameleon gravity?
What is the chameleon's initial state?
What are the "kicks" and why are they important?

Part II: Classically Kicking Chameleons

How do chameleons respond to kicks?
How much do the chameleons move?
How fast do the chameleons move?

Part III: Quantum Chameleon Kicks

Why do rapid mass changes generate perturbations?
What perturbations result from the kicks?
Why is the chameleon in trouble?

Part I
 Chameleon Cosmology Crash Course

Chameleon Gravity

Scalar-Tensor Gravity: we must hide the scalar!
Chameleon Gravity: scalar's mass depends on environment Khoury \& Weltman 2004

Chameleon Gravity: Nuts and Bolts

Chameleon gravity: a screened scalar-tensor theory Khoury \& Wetman 2004

$$
S=\int d^{4} x \sqrt{-g_{*}}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R_{*}-\frac{1}{2}\left(\nabla_{*} \phi\right)^{2}-V(\phi)\right]+S_{m}\left[\tilde{g}_{\mu \nu}, \psi_{m}\right]
$$

Einstein frame: standard GR + scalar field (chameleon field)
Matter couples to different metric (Jordan Frame)

$$
\tilde{g}_{\mu \nu}=e^{2 \beta \phi / M_{\mathrm{Pl}}} g_{\mu \nu}^{*}
$$

Chameleon Gravity: Nuts and Bolts

Chameleon gravity: a screened scalar-tensor theory Khoury \& Wetmon 2004 $S=\int d^{4} x \sqrt{-g_{*}}\left[\frac{M_{\mathrm{Pl}}^{2}}{2} R_{*}-\frac{1}{2}\left(\nabla_{*} \phi\right)^{2}-V(\phi)\right]+S_{m}\left[\tilde{g}_{\mu \nu}, \psi_{m}\right]$

Einstein frame: standard GR + scalar field (chameleon field)
Matter couples to different metric (Jordan Frame)

Densities in both frames:
$\tilde{T}^{\mu}{ }_{\nu} \equiv \operatorname{diag}[-\tilde{\rho}, \tilde{p}, \tilde{p}, \tilde{p}]$
$T_{* \nu}^{\mu} \equiv \operatorname{diag}\left[-\rho_{*}, p_{*}, p_{*}, p_{*}\right]$
$T_{* \nu}^{\mu}=\left(e^{4 \beta \phi / M_{\mathrm{Pl}}}\right) \tilde{T}^{\mu}{ }_{\nu}$

$$
\tilde{g}_{\mu \nu}=e^{2 \beta \phi / M_{\mathrm{Pl}}} g_{\mu \nu}^{*}
$$

Assume FRW in both frames:

$$
\begin{array}{ll}
\tilde{a}=e^{\beta \phi / M_{\mathrm{P} 1}} a_{*} & d \tilde{t}=e^{\beta \phi / M_{\mathrm{P} 1}} d t_{*} \\
\text { proper time }
\end{array}
$$

Key parameter: the chameleon coupling constant β

The Effective Potential

Vary action w.r.t. Einstein metric: $G_{\mu \nu}=8 \pi G\left(T_{\mu \nu}^{*}+T_{\mu \nu}^{\phi}\right)$
Vary action w.r.t. chameleon field: $\quad\left(\tilde{g}_{\mu \nu}=e^{2 \beta \phi / M_{\mathrm{Pl}}} g_{\mu \nu}^{*}\right)$

$$
\ddot{\phi}+3 H_{*} \dot{\phi}=-\left[\frac{d V}{d \phi}+\frac{\beta}{M_{\mathrm{Pl}}}\left(\rho_{*}-3 p_{*}\right)\right]
$$

 derivative of effective potential
Thin shell mechanism: Khoury \& Weltman 2004

$$
\frac{\phi_{\min }^{\mathrm{ext}}-\phi_{\min }^{\mathrm{int}}}{M_{\mathrm{Pl}}} \lesssim \beta \frac{G M_{s}}{R_{s}}
$$

Inside an massive body, $\phi \simeq \phi_{\min }^{\operatorname{int}}$ and the scalar force outside the massive body is suppressed because

$$
m_{\mathrm{int}}=\sqrt{V_{\mathrm{eff}}^{\prime \prime}\left(\phi_{\min }^{\mathrm{int}}\right)} \gg R_{s}
$$

Chameleon Cosmology

Fiducial Chameleon Potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{n}\right] \stackrel{\phi \gg M}{\simeq} M^{4}\left[1+\left(\frac{M}{\phi}\right)^{n}\right]
$$

Evade Solar System gravity tests and provide dark energy:

$$
M \simeq 0.001 \mathrm{eV} \simeq\left(\rho_{\mathrm{de}}\right)^{1 / 4}
$$

Chameleon Cosmology

Fiducial Chameleon Potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{n}\right] \stackrel{\phi \gg M^{4}}{\simeq}\left[1+\left(\frac{M}{\phi}\right)^{n}\right]
$$

Evade Solar System gravity tests and provide dark energy:

$$
M \simeq 0.001 \mathrm{eV} \simeq\left(\rho_{\mathrm{de}}\right)^{1 / 4}
$$

Where is the chameleon now?

Chameleon Cosmology

Fiducial Chameleon Potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{n}\right] \stackrel{\phi \gg M^{4}}{\simeq}\left[1+\left(\frac{M}{\phi}\right)^{n}\right]
$$

Evade Solar System gravity tests and provide dark energy:

$$
M \simeq 0.001 \mathrm{eV} \simeq\left(\rho_{\mathrm{de}}\right)^{1 / 4}
$$

Where is the chameleon now?

Chameleon Cosmology

Fiducial Chameleon Potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{n}\right] \stackrel{\phi \gg M^{4}}{\simeq}\left[1+\left(\frac{M}{\phi}\right)^{n}\right]
$$

Evade Solar System gravity tests and provide dark energy:

$$
M \simeq 0.001 \mathrm{eV} \simeq\left(\rho_{\mathrm{de}}\right)^{1 / 4}
$$

Where is the chameleon now?

$$
\begin{aligned}
& \rho_{\text {mat }, 0}=0.3 \rho_{\text {crit }, 0} \\
& \phi_{\min }=5.9 \times 10^{9} M \ll M_{\mathrm{Pl}} \\
& \phi_{\min } \ll M_{\mathrm{Pl}} \text { always! } \\
& \rho_{\text {gal }}=0.6 \mathrm{GeV} / \mathrm{cm}^{3} \\
& \phi_{\min }=8.3 \times 10^{7} M \\
& \phi_{\min } \lesssim M \text { inside Earth, Sun } \\
& \text { and at } T \gtrsim 2 \mathrm{MeV}
\end{aligned}
$$

