Structure Beyond the Horizon: Inflationary Origins of the Cosmic Power Asymmetry

Adrienne Erickcek California Institute of Technology

In collaboration with Sean Carroll and Marc Kamionkowski

"A Hemispherical Power Asymmetry from Inflation" Phys. Rev. D in press [arXiv:0806.0377] "Superhorizon Perturbations and the CMB" Phys. Rev. D **78** 083012 (2008) [arXiv:0808.1570]

Outline

I. Power Asymmetry from Superhorizon Structure

- What power asymmety?
- How can we make one?

II. Superhorizon Perturbations and the CMB

If there were superhorizon structures, how would we know?
Bad news...

III. The Curvaton Alternative

What went wrong, and how do we fix it?What's a curvaton anyway?

IV. A Power Asymmetry from the Curvaton

- How can we make a power asymmetry?
- Does it work?
- How do we test it?

A Hemispherical Power Asymmety

Simulated maps courtesy of H. K. Eriksen A. L. Erickcek Structure Beyon

A Hemispherical Power Asymmety

Asymmetric

A Hemispherical Power Asymmety

Asymmetric

A Power Asymmety?

Isotropic or Asymmetric?

WMAP First Year Low-Resolution Map

Image from Eriksen, et al. astro-ph/0307507

A. L. Erickcek

There is a power asymmetry on large angular Eriksen, Hansen, Banday, Gorski, Lilje 2004 scales in the WMAP 1st year data. $\ell = 5 - 40$

Low to high ratio of power in hemisphere centered on disk to power in opposite hemisphere

A. L. Erickcek

There is a power asymmetry on large angular Eriksen, Hansen, Banday, Gorski, Lilje 2004 scales in the WMAP 1st year data. $\ell \stackrel{\scriptscriptstyle +}{=} 5 - 40$

A. L. Erickcek

There is a power asymmetry on large angular Eriksen, Hansen, Banday, Gorski, Lilje 2004

- Power asymmetry is maximized when the "equatorial" plane is tilted with respect to the Galactic plane: "north" pole at (l, b) = (237°, -10°).
- Only 0.7% of simulated symmetric maps contain this much asymmetry.

The amplitude of quantum fluctuations depends on the background value of the inflaton field.

 $P_{\Psi} = \frac{2}{9k^3} \left[\frac{H(\phi)^2}{\dot{\phi}} \right]^2 \Big|_{k=aH}$ Power Spectrum of Potential Fluctuations $ds^2 = -(1+2\Psi)dt^2 + a^2(t)\delta_{ij}(1-2\Psi)dx^i dx^j$

A modulation amplitude
$$A \simeq 0.12 \Longrightarrow \frac{\Delta P_{\Psi}(k)}{P_{\Psi}(k)_{360^{\circ}}} \simeq \pm 0.20$$

Generating this much asymmetry requires a **BIG** supermode.

- Perturbations with different wavelengths are very weakly coupled.
- The fluctuation power is not very sensitive to $\phi \iff n_s \simeq 1$.

$$\frac{\Delta P_{\Psi}}{P_{\Psi}} = -2\sqrt{\frac{\pi}{\epsilon}}(1-n_s)\frac{\Delta\phi}{m_{\rm Pl}}$$

A modulation amplitude
$$A \simeq 0.12 \Longrightarrow \frac{\Delta P_{\Psi}(k)}{P_{\Psi}(k)_{360^{\circ}}} \simeq \pm 0.20$$

Generating this much asymmetry requires a **BIG** supermode.

- Perturbations with different wavelengths are very weakly coupled.
- The fluctuation power is not very sensitive to $\phi \iff n_s \simeq 1$.

$$\frac{\Delta P_{\Psi}}{P_{\Psi}} = -2\sqrt{\frac{\pi}{\epsilon}}(1-n_s)\frac{\Delta \phi}{m_{\rm F}}$$

$$\Delta \phi =$$

 H_0^-

A. L. Erickcek

 $\Delta \Psi \Longrightarrow \Delta T$

Surely the resulting temperature dipole would be far too large?

Structure Beyond the Horizon: Fall 2008

Superhorizon Perturbations and the Cosmic Microwave Background

In an Einstein - deSitter Universe, a superhorizon perturbation induces no CMB dipole. Grishchuk, Zel'dovich 1978

• A superhorizon mode: $\Psi(\vec{x}) \simeq \Psi_{\rm SM} | \vec{k} \cdot \vec{x} |$

- The SW dipole: $\frac{\Delta T}{T} = \frac{1}{3} \Psi_{\rm SM} \left[\vec{k} \cdot \vec{x}_{\rm dec} \right]$
- The Doppler dipole: $\frac{\Delta T}{T} = -\frac{1}{3} \Psi_{\rm SM} \left[\vec{k} \cdot \vec{x}_{\rm dec} \right]$

• Since Ψ is constant, there is no ISW effect.

In an Einstein - deSitter Universe, a superhorizon perturbation induces no CMB dipole. Grishchuk, Zel'dovich 1978 • A superhorizon mode: $\Psi(\vec{x}) \simeq \Psi_{SM} \begin{bmatrix} \vec{k} \cdot \vec{x} \end{bmatrix}$

- The SW dipole: $\frac{\Delta T}{T} = \frac{1}{3} \Psi_{\rm SM} \left[\vec{k} \cdot \vec{x}_{\rm dec} \right]$
- The Doppler dipole: $\frac{\Delta T}{T} = -\frac{1}{3} \Psi_{\rm SM} \left[\vec{k} \cdot \vec{x}_{\rm dec} \right]$

 \bullet Since Ψ is constant, there is no ISW effect.

Well that's cute.

But the situation is much more complicated in a Universe like ours!

The Evolving Potential in ΛCDM

The Evolving Potential in ΛCDM

A. L. Erickcek

The Dipole Cancels!

Adiabatic superhorizon perturbation: $\Psi(\vec{x}) = \Psi_{\rm SM} \left[\vec{k} \cdot \vec{x} \right]$

$$kH_0^{-1} \ll 1$$

Temperature

anisotropy:

$$\frac{\Delta T}{T}(\hat{n}) = \delta_1 \Psi_{\rm SM} \left[\vec{k} \cdot \vec{x}_{\rm dec} \right]$$

includes SW, Doppler and ISW anisotropies

The Dipole Cancels!

A. L. Erickcek

The Dipole Cancels!

A. L. Erickcek

Structure Beyond the Horizon: Fall 2008

Matter and radiation aren't special...

The $\mathcal{O}(kx_{dec})$ terms in ΔT for adiabatic perturbations cancel in flat universes that contain

- matter
- radiation
- cosmological constant
- What if there's something else?

Matter and radiation aren't special...

The $\mathcal{O}(kx_{dec})$ terms in ΔT for adiabatic perturbations cancel

in flat universes that contain

- matter
- radiation
- cosmological constant

What if there's something else? $H^2(a) = 1$

exotic fluid $w \geq 1/3$ dominates early universe

$$H_0^2 \left[\frac{\stackrel{\checkmark}{\Omega_X}}{a^{3(1+w)}} + \Omega_\Lambda \right]$$

cosmological constant

Matter and radiation aren't special...

exotic fluid

 $w \geq 1/3$

dominates early universe

cosmological

constant

The $\mathcal{O}(kx_{dec})$ terms in ΔT for adiabatic perturbations cancel

in flat universes that contain

- matter
- radiation
- cosmological constant

What if there's something else? $H^2(a) = H_0^2 \left[\frac{\Omega_X}{a^{3(1+w)}} + \Omega_\Lambda \right]$

The dipole terms still cancel for adiabatic perturbations!

Is there a physical reason for dipole cancellation in flat universes with superhorizon adiabatic perturbations?

• special synchronous gauge: metric is FRW + $O(k^2 H_0^{-2})$

Hirata and Seljak 2005 • galaxies have no peculiar velocity in synchronous gauge • no $\mathcal{O}(kx_{dec})$ temperature anisotropies

A. L. Erickcek

A single superhorizon mode: $\Psi(\vec{x}, t) = \Psi_{SM}(t) \sin[\vec{k} \cdot \vec{x} + \varpi]$ $kH_0^{-1} \ll 1$ phase of our

location

A. L. Erickcek

Structure Beyond the Horizon: Fall 2008

14
Beyond the Dipole

Beyond the Dipole

The Quadrupole Constraint

- Supermode: $\Psi(\vec{x},t) = \Psi_{\rm SM}(t) \sin[\vec{k} \cdot \vec{x} + \varpi]$ phase of our location
- Recall the motivation: $\Delta \phi \implies$ power asymmetry

 $\Delta \phi \Longrightarrow \Delta \Psi \Longrightarrow \Delta T$

A. L. Erickcek

The Quadrupole Constraint

Supermode: $\Psi(\vec{x},t) = \Psi_{\rm SM}(t) \sin[\vec{k} \cdot \vec{x} + \varpi]$ phase of our location Recall the motivation: $\Delta \phi \implies$ power asymmetry $\Delta \phi \Longrightarrow \Delta \Psi \Longrightarrow \Delta T$ The supermode induces a CMB quadrupole: $\delta_2 = 0.33$ $a_{20} = -\sqrt{\frac{4\pi}{5}} (kx_{\rm d})^2 \delta_2 \frac{\sin \varpi}{2} \Psi_{\rm SM}(t_{\rm d})$ Quadrupole Constraint: $\Delta \Psi(kx_{\rm d}) |\tan \varpi| \lesssim 5.8 Q$ x_{d} maximum allowed $|a_{20}|$ $\mathcal{Q} \lesssim 3\sqrt{C_2} \simeq 1.8 \times 10^{-5}$ $2x_{d}$ $\Delta \Psi \simeq (k x_{\rm d}) \Psi_{\rm SM} |\cos \varpi|$ distance to last scattering surface A. L. Erickcek Structure Beyond the Horizon: Fall 2008