Chameleon Initial Conditions

During inflation: $\rho-3 p \simeq 4 \rho_{\text {infl }}$ pins chameleon $\phi \ll M \quad$ Brax et al. 2004 After reheating: $\rho-3 p \simeq 0$ the chameleon quickly slides down its bare potential and rolls to $\phi \gg \phi_{\min }$ For $\phi \gg \phi_{\min }$

$$
\ddot{\phi}+3 H_{*} \dot{\phi}=-\frac{\beta}{M_{\mathrm{Pl}}}\left(\rho_{*}-3 p_{*}\right) \Longrightarrow \Delta \phi \simeq \frac{\dot{\phi}_{i}}{H_{i}}=M_{\mathrm{Pl}} \sqrt{6 \Omega_{\dot{\phi}, i}}
$$

Chameleon rolls out to $\phi_{\min } \ll \phi \lesssim M_{\mathrm{Pl}}$
Hubble friction prevents the chameleon from rolling back to $\phi_{\min }$

Chameleon Initial Conditions

During inflation: $\rho-3 p \simeq 4 \rho_{\mathrm{infl}}$ pins chameleon $\phi \ll M$ Broxet ol. 2004 After reheating: $\rho-3 p \simeq 0$ the chameleon quickly slides down its bare potential and rolls to $\phi \gg \phi_{\min }$ For $\phi \gg \phi_{\text {min }}$

$$
\ddot{\phi}+3 H_{*} \dot{\phi}=-\frac{\beta}{M_{\mathrm{Pl}}}\left(\rho_{*}-3 p_{*}\right) \Longrightarrow \Delta \phi \simeq \frac{\dot{\phi}_{i}}{H_{i}}=M_{\mathrm{Pl}} \sqrt{6 \Omega_{\dot{\phi}, i}}
$$

Chameleon rolls out to $\phi_{\min } \ll \phi \lesssim M_{\mathrm{Pl}}$
Hubble friction prevents the chameleon from rolling back to $\phi_{\min }$

Unsticking the Chameleon

Particles in thermal equilibrium:

$\begin{aligned} & \text { Jordan-frame } \\ & \text { density }\end{aligned} \quad \tilde{\rho}=\frac{g}{2 \pi^{2}} \int_{m}^{\infty} \frac{E^{2}\left(E^{2}-m^{2}\right)^{1 / 2}}{e^{E / T} \pm 1} d E$
Damour \& Nordtvedt/993
Damour \& Polyakov 1994 Brax et al. 2004 Coc et al. 2006, 2009

Define the kick function:

$$
\begin{aligned}
& \Sigma\left(T_{J}\right) \equiv \frac{\tilde{\rho}_{R}-3 \tilde{p}_{R}}{\tilde{\rho}_{R}}=\frac{\rho_{* R}-3 p_{* R}}{\rho_{* R}} \\
& \ddot{\phi}+3 H_{*} \dot{\phi}=-\left[\frac{d V}{d \phi}+\frac{\beta}{M_{\mathrm{Pl}}} \rho_{* R} \Sigma\right]
\end{aligned}
$$

Every time a mass-threshold is crossed, the chameleon gets kicked!

Kicks from the Standard Model

Every particle in the Standard Model (and beyond) kicks the chameleon.

Othere are 4 distinct "combo-kicks" with increasing amplitude
Othere is a kick during BBN between n, p freeze-out and helium production
Okicks dominate over dark matter: $\rho_{* R} \Sigma \gg \rho_{* M}$ for $T_{J} \gtrsim 0.024 \mathrm{MeV}$

- during the kicks, $\phi_{\min } \lesssim M$

The Old Story

The kicks save the chameleon: $\Delta \phi \simeq-\beta M_{\mathrm{Pl}}$ prior to BBN . Brax et al. 2004
Otreat kicks individually and assume that $|\beta \Delta \phi| \ll M_{\mathrm{Pl}} \Leftrightarrow \beta^{2} \ll 1$

- BBN requirement $\left(\phi_{\mathrm{BBN}} \lesssim(0.1 / \beta) M_{\mathrm{Pl}}\right)$ is satisfied for

$$
\phi_{i} \lesssim\left(\beta+\frac{0.1}{\beta}\right) M_{\mathrm{Pl}}
$$

For a wide range of initial conditions, the chameleon reaches the minimum of its effective potential and happily lives there for the rest of its days.

No happily ever after!

The standard chameleon story misses several important features:
I. Ignoring the feedback of $\Delta \phi$ on T_{J} severely underestimates chameleon motion for $\beta \gtrsim 1.8$.
2. Nearly all chameleons reach $\phi_{\min }$ with a large velocity and climb up their bare potentials.
3. The classical picture is incomplete because the rebound is violent enough to excite quantum perturbations.

Part II: Classical Kicks
What is the chameleon's velocity when it reaches $\phi_{\min }$?
Part III: Quantum Kicks
What happens to the chameleon when it rebounds?

Part II
Classically Kicking Chameleons

The Equation of Motion Revisited

$$
\ddot{\phi}+3 H_{*} \dot{\phi}=-\left[\frac{d V}{d \phi}+\frac{\beta}{M_{\mathrm{Pl}}} \rho_{* R}\left(\Sigma+\frac{\rho_{* M}}{\rho_{* R}}\right)\right]
$$

Ochange variables: $p=\ln \left(a_{*}\right) \quad \varphi \equiv \phi / M_{\mathrm{Pl}}$ Oassume $\phi \gg \phi_{\min }$ and neglect the bare potential
Orecall that $\left(\rho_{* M} / \rho_{* R}\right) \ll \Sigma \lesssim 0.1$ and keep only first order in Σ
Ouse Friedmann eqn. in Einstein frame

$$
\varphi^{\prime \prime}+\varphi^{\prime}\left[1-\frac{\left(\varphi^{\prime}\right)^{2}}{6}\right]=-3 \beta\left[1-\frac{\left(\varphi^{\prime}\right)^{2}}{6}\right] \Sigma\left(T_{J}\right)
$$

Jordan-frame temperature: $g_{* S}\left(T_{J}\right) \tilde{a}^{3} T_{J}^{3}=$ constant

$$
T_{J}\left[\frac{g_{* S}\left(T_{J}\right)}{g_{* S}\left(T_{J, i}\right)}\right]^{1 / 3}=T_{J, i} \frac{\tilde{a}_{i}}{\tilde{a}}=\frac{T_{J, i}}{a_{*}} e^{\beta\left(\varphi_{i}-\varphi\right)}
$$

compute and invert numerically
old story: $e^{-\beta \Delta \varphi} \simeq 1$

The Surfing Solution

Keeping the full expression for T_{J} reveals a new solution!

$$
\underset{p=\ln \left(a_{*}\right)}{\varphi}=\frac{-p+\lambda}{\beta} \Rightarrow T_{J}\left[\frac{g_{* S}\left(T_{J}\right)}{g_{* *}\left(T_{J, i}\right)}\right]^{1 / 3}=T_{J, i} e^{\beta\left(\varphi_{i}-\varphi\right)-p}=T_{J, i} e^{\beta \lambda}
$$

The temperature is constant in the Jordan frame!