15

The Quadrupole Constraint

Supermode: $\Psi(\vec{x},t) = \Psi_{\rm SM}(t) \sin[\vec{k}\cdot\vec{x}+\varpi]$ phase of our location location Recall the motivation: $\Delta \phi \implies$ power asymmetry $\Delta \phi \Longrightarrow \Delta \Psi \Longrightarrow \Delta T$ The supermode induces a CMB quadrupole: $\int_{1}^{\delta_{2}} \delta_{2} = 0.33$ $a_{20} = -\sqrt{\frac{4\pi}{5}}(kx_{\rm d})^2 \delta_2 \underbrace{\sin\varpi}_3 \Psi_{\rm SM}(t_{\rm d})$ Quadrupole Constraint: $\Delta \Psi(kx_{\rm d})$ tan $\varpi \lesssim 5.8Q$ x_{d} maximum allowed $|a_{20}|$ $\mathcal{Q} \lesssim 3\sqrt{C_2} \simeq 1.8 \times 10^{-5}$ $2x_{\rm d}$ $\Delta \Psi \simeq (k x_{\rm d}) \Psi_{\rm SM} |\cos \varpi|$ Quadrupole vanishes if $\varpi = 0$. distance to last scattering surface 15 A. L. Erickcek Structure Beyond the Horizon: Fall 2008

phase of our Supermode: $\Psi(\vec{x}, t) = \Psi_{SM}(t) \sin[\vec{k} \cdot \vec{x} + \varpi]$ location The supermode induces a CMB octupole: $\delta_3 = 0.35$ $a_{30} = -\sqrt{\frac{4\pi}{7}} (kx_{\rm d})^3 \delta_3^2 \frac{\cos \varpi}{15} \Psi_{\rm SM}(t_{\rm d})$ **Octupole Constraint:** $\Delta \Psi (kx_{\rm d})^2 \lesssim 32\mathcal{O} - |a_{30}|$ x_{d} $\mathcal{O} \lesssim 3\sqrt{C_3} \simeq 2.7 \times 10^{-5}$ $2x_{\rm d}$ $\Delta \Psi \simeq (k x_{\rm d}) \Psi_{\rm SM} |\cos \varpi|$ Constraint is phase-independent. distance to last scattering surface Evade constraint by decreasing kx_{d} ? Not if we want linearity beyond horizon! $|\Psi| < 1 \Longrightarrow \Delta \Psi \lesssim k x_{\rm d}$ 16 A. L. Erickcek Structure Beyond the Horizon: Fall 2008

A. L. Erickcek

Part III The Curvaton Alternative

Mollerach 1990; Linde, Mukhanov 1997; Lyth, Wands 2002; Moroi, Takahashi 2001; and others...

The Curvaton to the Rescue!

The problem with the inflaton model is two-fold:

- The fluctuation power is only weakly dependent on the background value. > $\Delta P \propto (1 - n_s) \Delta \phi$
 - A small power asymmetry requires a large fluctuation in ϕ .
- The inflaton dominates the energy density of the universe, so a "supermode" in the inflaton field generates a huge potential perturbation.
 - CMB octupole places upper bound on $\Delta \Psi$.
 - $\blacktriangleright \Delta P \propto \Delta \phi \propto \Delta \Psi ~~$ with no wiggle room.

The Curvaton to the Rescue!

The problem with the inflaton model is two-fold:

- The fluctuation power is only weakly dependent on the background value. > $\Delta P \propto (1 - n_s) \Delta \phi$
 - A small power asymmetry requires a large fluctuation in ϕ .
- The inflaton dominates the energy density of the universe, so a "supermode" in the inflaton field generates a huge potential perturbation.
 - CMB octupole places upper bound on $\Delta \Psi$.
 - $\blacktriangleright \Delta P \propto \Delta \phi \propto \Delta \Psi ~~$ with no wiggle room.

The solution: the primordial fluctuations could be generated by a subdominant scalar field, the curvaton.

- The fluctuation power depends strongly on the background curvaton value.
- The CMB constraints on $\Delta \Psi$ do not directly constrain ΔP . There is a new free parameter: the fraction of energy in the curvaton.