The Surfing Solution

Keeping the full expression for T_{J} reveals a new solution!

$$
\underset{p=\ln \left(a_{*}\right)}{\varphi} \frac{-p+\lambda}{\beta} \Rightarrow T_{J}\left[\frac{g_{* S}\left(T_{J}\right)}{g_{* *}\left(T_{J, i}\right)}\right]^{1 / 3}=T_{J, i} e^{\beta\left(\varphi_{i}-\varphi\right)-p}=T_{J, i} e^{\beta \lambda}
$$

The temperature is constant in the Jordan frame!
$\varphi^{\prime}(p)=-\frac{1}{\beta}$ solves $\varphi^{\prime \prime}+\varphi^{\prime}\left[1-\frac{\left(\varphi^{\prime}\right)^{2}}{6}\right]=-3 \beta\left[1-\frac{\left(\varphi^{\prime}\right)^{2}}{6}\right] \Sigma$
provided that $\beta=\sqrt{\frac{1}{3 \Sigma\left(T_{J}\right)}}$ for some value of T_{J}.

The Surfing Solution

Keeping the full expression for T_{J} reveals a new solution!
$\varphi=\frac{-p+\lambda}{\beta} \Rightarrow T_{J}\left[\frac{g_{* S}\left(T_{J}\right)}{g_{* S}\left(T_{J, i}\right)}\right]^{1 / 3}=T_{J, i} e^{\beta\left(\varphi_{i}-\varphi\right)-p}=T_{J, i} e^{\beta \lambda}$
The temperature is constant in the Jordan frame!
$\varphi^{\prime}(p)=-\frac{1}{\beta}$ solves $\varphi^{\prime \prime}+\varphi^{\prime}\left[1-\frac{\left(\varphi^{\prime}\right)^{2}}{6}\right]=-3 \beta\left[1-\frac{\left(\varphi^{\prime}\right)^{2}}{6}\right] \Sigma$
provided that $\beta=\sqrt{\frac{1}{3 \Sigma\left(T_{J}\right)}}$
The surfing solution only exists if

$$
\beta \geq \sqrt{\frac{1}{3 \Sigma_{\max }}}
$$

Surfing Chameleons

Chameleons that can surf, do surf!

 Ovalid for any $\phi_{i} \gg \phi_{\min }$ and $\Omega_{\dot{\phi}} \lesssim 0.5$Osolution holds until $\phi \simeq \phi_{\min } \lesssim M$

Surfing Velocity

For every value of $\beta>1.82$, the surf solution has $\Sigma\left(T_{\text {surf }}\right)=\frac{1}{3 \beta^{2}}$

chameleon coupling constant (β)

$$
\begin{aligned}
\dot{\phi} & =H_{*} \phi^{\prime}(p)=-\frac{H_{*} M_{\mathrm{Pl}}}{\beta} \\
\dot{\phi} & =\sqrt{\frac{2 \rho_{* R}}{6 \beta^{2}-1}}
\end{aligned}
$$

At the end of the surf
$\phi \ll M_{\mathrm{Pl}}$
$\rho_{* R} \simeq \tilde{\rho}=\frac{\pi^{2}}{30} g_{*}\left(T_{\mathrm{surf}}\right) T_{\mathrm{surf}}^{4}$

What if the chameleon can't surf?

Return to chameleon equation of motion for $\phi \gg \phi_{\min }$:

$$
\frac{1}{a^{3}} \frac{d}{d t}\left(a_{*}^{3} \dot{\phi}\right)=-\frac{\beta}{M_{\mathrm{Pl}}} \rho_{* R} \Sigma\left(T_{J}\right)
$$

Integrate twice:

$$
\frac{\Delta \phi}{M_{\mathrm{Pl}}}=-3 \beta \int_{1}^{e^{p}} \frac{d x}{x^{2}} \int_{1}^{x} \Sigma\left(T_{J}\left[\phi\left(a_{*}, a_{*}\right]\right) d a_{*}\right.
$$

But we can't use that because T_{J} depends on chameleon's motion:

$$
T_{J}\left[\frac{g_{* S}\left(T_{J}\right)}{g_{* S}\left(T_{J, i}\right)}\right]^{1 / 3}=\frac{T_{J, i}}{a_{*}} e^{\beta\left(\phi_{i}-\phi\right) / M_{\mathrm{Pl}}}
$$

What if the chameleon can't surf?

Return to chameleon equation of motion for $\phi \gg \phi_{\min }$:

$$
\frac{1}{a^{3}} \frac{d}{d t}\left(a_{*}^{3} \dot{\phi}\right)=-\frac{\beta}{M_{\mathrm{Pl}}} \rho_{* R} \Sigma\left(T_{J}\right)
$$

Integrate twice:

$$
\frac{\Delta \phi}{M_{\mathrm{Pl}}}=-3 \beta \int_{1}^{e^{p}} \frac{d x}{x^{2}} \int_{1}^{x} \Sigma\left(T_{J}\left[\phi\left(a_{*}, a_{*}\right]\right) d a_{*}\right.
$$

But we can't use that because T_{J} depends on chameleon's motion:

$$
T_{J}\left[\frac{g_{* S}\left(T_{J}\right)}{g_{* S}\left(T_{J, i}\right)}\right]^{1 / 3}=\frac{T_{J, i}}{a_{*}} \xrightarrow{\beta\left(\phi_{i}=\phi\right) / \lambda_{\mathrm{IP1}}} 1
$$

If $\beta|\Delta \phi| \ll M_{\mathrm{Pl}}$,

$$
\Delta \phi \simeq-1.58 \beta M_{\mathrm{Pl}}
$$

- works well for $\beta<0.7$

Ounderestimates $\Delta \phi$ for larger β

What if the chameleon can't surf?

For larger β values: Omotion of ϕ affects T_{J} Oslows Jordan-frame cooling - extends duration of kicks

- $|\Delta \phi|>1.58 \beta M_{\mathrm{Pl}}$

Othe surfer is the limit

Impact is difficult to avoid!

The kicks move the chameleon toward the minimum of its effective potential, but does the chameleon always reach it? - first 3 combo kicks give $\Delta \phi \gtrsim-\beta M_{\mathrm{PI}}$ prior to BBN - last kick gives $\Delta \phi \gtrsim-0.56 \beta M_{\mathrm{Pl}}$ during BBN -to avoid messing with $\mathrm{BBN}, \phi_{\mathrm{BBN}} \lesssim(0.1 / \beta) M_{\mathrm{Pl}}$ -for $\beta>0.42, \phi_{\mathrm{BBN}} \leq 0.56 M_{\mathrm{Pl}}$: the last kick takes $\phi<\phi_{\min }$ Ofor smaller β values, avoiding impact requires

$$
(\Delta+0.56) \beta<\frac{\phi_{i}}{M_{\mathrm{Pl}}}<\Delta+\frac{0.1}{\beta}
$$

with $\Delta \simeq 1$ for the standard model. Only weakly coupled ($\beta<0.42$) chameleons can avoid impact, and the initial condition must be finely tuned based on the entire particle content of the Universe!

Fast-Moving Chameleons

A Classical Impact

Now that $\phi \simeq \phi_{\min }$, we need to consider the chameleon potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{2}\right] \text { with } M=0.001 \mathrm{eV}
$$

During the kicks, $0.13 M \lesssim \phi_{\min } \lesssim 0.62 M$, but the chameleon doesn't stop there - it's moving too fast! The chameleon rolls up its potential until $V\left(\phi_{b}\right)=\dot{\phi}^{2} / 2$

$$
0.085 M \lesssim\left(\phi_{b}=M\left[\ln \left(\frac{\dot{\phi}^{2}}{2 M^{4}}\right)\right]^{-1 / 2}\right) \lesssim 0.11 M
$$

A Classical Impact

Now that $\phi \simeq \phi_{\min }$, we need to consider the chameleon potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{2}\right] \text { with } M=0.001 \mathrm{eV}
$$

During the kicks, $0.13 M \lesssim \phi_{\min } \lesssim 0.62 M$, but the chameleon doesn't stop there - it's moving too fast! The chameleon rolls up its potential until $V\left(\phi_{b}\right)=\dot{\phi}^{2} / 2$

$$
0.085 M \lesssim\left(\phi_{b}=M\left[\ln \left(\frac{\dot{\phi}^{2}}{2 M^{4}}\right)\right]^{-1 / 2}\right) \lesssim 0.11 M
$$

We are interested in $\Delta \phi \lesssim M$ \& $\Delta t \lesssim M / \dot{\phi}$ Oshort time scale: $H_{*} \Delta t \lesssim M / \phi^{\prime}(p) \lesssim \beta M / M_{\mathrm{Pl}}$
oHubble friction + kicks: $\Delta \dot{\phi} \simeq\left(M / M_{\mathrm{Pl}}\right) \dot{\phi}$ obare potential dominates $V_{\mathrm{eff}}^{\prime \prime}(\phi) \& V_{\mathrm{eff}}^{\prime \prime \prime}(\phi)$

A Classical Impact

Now that $\phi \simeq \phi_{\min }$, we need to consider the chameleon potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{2}\right] \text { with } M=0.001 \mathrm{eV}
$$

During the kicks, $\cap 12 \sim<\alpha_{\min } \lesssim 0.62 \mathrm{M}$, but the chameleon doesn't stop
fast! The chame Classically, the impact until $V\left(\phi_{b}\right)=\dot{\phi}^{2} / 2$

We are interested in $\Delta \phi \lesssim M$ \& $\Delta t \lesssim M / \dot{\phi}$ Oshort time scale: $H_{*} \Delta t \lesssim M / \phi^{\prime}(p) \lesssim \beta M / M_{\mathrm{Pl}}$
oHubble friction + kicks: $\Delta \dot{\phi} \simeq\left(M / M_{\mathrm{Pl}}\right) \dot{\phi}$ obare potential dominates $V_{\mathrm{eff}}^{\prime \prime}(\phi) \& V_{\mathrm{eff}}^{\prime \prime \prime}(\phi)$

A Classical Impact

Now that $\phi \simeq \phi_{\min }$, we need to consider the chameleon potential:

$$
V(\phi)=M^{4} \exp \left[\left(\frac{M}{\phi}\right)^{2}\right] \text { with } M=0.001 \mathrm{eV}
$$

During the kicks, $\cap 12 \sim<\alpha_{\min } \lesssim 0.62 \mathrm{M}$, but the chameleon doesn't stop fast! The chame Classically, the impact until $V\left(\phi_{b}\right)=\dot{\phi}^{2} / 2$ $0.085 \mathrm{M} \lesssim\left(\phi_{b}\right\rangle$ is a reflection! $\lesssim 0.11 \mathrm{M}$ We are interested in $\Delta \phi \lesssim M \& \Delta t \lesssim M / \dot{\phi}$ Oshort time scale: $H_{*} \Delta t \lesssim M / \phi^{\prime}(p) \lesssim \beta M / M_{\mathrm{Pl}}$
oHubble friction + kicks: $\Delta \dot{\phi} \simeq\left(M / M_{\mathrm{Pl}}\right) \dot{\phi}$ obare potential dominates $V_{\mathrm{eff}}^{\prime \prime}(\phi) \& V_{\mathrm{eff}}^{\prime \prime \prime}(\phi)$

Part III

Quantum Chameleon Kicks

Quantum Particle Production

Rapid changes in $V^{\prime \prime}(\phi)$ excite perturbations!

$$
\begin{aligned}
& \ddot{\phi}+3 H_{*} \dot{\phi}-\frac{\nabla^{2}}{a^{2}} \phi+V^{\prime}(\phi)=0 \\
& \phi(t, \vec{x})=\bar{\phi}(t)+\delta \phi(t, \vec{x})
\end{aligned}
$$

$\delta \phi(t, \vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}}\left[\hat{a}_{\vec{k}} \phi_{k}(t) e^{i \vec{k} \cdot \vec{x}}+\hat{a}_{\vec{k}}^{\dagger} \phi_{k}^{*}(t) e^{-i \vec{k} \cdot \vec{x}}\right]$
$\ddot{\phi}_{k}+\omega_{k}^{2}(t) \phi_{k}=0 \quad \omega_{k}^{2}=k^{2}+V^{\prime \prime}(\bar{\phi})$

Quantum Particle Production

Rapid changes in $V^{\prime \prime}(\phi)$ excite perturbations!

$$
\begin{aligned}
& \ddot{\phi}+3 H_{*} \dot{\phi}-\frac{\nabla^{2}}{a^{2}} \phi+V^{\prime}(\phi)=0 \\
& \phi(t, \vec{x})=\bar{\phi}(t)+\delta \phi(t, \vec{x})
\end{aligned}
$$