• The inflaton still dominates the energy density and drives inflation. • The curvaton (σ) is a subdominant light scalar field during inflation. $V(\sigma) = \frac{1}{2}m_{\sigma}^2\sigma^2$ with $m_{\sigma} \ll H_{inf}(\phi)$ and $\rho_{\sigma} \ll \rho_{\phi}$ potential $p_{\sigma} \ll \rho_{\phi}$ subdominant

• The inflaton still dominates the energy density and drives inflation. • The curvaton (σ) is a subdominant light scalar field during inflation. $V(\sigma) = \frac{1}{2}m_{\sigma}^{2}\sigma^{2}$ with $m_{\sigma} \ll H_{inf}(\phi)$ and $\rho_{\sigma} \ll \rho_{\phi}$ potential $\rho_{\sigma} \ll \rho_{\phi}$ subdominant

• There are quantum fluctuations in both the inflaton and curvaton.

$$(\delta\phi)_{\rm rms} = (\delta\sigma)_{\rm rms} = \frac{H_{\rm inf}}{2\pi} \ll \bar{\sigma} - \frac{homogeneous}{background} value$$
 quantum fluctuations

 The inflaton still dominates the energy density and drives inflation.
 The curvaton (σ) is a subdominant light scalar field during inflation. *V*(σ) = ¹/₂m²_σσ² with m_σ ≪ H_{inf}(φ) and ρ_σ ≪ ρ_φ *potential* potential *m_σ*²σ² with m_σ ≪ *H_{inf}*(φ) and *ρ_σ* ≪ ρ_φ *ight scalar field subdominant*
 There are quantum fluctuations in both the inflaton and curvaton. (δφ)_{rms} = (δσ)_{rms} = <sup>*H_{inf}*/_{2π} ≪ σ̄ ← ^{homogeneous}/_{background value}

 Outside the horizon, δσ and σ̄ obey the same equation of motion:
</sup>

 $\ddot{\bar{\sigma}} + 3H\dot{\bar{\sigma}} + V'(\bar{\sigma}) = 0$

$$\delta\ddot{\sigma} + 3H\delta\dot{\sigma} + \left[\frac{k^2}{a^2} + V''(\bar{\sigma})\right]\delta\sigma = 0$$

A. L. Erickcek

The inflaton still dominates the energy density and drives inflation. • The curvaton (σ) is a subdominant light scalar field during inflation. $V(\sigma) = \frac{1}{2}m_{\sigma}^2\sigma^2$ with $m_{\sigma} \ll H_{\inf}(\phi)$ and $\rho_{\sigma} \ll \rho_{\phi}$ potential $p_{\sigma} \ll \rho_{\phi}$ subdominant • There are quantum fluctuations in both the inflation and curvation. $(\delta\phi)_{\rm rms} = (\delta\sigma)_{\rm rms} = \frac{H_{\rm inf}}{2\pi} \ll \bar{\sigma} \leftarrow \frac{homogeneous}{background value}$ quantum fluctuations • Outside the horizon, $\delta\sigma$ and $\overline{\sigma}$ obey the same equation of motion: $\ddot{\bar{\sigma}} + 3H\dot{\bar{\sigma}} + V'(\bar{\sigma}) = 0$ $m_{\sigma}^{2}\bar{\sigma}$ For superhorizon perturbations, $\frac{\delta\sigma}{\bar{\sigma}}$ is conserved both during and $\bar{\sigma}$ $\delta\ddot{\sigma} + 3H\delta\dot{\sigma} + \left[\frac{k^2}{a^2} + V''(\bar{\sigma})\right]\delta\sigma = 0$

A. L. Erickcek

The Curvaton after Inflation

The curvaton equation of motion: $\ddot{\sigma} + 3H\dot{\sigma} + m_{\sigma}^2\sigma^2 = 0$ • As long as $m_{\sigma} \ll H$, the curvaton is frozen: $\dot{\sigma} = 0$ • When $m_{\sigma} \simeq H$, the curvaton oscillates: $\langle \dot{\sigma}^2 \rangle = \langle m_{\sigma}^2 \sigma^2 \rangle$ $p = \frac{1}{2}\dot{\sigma}^2 - \frac{1}{2}m_{\sigma}^2\sigma^2 \implies \langle p \rangle = 0$

The Curvaton after Inflation

The curvaton equation of motion: $\ddot{\sigma} + 3H\dot{\sigma} + m_{\sigma}^2\sigma^2 = 0$ • As long as $m_{\sigma} \ll H$, the curvaton is frozen: $\dot{\sigma} = 0$ • When $m_{\sigma} \simeq H$, the curvaton oscillates: $\langle \dot{\sigma}^2 \rangle = \langle m_{\sigma}^2 \sigma^2 \rangle$ $p = \frac{1}{2}\dot{\sigma}^2 - \frac{1}{2}m_{\sigma}^2\sigma^2 \implies \langle p \rangle = 0$

While the curvaton oscillates, it behaves as matter: $\rho_{\sigma} \propto a^{-3}$ Meanwhile, $\rho_r \propto a$, $^{-4}$ so ρ_{σ}/ρ_r increases.

A. L. Erickcek

Growth of a Curvature Perturbation

Curvature perturbation: $\zeta = -\Psi - H \frac{\delta \rho}{\dot{\rho}}$ Superhorizon ζ is not conserved due to curvaton isocurvature fluctuation, but $\zeta_i = -\Psi - H \frac{\delta \rho_i}{\dot{\rho}_i}$ is constant. $\zeta = \frac{4\rho_r \zeta_r + 3\rho_\sigma \zeta_\sigma}{4\rho_r + 3\rho_\sigma}$ As ρ_σ / ρ_r increases, ζ evolves.

Growth of a Curvature Perturbation

21

Power Spectrum from the Curvaton

Fluctuations in the curvaton field become curvature perturbations.

$$\zeta = R\zeta_{\sigma} = \frac{R}{3} \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} \quad \text{where} \quad R \simeq \frac{3}{4} \frac{\rho_{\sigma}}{\rho_{r}} \Big|_{\substack{\Gamma = H \\ \text{evaluated just prior} \\ \text{from curvaton}}} \quad \text{and} \quad R \ll 1 \\ \substack{\text{keep the curvaton} \\ \text{subdominant} \\ \text{subdominant}}$$

Power Spectrum from the Curvaton

Fluctuations in the curvaton field become curvature perturbations.

$$\begin{aligned} \zeta &= R\zeta_{\sigma} = \frac{R}{3} \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} \quad \text{where} \quad R \simeq \frac{3}{4} \frac{\rho_{\sigma}}{\rho_{r}} \Big|_{\substack{\Gamma = H \\ \text{evaluated just prior} \\ \text{subdominant}}} & \text{and} \quad R \ll 1 \\ \substack{\text{keep the curvator} \\ \text{subdominant} \\ \text{subdominant}} \end{aligned}$$

A. L. Erickcek

Power Spectrum from the Curvaton

Fluctuations in the curvaton field become curvature perturbations.

$$\begin{aligned} \zeta &= R\zeta_{\sigma} = \frac{R}{3} \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} \quad \text{where} \quad R \simeq \frac{3}{4} \frac{\rho_{\sigma}}{\rho_{r}} \Big|_{\substack{\Gamma = H \\ \text{evaluated just prior} \\ \text{subdominant}}} & \text{and } R \ll 1 \\ \substack{\text{keep the curvator} \\ \text{subdominant} \\ \text{subdominant}} \\ \text{Curvaton energy:} \quad \rho_{\sigma} &= \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \Longrightarrow \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} = 2 \left(\frac{\delta \sigma}{\overline{\sigma}} \right) + \left(\frac{\delta \sigma}{\overline{\sigma}} \right)^{2} \\ \text{Quantum} \\ \text{fluctuations:} \quad (\delta \sigma)_{\text{rms}} = \frac{H_{\text{inf}}}{2\pi} \ll \overline{\sigma} \\ \text{During matter domination, } \Psi = -\frac{3}{5}\zeta. \\ \text{potential perturbation at decoupling} \\ \hline P_{\Psi,\sigma} \propto (\overline{\sigma}_{*})^{4} \left(\frac{H_{\text{inf}}}{\overline{\sigma}_{*}} \right)^{2} \end{aligned}$$

A. L. Erickcek

Power Asymmetry from the Curvaton

Fluctuations in the curvaton field become curvature perturbations.

$$\zeta = R\zeta_{\sigma} = \frac{R}{3} \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} \quad \text{where} \quad R \simeq \frac{3}{4} \frac{\rho_{\sigma}}{\rho_{r}} \Big|_{\substack{\Gamma = H \\ \text{evaluated just prior subdominant \\ \text{to curvator decay}}} \quad \text{and} \quad R \ll 1 \\ \substack{\text{keep the curvator subdominant } \\ \text{subdominant } \\ \text{subdominant } \\ \text{subdominant } \\ \text{curvaton energy:} \quad \rho_{\sigma} = \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \Longrightarrow \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} = 2 \left(\frac{\delta \sigma}{\bar{\sigma}}\right) + \left(\frac{\delta \sigma}{\bar{\sigma}}\right)^{2} \\ \text{Quantum } \\ \text{fluctuations:} \quad (\delta \sigma)_{\text{rms}} = \frac{H_{\text{inf}}}{2\pi} \ll \bar{\sigma} \\ \text{During matter domination, } \Psi = -\frac{3}{5}\zeta. \\ \text{potential perturbation at decoupling}} \\ \hline P_{\Psi,\sigma} \propto (\bar{\sigma}_{*})^{4} \left(\frac{H_{\text{inf}}}{\bar{\sigma}_{*}}\right)^{2} \quad \delta \bar{\sigma} \\ \hline \end{pmatrix}$$