$\delta \phi(t, \vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}}\left[\hat{a}_{\vec{k}} \phi_{k}(t) e^{i \vec{k} \cdot \vec{x}}+\hat{a}_{\vec{k}}^{\dagger} \phi_{k}^{*}(t) e^{-i \vec{k} \cdot \vec{x}}\right]$
$\ddot{\phi}_{k}+\omega_{k}^{2}(t) \phi_{k}=0 \quad \omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi})$

Express in terms of Bogoliubov coefficients:
$\phi_{k}(t)=\frac{\alpha_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{-i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}+\frac{\beta_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{+i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}$
$\left|\alpha_{k}\right|^{2}-\left|\beta_{k}\right|^{2}=1$ gives desired commutation relations
Define occupation number: $n_{k}(t)=\frac{1}{2 \omega_{k}}\left[\left|\dot{\phi}_{k}\right|^{2}+\omega_{k}^{2}\left|\phi_{k}\right|^{2}\right]-\frac{1}{2}$

Quantum Particle Production

Rapid changes in $V^{\prime \prime}(\phi)$ excite perturbations!

$$
\begin{aligned}
& \ddot{\phi}+3 H_{*} \dot{\phi}^{-}-\frac{\nabla^{2}}{a^{2}} \phi+V^{\prime}(\phi)=0 \\
& \phi(t, \vec{x})=\bar{\phi}(t)+\delta \phi(t, \vec{x})
\end{aligned}
$$

$\delta \phi(t, \vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}}\left[\hat{a}_{\vec{k}} \phi_{k}(t) e^{i \vec{k} \cdot \vec{x}}+\hat{a}_{\vec{k}}^{\dagger} \phi_{k}^{*}(t) e^{-i \vec{k} \cdot \vec{x}}\right]$
$\ddot{\phi}_{k}+\omega_{k}^{2}(t) \phi_{k}=0 \quad \omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi})$

Express in terms of Bogoliubov coefficients:
$\phi_{k}(t)=\frac{\alpha_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{-i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}+\frac{\beta_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{+i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}$
$\left|\alpha_{k}\right|^{2}-\left|\beta_{k}\right|^{2}=1$ gives desired commutation relaut.
Define occupation number: $n_{k}(t)=\frac{1}{2 \omega_{k}}\left[\left|\dot{\phi}_{k}\right|^{2}+\omega_{k}^{2}\left|\phi_{k}\right|^{2}\right]-\frac{1}{2}$

Quantum Particle Production

$\phi_{k}(t)=\frac{\alpha_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{-i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}+\frac{\beta_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{+i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}$
solves $\ddot{\phi}_{k}+\omega_{k}^{2}(t) \phi_{k}=0$ provided that
$\dot{\alpha}_{k}=\frac{\dot{\omega}_{k}}{2 \omega_{k}} e^{2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}} \beta_{k}$

$$
\omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi})
$$

$\dot{\beta}_{k}=\frac{\dot{\omega}_{k}}{2 \omega_{k}} e^{-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}} \alpha_{k}$
We get particle production $\left(\left|\beta_{k}\right|^{2} \gtrsim 1\right)$ when

$$
\frac{\left|\dot{\omega}_{k}\right|}{\omega_{k}^{2}}=\frac{\left|V^{\prime \prime \prime}(\phi) \dot{\phi}\right|}{2 \omega_{k}^{3}} \gtrsim 1
$$

Quantum Particle Production

$\phi_{k}(t)=\frac{\alpha_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{-i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}+\frac{\beta_{k}(t)}{\sqrt{2 \omega_{k}(t)}} e^{+i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}$
solves $\ddot{\phi}_{k}+\omega_{k}^{2}(t) \phi_{k}=0$ provided that
$\dot{\alpha}_{k}=\frac{\dot{\omega}_{k}}{2 \omega_{k}} e^{2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}} \beta_{k}$

$$
\omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi})
$$

$\dot{\beta}_{k}=\frac{\dot{\omega}_{k}}{2 \omega_{k}} e^{-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}} \alpha_{k}$
We get particle production $\left(\left|\beta_{k}\right|^{2} \gtrsim 1\right)$ when

$$
\frac{\left|\dot{\omega}_{k}\right|}{\omega_{k}^{2}}=\frac{\left|V^{\prime \prime \prime}(\phi) \dot{\phi}\right|}{2 \omega_{k}^{3}} \gtrsim 1
$$

Energy in perturbations: $E_{p} \equiv \frac{1}{2}(\delta \dot{\phi})^{2}+\frac{1}{2}(\nabla \delta \phi)^{2}+\frac{1}{2} V^{\prime \prime}(\bar{\phi})(\delta \phi)$

$$
\left\langle E_{p}\right\rangle=\int \frac{k^{3} \omega_{k}}{2 \pi^{2}} n_{k} d \ln k
$$

$$
E_{k}=\frac{k^{3} \omega_{k}}{2 \pi^{2}} n_{k}=\frac{k^{3} \omega_{k}}{2 \pi^{2}}\left|\beta_{k}^{2}\right|
$$

perturbation energy per logarithmic interval in k

Chameleon particles: first estimate

Let's treat the spike in $V^{\prime \prime}(\phi)$ as a δ - function:

$$
\ddot{\phi}_{k}+\left[k^{2}+\Lambda \delta\left(t-t_{*}\right)\right] \phi_{k}=0
$$

If we start with no perturbations, then

$$
\begin{aligned}
& \beta_{k}\left(t>t_{*}\right)=i \frac{\Lambda}{2 k} e^{-2 i k t_{*}} \\
& \text { the bounce: } n_{k}=\frac{\Lambda^{2}}{4 k^{2}} \quad E_{k}=\frac{\Lambda^{2}}{8 \pi^{2}} k^{2}
\end{aligned}
$$

Wait, perturbations are excited at infinitely high wavenumbers?
No, modes with $k \gg 1 / \Delta t$ are not excited: $\frac{\left|\dot{\omega}_{k}\right|}{\omega_{k}^{2}} \ll 1$ for $k \gg \frac{1}{\Delta t}$

Chameleon particles: first estimate

Let's treat the spike in $V^{\prime \prime}(\phi)$ as a δ - function:

$$
\ddot{\phi}_{k}+\left[k^{2}+\Lambda \delta\left(t-t_{*}\right)\right] \phi_{k}=0
$$