A. L. Erickcek

Power Asymmetry from the Curvaton

Fluctuations in the curvaton field become curvature perturbations.

$$\zeta = R\zeta_{\sigma} = \frac{R}{3} \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} \quad \text{where} \quad R \simeq \frac{3}{4} \frac{\rho_{\sigma}}{\rho_{r}} \Big|_{\substack{\Gamma = H \\ \text{evaluated just prior subdominant \\ \text{to curvator decay}}} \quad \text{and} \quad R \ll 1 \\ \substack{\text{keep the curvator subdominant } \\ \text{subdominant } \\ \text{subdominant } \\ \text{subdominant } \\ \text{Curvaton energy:} \quad \rho_{\sigma} = \frac{1}{2} m_{\sigma}^{2} \sigma^{2} \Longrightarrow \frac{\delta \rho_{\sigma}}{\rho_{\sigma}} = 2 \left(\frac{\delta \sigma}{\overline{\sigma}}\right) + \left(\frac{\delta \sigma}{\overline{\sigma}}\right)^{2} \\ \text{Quantum } \\ \text{fluctuations:} \quad (\delta \sigma)_{\text{rms}} = \frac{H_{\text{inf}}}{2\pi} \ll \overline{\sigma} \\ \text{During matter domination, } \Psi = -\frac{3}{5}\zeta. \\ \text{potential perturbation at decoupling}} \\ \underbrace{\frac{\Delta P_{\Psi,\sigma}}{P_{\Psi,\sigma}} = 2\frac{\Delta \overline{\sigma}}{\overline{\sigma}}}_{\overline{\sigma}} \qquad \delta \overline{\sigma} \\ \underbrace{\frac{\Delta \overline{\rho}}{P_{\Psi,\sigma}} = 2\frac{\Delta \overline{\sigma}}{\overline{\sigma}}}_{\overline{\sigma}} \quad \delta \overline{\sigma} \\ \end{array}$$

A. L. Erickcek

Part IV A Power Asymmetry from the Curvaton

phase of our Curvaton supermode: location $\delta\bar{\sigma}(\vec{x},t) = \bar{\sigma}_{\rm SM}(t)\sin[\vec{k}\cdot\vec{x}+\vec{\omega}]$ $kH_0^{-1} \ll 1$ The curvaton supermode $\frac{\delta\bar{\sigma}}{\Delta\bar{\sigma}}$ generates a superhorizon potential fluctuation, but it is suppressed. $R\simeq rac{3
ho_\sigma}{4
ho}$ just prior to decay $\Psi = -\frac{\frac{1}{R}}{5} \left[2\left(\frac{\delta\bar{\sigma}}{\bar{\sigma}}\right) + \left(\frac{\delta\bar{\sigma}}{\bar{\sigma}}\right)^2 \right] - \frac{\delta\rho_{\sigma}}{\rho}$

The potential perturbation is not sinusoidal!

• The CMB quadrupole and octupole have complicated ϖ dependencies. • There is no phase that eliminates the quadrupole for all values of $\overline{\sigma}_{SM}$.

• The CMB quadrupole and octupole have complicated ϖ dependencies. • There is no phase that eliminates the quadrupole for all values of $\bar{\sigma}_{SM}$.

The CMB quadrupole implies an upper bound:

$$R\left(\frac{\Delta\bar{\sigma}}{\bar{\sigma}}\right)^{2} \lesssim \frac{5}{2}(5.8\mathcal{Q}) \text{ for } \varpi = 0$$

$$Most \text{ other phases}$$

$$\left(\frac{\Delta P_{\Psi}}{P_{\Psi}}\right)$$

$$give similar bounds$$

80.0 Excluded by Quadrupole Excluded by Octupole 0.06 Not superhorizon ≃_{0.04} $\bar{\sigma}_{
m SM} = \bar{\sigma}$ 0.02 $\Delta \bar{\sigma} / \bar{\sigma} = 0.2$ 0 π/2 $3\pi/2$ 1 2π Π \mathcal{D} A. L. Erickcek 25 Structure Beyond the Horizon: Fall 2008

Perturbation Mixture

Both the curvaton and the inflaton may contribute to P_{Ψ} .

$$\epsilon \equiv \frac{m_{\rm Pl}^2}{16\pi} \begin{bmatrix} V'(\phi) \\ V(\phi) \end{bmatrix}^2 \quad (\delta\phi)_{\rm rms} = (\delta\sigma)_{\rm rms} = \frac{H_{\rm inf}}{2\pi} \qquad R \simeq \frac{3}{4} \left. \frac{\rho_\sigma}{\rho_r} \right|_{\Gamma=H}$$

$$P_{\Psi,\phi} = \left(\frac{9}{10}\right)^2 \frac{8\pi}{9\epsilon} \left(\frac{H_{\rm inf}^2}{k^3 m_{\rm Pl}^2}\right) \qquad P_{\Psi,\sigma} = \left(\frac{2R}{5}\right)^2 \frac{H_{\rm inf}^2}{2k^3 \bar{\sigma}^2}$$

Perturbation Mixture

Both the curvaton and the inflaton may contribute to P_{Ψ} .

$$\epsilon \equiv \frac{m_{\rm Pl}^2}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^2 \quad (\delta\phi)_{\rm rms} = (\delta\sigma)_{\rm rms} = \frac{H_{\rm inf}}{2\pi} \qquad R \simeq \frac{3}{4} \frac{\rho_{\sigma}}{\rho_r} \Big|_{\Gamma = H}$$

$$P_{\Psi,\phi} = \left(\frac{9}{10}\right)^2 \frac{8\pi}{9\epsilon} \left(\frac{H_{\rm inf}^2}{k^3 m_{\rm Pl}^2}\right) \qquad P_{\Psi,\sigma} = \left(\frac{2R}{5}\right)^2 \frac{H_{\rm inf}^2}{2k^3 \bar{\sigma}^2}$$
Define a new parameter: $\xi \equiv \frac{P_{\Psi,\sigma}}{P_{\Psi,\sigma} + P_{\Psi,\phi}}$

$$\xi = \frac{\tilde{\epsilon}}{\tilde{\epsilon} + 1} \quad \tilde{\epsilon} \equiv \frac{1}{9\pi} \left(\frac{m_{\rm Pl}}{\bar{\sigma}}\right)^2 R^2 \epsilon$$

 $\bar{\sigma} \ll m_{\rm Pl} \Longrightarrow \xi \simeq 1$ $\bar{\sigma} \lesssim m_{\rm Pl} \Longrightarrow \xi \ll 1$

Perturbation Mixture

Both the curvaton and the inflaton may contribute to P_{Ψ} .

$$\epsilon \equiv \frac{m_{\mathrm{Pl}}^{2}}{16\pi} \begin{bmatrix} V'(\phi) \\ V(\phi) \end{bmatrix}^{2} & (\delta\phi)_{\mathrm{rms}} = (\delta\sigma)_{\mathrm{rms}} = \frac{H_{\mathrm{inf}}}{2\pi} \\ quantum fluctuations & V = \frac{1}{2\pi} \\ P_{\Psi,\phi} = \left(\frac{9}{10}\right)^{2} \frac{8\pi}{9\epsilon} \left(\frac{H_{\mathrm{inf}}^{2}}{k^{3}m_{\mathrm{Pl}}^{2}}\right) & P_{\Psi,\sigma} = \left(\frac{2R}{5}\right)^{2} \frac{H_{\mathrm{inf}}^{2}}{2k^{3}\bar{\sigma}^{2}} \\ Define a new parameter: \quad \xi \equiv \frac{P_{\Psi,\sigma}}{P_{\Psi,\sigma} + P_{\Psi,\phi}} \\ \xi = \frac{\tilde{\epsilon}}{\tilde{\epsilon} + 1} \quad \tilde{\epsilon} \equiv \frac{1}{9\pi} \left(\frac{m_{\mathrm{Pl}}}{\bar{\sigma}}\right)^{2} R^{2}\epsilon \\ \bar{\sigma} \ll m_{\mathrm{Pl}} \Longrightarrow \xi \simeq 1 \\ \end{array}$$

A. L. Erickcek

 $\bar{\sigma} \lesssim m_{\rm Pl} \Longrightarrow \xi \ll 1$

Structure Beyond the Horizon: Fall 2008

J /

Constraining the Curvaton Model

Constraining the Curvaton Model

A. L. Erickcek

Structure Beyond the Horizon: Fall 2008

1

: 0.2

= 0.05

0.8

0.8
Constraining the Curvaton Model

Constraining the Curvaton Model

Constraining the Curvaton Model

Could the supermode be a quantum fluctuation?