If we start with no perturbations, then

$$
\begin{aligned}
& \beta_{k}\left(t>t_{*}\right)=i \frac{\Lambda}{2 k} e^{-2 i k t_{*}} \\
& \text { the bounce: } n_{k}=\frac{\Lambda^{2}}{4 k^{2}} \quad E_{k}=\frac{\Lambda^{2}}{8 \pi^{2}} k^{2}
\end{aligned}
$$

Wait, perturbations are excited at infinitely high wavenumbers?
No, modes with $k \gg 1 / \Delta t$ are not excited: $\frac{\left|\dot{\omega}_{k}\right|}{\omega_{k}^{2}} \ll 1$ for $k \gg \frac{1}{\Delta t}$
Estimate $\Delta t: \frac{\left|\Delta V^{\prime \prime}(\phi)\right|}{V^{\prime \prime}\left(\phi_{b}\right)} \simeq 1 \Longleftrightarrow \bar{\phi}(t)-\phi_{b} \simeq\left|\frac{V^{\prime \prime}\left(\phi_{b}\right)}{V^{\prime \prime \prime}\left(\phi_{b}\right)}\right|$
$\bar{\phi}(t)-\phi_{b} \simeq-\frac{1}{2} V^{\prime}\left(\phi_{b}\right) t^{2} \quad \Delta t=2 \sqrt{\frac{2 V^{\prime \prime}\left(\phi_{b}\right)}{V^{\prime}\left(\phi_{b}\right) V^{\prime \prime \prime}\left(\phi_{b}\right)}}$

Chameleon particles: first estimate

Let's treat the spike in $V^{\prime \prime}(\phi)$ as a δ - function:

$$
\ddot{\phi}_{k}+\left[k^{2}+\Lambda \delta\left(t-t_{*}\right)\right] \phi_{k}=0
$$

After the bounce: $n_{k}=\frac{\Lambda^{2}}{4 k^{2}} \quad E_{k}=\frac{\Lambda^{2}}{8 \pi^{2}} k^{2}$
up to $k \lesssim k_{\text {peak }}=1 / \Delta t$
For our potential, $k_{\text {peak }} \simeq \frac{1}{2} \frac{\dot{\phi}_{i}}{M} \ln ^{3 / 2}\left[\frac{\dot{\phi}_{i}^{2}}{2 M^{4}}\right]$

$\Lambda=\int_{t_{*}-\Delta t}^{t_{*}+\Delta t} V^{\prime \prime}(\phi) d t \simeq \frac{2}{\dot{\phi}_{i}} V^{\prime}\left(\phi_{b}\right)=4 k_{\text {peak }}$
How much energy in perturbations?

Chameleon particles: first estimate

Let's treat the spike in $V^{\prime \prime}(\phi)$ as a δ - function:

$$
\ddot{\phi}_{k}+\left[k^{2}+\Lambda \delta\left(t-t_{*}\right)\right] \phi_{k}=0
$$

After the bounce: $n_{k}=\frac{\Lambda^{2}}{4 k^{2}} \quad E_{k}=\frac{\Lambda^{2}}{8 \pi^{2}} k^{2}$
up to $k \lesssim k_{\text {peak }}=1 / \Delta t$
For our potential, $k_{\text {peak }} \simeq \frac{1}{2} \frac{\dot{\phi}_{i}}{M} \ln ^{3 / 2}\left[\frac{\dot{\phi}_{i}^{2}}{2 M^{4}}\right]$

$2 \times 10^{17} \underbrace{100} 10 \mathrm{Gev}^{2}$

Adding in Backreaction

Since the energy in perturbations is significant, we must revisit the chameleon equation of motion: $\left(\partial_{t}^{2}-\nabla^{2}\right) \phi+V^{\prime}(\phi)=0$ $\phi(t, \vec{x})=\bar{\phi}(t)+\delta \phi(t, \vec{x}) \quad$ split field into background and perturbation $\left(\partial_{t}^{2}-\nabla^{2}\right)(\bar{\phi}+\delta \phi)+V^{\prime}(\bar{\phi})+\sum_{n=1}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi}) \delta \phi^{n}=0$ Take spatial average:
drop higher order backreaction
$\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle+\sum_{n=4}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi})\left\langle\delta \phi^{n}\right\rangle=0$

Adding in Backreaction

Since the energy in perturbations is significant, we must revisit the chameleon equation of motion: $\left(\partial_{t}^{2}-\nabla^{2}\right) \phi+V^{\prime}(\phi)=0$ $\phi(t, \vec{x})=\bar{\phi}(t)+\delta \phi(t, \vec{x})$ split field into background and perturbation $\left(\partial_{t}^{2}-\nabla^{2}\right)(\bar{\phi}+\delta \phi)+V^{\prime}(\bar{\phi})+\sum_{n=1}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi}) \delta \phi^{n}=0$ Take spatial average:
drop higher order backreaction
$\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle+\sum_{n=4}^{\infty} \frac{1}{n!} V^{(n+1)}(\bar{\phi})\left\langle\delta \phi^{n}\right\rangle=0$
Linear perturbations with first-order backreaction:

$$
\begin{array}{ll}
\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle=0 & \text { background equation with backreaction } \\
\ddot{\phi} \\
k+\left[k^{2}+V^{\prime \prime}(\bar{\phi})\right] \phi_{k}=0 & \text { linearized perturbation equations } \\
\left\langle\delta \phi^{2}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}}\left(\left|\phi_{k}\right|^{2}-\frac{1}{2 \omega_{k}}\right) & \omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi}) \\
\hline
\end{array}
$$

Adding in Backreaction

Since the energy in perturbations is significant, we must revisit the chameleon equation of motion: $\left(\partial_{t}^{2}-\nabla^{2}\right) \phi+V^{\prime}(\phi)=0$
$\phi(t, \vec{x})=\bar{\phi}(t)$
$\left(\partial_{t}^{2}-\nabla^{2}\right) \quad$ This system conserves energy: $\left.\bar{\phi}\right) \delta \phi^{n}=0$
Take spatial $a \quad \frac{d}{d t}\left\langle E_{\text {pert }}\right\rangle=-\frac{d}{d t}\left[\frac{1}{2} \dot{\bar{\phi}}^{2}+V(\bar{\phi})\right]$
higher order backreaction
$\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{}{2}$
Linear perturbations with first-order backreaction:

$$
\begin{array}{ll}
\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle=0 & \text { background equation with backreaction } \\
\ddot{\phi} \\
k+\left[k^{2}+V^{\prime \prime}(\bar{\phi})\right] \phi_{k}=0 & \text { linearized perturbation equations } \\
\left\langle\delta \phi^{2}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}}\left(\left|\phi_{k}\right|^{2}-\frac{1}{2 \omega_{k}}\right) & \omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi})
\end{array}
$$