A. L. Erickcek

Structure Beyond the Horizon: Fall 2008

A. L. Erickcek

Structure Beyond the Horizon: Fall 2008

A. L. Erickcek

Structure Beyond the Horizon: Fall 2008

There are indications that only large scales are asymmetric. • Asymmetry detected for $\ell = 5 - 40$. • Some analyses see reduced asymmetry for $\ell \gtrsim 100$. How could the asymmetry disappear at small scales? Only the perturbations from the curvaton are asymmetric; the inflaton perturbations are still statistically isotropic. Introduce scale dependence through $\xi \equiv \frac{P_{\Psi,\sigma}}{P_{\Psi,\sigma} + P_{\Psi,\phi}}$.

There are indications that only large scales are asymmetric. • Asymmetry detected for $\ell = 5 - 40$. • Some analyses see reduced asymmetry for $\ell \gtrsim 100$. How could the asymmetry disappear at small scales? Only the perturbations from the curvaton are asymmetric; the inflaton perturbations are still statistically isotropic. Introduce scale dependence through $\xi \equiv \frac{P_{\Psi,\sigma}}{P_{\Psi,\sigma} + P_{\Psi,\phi}}$.

• A feature in
$$V(\phi)$$
 Gordon 2007
 $\xi = \frac{\tilde{\epsilon}}{\tilde{\epsilon} + 1} \quad \tilde{\epsilon} \equiv \frac{1}{9\pi} \left(\frac{m_{\rm Pl}}{\bar{\sigma}}\right)^2 R^2 \epsilon$

There are indications that only large scales are asymmetric. • Asymmetry detected for $\ell = 5 - 40$. Donoghue and Donoghue 2005; • Some analyses see reduced asymmetry for $\ell \gtrsim 100$. Lew 2008. How could the asymmetry disappear at small scales? Only the perturbations from the curvaton are asymmetric; the inflaton perturbations are still statistically isotropic. $P_{\Psi,\sigma}$ Introduce scale dependence through $\xi \equiv \frac{P_{\Psi,\sigma}}{P_{\Psi,\sigma} + P_{\Psi,\phi}}$ • A feature in $V(\phi)$ Gordon 2007 $V(\phi)$ $\xi = \frac{\tilde{\epsilon}}{\tilde{\epsilon} + 1}$ $\tilde{\epsilon} \equiv \frac{1}{9\pi} \left(\frac{m_{\text{Pl}}}{\bar{\sigma}}\right)^2 R^2 \tilde{\epsilon}$ $\epsilon \to P_{\Psi,\phi} \to \xi \quad \epsilon \equiv \frac{m_{\rm Pl}^2}{16\pi} \left[\frac{V'(\phi)}{V(\phi)} \right]^2$ $V(\phi) \longrightarrow P_{\Psi} \longleftarrow$ A. L. Erickcek

There are indications that only large scales are asymmetric. • Asymmetry detected for $\ell = 5 - 40$. • Some analyses see reduced asymmetry for $\ell \gtrsim 100$. How could the asymmetry disappear at small scales? Only the perturbations from the curvaton are asymmetric; the inflaton perturbations are still statistically isotropic. $P_{\Psi,\sigma}$

Introduce scale dependence through $\xi \equiv \frac{\Gamma_{\Psi,\sigma}}{P_{\Psi,\sigma} + P_{\Psi,\phi}}$ • A feature in $V(\phi)$ Gordon 2007 $V(\phi)$

Isocurvature modes from curvaton?

- curvaton can produce isocurvature perturbations
- isocurvature perturbations contribute more on large scales
 Work in progress....

Summary: How to Generate the Power Asymmetry

There is a power asymmetry in the CMB.

present at the 99% confidence level
detected on large scales

Hansen, Banday, Gorski, 2004 Eriksen, Hansen, Banday, Gorski, Lilje 2004 Eriksen, Banday, Gorski, Hansen, Lilje 2007

 $1\Deltaar{\sigma}$

A superhorizon perturbation during inflation

generates a power asymmetry.

- also generates large-scale CMB temperature perturbations
- no dipole; quadrupole and octupole set limits. Erickcek, Carroll, Kamionkowski arXiv:0808.1570
- an inflaton perturbation is ruled out

 $\int \delta \sigma$

Summary: How to Generate the Power Asymmetry

There is a power asymmetry in the CMB.

present at the 99% confidence level
detected on large scales

Hansen, Banday, Gorski, 2004 Eriksen, Hansen, Banday, Gorski, Lilje 2004 Eriksen, Banday, Gorski, Hansen, Lilje 2007

Features of the Curvaton-Generated Power Asymmetry

- the produced asymmetry is scale-invariant, but it is possible to modify that
- ullet suppressed tensor-scalar ratio: $r \propto (1-\xi)$
- high non-Gaussianity: $f_{\rm NL}\gtrsim 50$

 $\delta \bar{\sigma}$