Hello Computer

Linear perturbations with first-order backreaction:
$\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle=0 \quad$ background equation with backreaction $\ddot{\phi}_{k}+\left[k^{2}+V^{\prime \prime}(\bar{\phi})\right] \phi_{k}=0 \quad$ linearized perturbation equations
$\left\langle\delta \phi^{2}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}}\left(\left|\phi_{k}\right|^{2}-\frac{1}{2 \omega_{k}}\right) \quad \omega_{k}^{2} \equiv k^{2}+V^{\prime \prime}(\bar{\phi})$
This is a closed system, so we can solve it numerically.
-initial conditions: $\bar{\phi}=2 M, \dot{\bar{\phi}}=\dot{\phi}_{i}, n_{k}=0 \forall k$

- solve for a number of k values with $k_{\mathrm{IR}} \leq k \leq k_{\text {max }}$

Ochoose $k_{\text {max }} \gg k_{\text {peak }}-$ - these modes aren't excited
Oresults depend on k_{IR} : the longest wavelength perturbation that is treated linearly. Neglecting its interactions with other modes introduces errors, so chose $k_{\mathrm{IR}} \lesssim 0.1 k_{\text {peak }}$

Numerical Results

The numerical results confirm our expectations.

- The chameleon bounces off its bare potential.

OPerturbations are generated during the bounce, taking energy away from the background evolution.

- The perturbation energy spectrum is peaked; most of the energy is in modes with $k_{\text {peak }} \simeq(\Delta t)^{-1}$
- The occupation numbers remain small $\left(n_{k} \ll 1\right)$.

Numerical Surprises

The numerical results confirm our expectations... except when they don't!
OThe chameleon turns around sooner than expected: $V\left(\phi_{b}\right) \ll \dot{\phi}_{i}^{2} / 2$

- The effective mass $\sqrt{V^{\prime \prime}}$ is much smaller than expected, with

$$
\sqrt{V^{\prime \prime}} \ll(\Delta t)^{-1}
$$

More Numerical Surprises

The numerical results confirm our expectations...

 except when they don't!-At the bounce, all of the chameleon's energy is in perturbations.
OShortly after the bounce, the perturbations return some of this energy to the background evolution.

- The amount of energy returned depends on the minimum wavenumber.

Back to the Backreaction

Studying the backreaction of the perturbations on the chameleon background provides insight into these numerical surprises.

$$
\begin{aligned}
& \ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle=0 \quad \text { background equation with backreaction } \\
& \left\langle\delta \phi^{2}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\omega_{k}}\left(\left|\beta_{k}\right|^{2^{\prime \prime}}+\operatorname{Re}\left[\alpha_{k} \beta_{k}^{*} e^{-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}\right]\right) \begin{array}{l}
\text { Bogoliubov } \\
\text { expansion }
\end{array}
\end{aligned}
$$

Back to the Backreaction

Studying the backreaction of the perturbations on the chameleon background provides insight into these numerical surprises.

$$
\begin{aligned}
& \ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle=0 \quad \text { background equation with backreaction } \\
& \left\langle\delta \phi^{2}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\omega_{k}}\left(\left|\beta_{k}\right|^{2^{\prime \prime}}+\operatorname{Re}\left[\alpha_{k} \beta_{k}^{*} e^{-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}}\right]\right) \begin{array}{l}
\text { Bogoliubov } \\
\text { expansion }
\end{array}
\end{aligned}
$$

We know that the occupation numbers are small: $\left|\beta_{k}\right|^{2} \ll 1 \& \alpha_{k} \simeq 1$

$$
\dot{\beta}_{k}=\frac{\dot{\omega}_{k}}{2 \omega_{k}} e^{-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}} \alpha_{k} \Longrightarrow \beta_{k}(t)=\int_{0}^{t} \frac{\dot{\omega}_{k}\left(t^{\prime}\right)}{2 \omega_{k}\left(t^{\prime}\right)} e^{-2 i \int^{t^{\prime}} \omega_{k}\left(t^{\prime \prime}\right) d t^{\prime \prime}} d t^{\prime}
$$

Back to the Backreaction

Studying the backreaction of the perturbations on the chameleon background provides insight into these numerical surprises.

$$
\begin{aligned}
& \ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+\frac{1}{2} V^{\prime \prime \prime}(\bar{\phi})\left\langle\delta \phi^{2}\right\rangle=0 \quad \text { background equation with backreaction } \\
& \text { negligible }
\end{aligned} \begin{array}{r}
\left\langle\delta \phi^{2}\right\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\omega_{k}}\left(\left|\beta_{k}\right|^{2^{\prime \prime}}+\operatorname{Re}\left[\alpha_{k} \beta_{k}^{*} e^{\left.\left.-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}\right]\right)} \begin{array}{l}
\text { Bogoliubov } \\
\text { expansion }
\end{array}\right.\right.
\end{array}
$$

We know that the occupation numbers are small: $\left|\beta_{k}\right|^{2} \ll 1 \& \alpha_{k} \simeq 1$

$$
\begin{aligned}
& \dot{\beta}_{k}=\frac{\dot{\omega}_{k}}{2 \omega_{k}} e^{-2 i \int^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}} \alpha_{k} \Longrightarrow \beta_{k}(t)=\int_{0}^{t} \frac{\dot{\omega}_{k}\left(t^{\prime}\right)}{2 \omega_{k}\left(t^{\prime}\right)} e^{-2 i \int^{t^{\prime}} \omega_{k}\left(t^{\prime \prime}\right) d t^{\prime \prime}} d t^{\prime} \\
& \left\langle\delta \phi^{2}\right\rangle(t)=\int_{0}^{t} \int_{\underbrace{r e c a l l ~ t h a t ~ w e ~ i m p o s e ~} \mathbb{R} \text { cut-off }}^{\int_{t^{\prime}} \frac{d^{3} k}{(2 \pi)^{3}} \frac{V^{\prime \prime \prime}\left[\bar{\phi}\left(t^{\prime}\right)\right] \dot{\bar{\phi}}\left(t^{\prime}\right)}{2 \omega_{k}(t) \omega_{k}^{2}\left(t^{\prime}\right)} \cos \left[2 \int_{k}^{t} \omega_{k}\left(t^{\prime \prime}\right) d t^{\prime \prime}\right] d t^{\prime} .}
\end{aligned}
$$

This is the same nonlocal "dissipative" correction derived using in-in formalism by Boyanovsky, de Vega, Holman, Lee \& Singh (I994).

Back to the Backreaction

We now have a new equation of motion for the spatially averaged chameleon field: $\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})+D(t)=0$

$$
\begin{array}{r}
\ddot{\bar{\phi}}+V^{\prime}(\bar{\phi})-\frac{V^{\prime \prime \prime}[\bar{\phi}(t)]}{16 \pi^{2}} \int_{\theta}^{t} V^{\prime \prime \prime}\left[\bar{\phi}\left(t^{\prime}\right)\right] \dot{\bar{\phi}}\left(t^{\prime}\right) \operatorname{Ci}\left[2 k_{\mathrm{IR}}\left(t-t^{\prime}\right)\right] d t^{\prime}=0 \\
t_{\min } \simeq t_{b}-M / \dot{\phi} \quad \operatorname{Ci}(x) \equiv-\int_{x}^{\infty} \frac{\cos y}{y} d y \simeq \gamma_{E}+\ln (x) \text { for } x \ll 1
\end{array}
$$

Othe "dissipation" term $D(t)$ is nonlocal; it has memory
O $D(t)$ is strongly peaked near the bounce
Obefore the bounce, $k_{\mathrm{IR}}\left(t-t^{\prime}\right) \ll 1$ and $D(t)$ acts like a friction term; it has the same sign as $\bar{\phi}$ and it slows the chameleon down.

Obut unlike friction, $D(t)$ does not decrease as the chameleon slows down. $D(t)$ is more like a potential, and it can turn the chameleon around!
Ofor a time after the bounce, $D(t)$ is negative even though $\dot{\bar{\phi}}>0$; like a potential, $D(t)$ returns some energy to the rebounding chameleon.

A new potential from perturbations

With some manipulation, we can see that the perturbation backreaction acts like a new potential as $\phi \rightarrow \phi_{\text {min }}$.

$$
\ddot{\vec{\phi}}+V^{\prime}(\bar{\phi})+D(t)=0
$$

$$
D(t)=-\frac{V^{\prime \prime \prime}[\bar{\phi}(t)]}{16 \pi^{2}} \int_{t_{\min }}^{t}\left[\frac{d}{d t^{\prime}} V^{\prime \prime}\left[\bar{\phi}\left(t^{\prime}\right)\right]\right]\left\{\gamma_{E}+\ln \left[2 k_{\mathrm{IR}}\left(t-t^{\prime}\right)\right]\right\} d t^{\prime}
$$

Integrate by parts, and approx. $\int_{t_{\min }}^{t} \frac{V^{\prime \prime}\left[\bar{\phi}\left(t^{\prime}\right)\right]}{t-t^{\prime}} d t^{\prime} \simeq V^{\prime \prime}[\bar{\phi}(t)] \int_{t_{\min }}^{t} \frac{d t^{\prime}}{t-t^{\prime}}$

$$
D(t) \simeq-\frac{V^{\prime \prime \prime}[\bar{\phi}(t)]}{16 \pi^{2}}\{V^{\prime \prime}[\bar{\phi}(t)]-\underset{\text { small }}{\left.V^{\prime \prime}\left[\bar{\phi}\left(t_{\text {min }}\right)\right]\right\}}\{\gamma_{E}+\underset{\underbrace{\ln }_{\text {nearly constant }}\left[2 k_{\text {IR }}\left(t-t_{\text {min }}\right)\right]\}}{ }
$$

$$
D(t) \equiv V_{D}^{\prime}(\bar{\phi})=\kappa V^{\prime \prime \prime}(\bar{\phi}) V^{\prime \prime}(\bar{\phi})
$$

$$
V_{D}(\phi)=\frac{\kappa}{2}\left[V^{\prime \prime}(\bar{\phi})\right]^{2}
$$

$$
0.02 \lesssim \kappa \lesssim 0.05
$$

calibrate using numerical results
For $\phi \lesssim M, V_{D}(\phi)$ dominates over the chameleon's bare potential!

New Models for a New Potential

$V_{D}(\phi)=\frac{\kappa}{2}\left[V^{\prime \prime}(\bar{\phi})\right]^{2}$ controls the chameleon's motion.
Predict when the chameleon bounces: $V_{D}\left(\phi_{b}\right)=\dot{\phi}_{i}^{2} / 2$

New Models for a New Potential

$V_{D}(\phi)=\frac{\kappa}{2}\left[V^{\prime \prime}(\bar{\phi})\right]^{2}$ controls the chameleon's motion.
Predict when the chameleon bounces: $V_{D}\left(\phi_{b}\right)=\dot{\phi}_{i}^{2} / 2$
Predict the peak wavenumber in the perturbation energy spectrum:
$\Delta t=2 \sqrt{\frac{2 V_{D}^{\prime \prime}\left(\phi_{b}\right)}{V_{D}^{\prime}\left(\phi_{b}\right) V_{D}^{\prime \prime \prime}\left(\phi_{b}\right)}}=\frac{2 \sqrt{2}}{\sqrt{V_{D}^{\prime \prime}\left(\phi_{b}\right)}}$
$k_{\text {peak }}=\frac{\dot{\phi}}{M}\left(\frac{M}{\phi_{b}}\right)^{3} \simeq 0.25 \frac{\dot{\phi}}{M} \ln ^{3 / 2}\left[\frac{\dot{\phi}_{i}^{2}}{16 \kappa M^{4}}\right]$

High-Energy Chameleons

$$
k_{\text {peak }}=0.7 \frac{\dot{\phi}}{M}\left(\frac{M}{\phi_{b}}\right)^{3} \simeq 0.18 \frac{\dot{\phi}}{M} \ln ^{3 / 2}\left[\frac{2 \dot{\phi}_{i}^{2}}{M^{4}}\right]
$$

Summary: A Chameleon Catastrophe AE, Barnaby, Burrage, Huang in prep.

What happens when you kick a chameleon? It hits its bare potential at a fatal velocity, and then it shatters into pieces!
The chameleon's interaction with standard model particles hurtles it toward the minimum of its effective potential.

- Chameleons with $\beta>1.8$ surf toward $\phi_{\min }$
- $\beta<0.42$ and a finely tuned ϕ_{i} is needed to avoid impact
- At impact, $\dot{\phi} \gtrsim \mathrm{GeV}^{2}$ and $\Omega_{\dot{\phi}} \lesssim 1 /\left(6 \beta^{2}\right)$

Because $\dot{\phi} \gg M^{2}$, the rebound is highly nonadiabatic, and perturbations are excited.

- Most (maybe all?) the chameleon's energy goes into perturbations.
- The perturbations have wavenumbers $k \gtrsim 10^{13} \mathrm{GeV}$
- The perturbations interact with themselves and with matter: the final state is unknown.
- Chameleons demonstrate how the presence of an extreme hierarchy of scales can challenge a theory's stability. Are there other examples?

