Astrometric Microlensing by Local Dark Matter Subhalos

Adrienne Erickcek CITA & Perimeter Institute

with Nicholas Law University of Toronto Dunlap Institute

> arXiv: 1007.4228 ApJ in press

Dark Matter Halos are Clumpy!

Via Lactea II

Aquarius

Diemand et al. 2008

High-resolution simulations of Galaxy-sized halos with billions of particles
 Aquarius halo has >200,000 resolved subhalos with $M_{
m sub}\gtrsim4 imes10^4M_{\odot}$

Adrienne Erickcek: AAS, January 13, 2010

Subhalos in our Neighborhood

Locations of Subhalos in Aquarius Simulation

Adrienne Erickcek: AAS, January 13, 2010

Subhalos are Gravitational Lenses

When galaxies produce multiple images of a quasar; subhalos can modify the properties of these images. Mao & Schneider 1998; Metcalf & Madau 2001; Chiba 2002; Dalal & Kochanek 2002 Keeton& Moustakas 2009; Congdon et al. 2010 Koopmans et al. 2002; Chen et al. 2007; Williams et al. 2008; More et al. 2009 Yonehara et al. 2003; Inoue & Chiba 2005; Zackrisson et al. 2008; Riehm et al. 2009

- we're looking for a dynamical signature from a local subhalo
 - subhalos are diffuse, so we need high-precision astrometry

Astrometric Microlensing

Star field over 4 years

We need a subhalo center to pass by a star with an impact parameter of ~10 arcseconds.

Lens virial mass: $5 \times 10^5 M_{\odot}$ Lens distance: 50 pc

Lensing with a General Profile

 $ho(r) \propto r^{-\gamma}$

The steepness of the density profile determines the shape of the image's path across the sky and the rate of its motion.

Adrienne Erickcek: AAS, January 13, 2010

High Precision Astrometry

Gaia is an ESO satellite scheduled to launch in late 2012.

 astrometric precision per epoch: ~35 microarcseconds for its brightest targets (~5 million stars)

SIM PlanetQuest was the top space mission recommended by NASA's Exoplanet Task Force.

 astrometric precision per epoch: I microarcsecond for planet-finding, 4 microarcseconds for general high-efficiency astrometry (~10,000 stars)

High Precision Astrometry

- Gaia is an ESO satellite scheduled to launch in late 2012.
- astrometric precision per epoch: ~35 microarcseconds for its brightest targets (~5 million stars)
- SIM PlanetQuest was the top space mission recommended by NASA's Exoplanet Task Force.
- astrometric precision per epoch: I microarcsecond for planet-finding, 4 microarcseconds for general high-efficiency astrometry (~10,000 stars)
- Ground-based telescopes have great potential.
- Keck can reach ~100 microarcsecond precision
- TMT is designed for 50 *microarcsecond* precision and could reach much higher precision (Cameron *et al.* 2009)

Adrienne Erickcek: AAS, January 13, 2010

Lensing Cross Sections

We define a lensing cross-section based on a minimum value for the lensing signal; all stars within this area will produce $S > S_{\min}$.

 $S_{\min} \simeq SNR \times 1.5\sigma_{inst}$

Motion of subhalo centerduring detection run

 $S > S_{\min}$

Lensing Cross Sections

We define a lensing cross-section based on a minimum value for the lensing signal; all stars within this area will produce $S > S_{\min}$.

 $S_{\min} \simeq SNR \times 1.5\sigma_{inst}$

Motion of subhalo centerduring detection run

 $S > S_{\min}$

Lens distance: 50 pc; Lens velocity: 200 km/s; Source Distance: 5 kpc

Adrienne Erickcek: AAS, January 13, 2010

Lensing Cross Sections

Lens distance: 50 pc;Lens velocity: 200 km/s; Source Distance: 5 kpc Adrienne Erickcek: AAS, January 13, 2010

Lensing Event Rates

We can combine the lensing cross sections with a subhalo mass function to calculate the fraction of the sky that is detectably lensed ($S>S_{\rm min}$) by a subhalo.

We derived a local subhalo mass function from the results of the Aquarius simulations.

Fraction of Sky Lensed by a Subhalo $\simeq 10^{-11} \left(\frac{S_{\min}}{5 \,\mu \text{as}}\right)^{-1.6}$ $(1.8 \leq \gamma \leq 2.0)$

But what if dark matter is clumpier?

Lensing Event Rates

We can combine the lensing cross sections with a subhalo mass function to calculate the fraction of the sky that is detectably lensed ($S>S_{\min}$) by a subhalo.

All the halo mass is contained within 0.1 pc of a subhalo center

Lens velocity: 200 km/s; Source Distance: 2 kpc

Detection with Targeted Observations

Finding a subhalo through astrometric microlensing is unlikely, but what if you know where to look?

Fermi may detect emission from dark matter annihilation in subhalos and could localize the center of emission down to a few sq. arcminutes.

Kuhlen et al. 2009

Lens distance: 50 pc; Lens velocity: 200 km/s; Source Distance: 5 kpc Adrienne Erickcek: AAS, January 13, 2010

Summary

Local subhalos deflect the light from background stars, producing a unique astrometric microlensing signature.

- only the innermost 0.1 pc of the subhalo can produce a signal
- the star's apparent motion depends on the subhalo density profile
- the image deflection is measured in microarcseconds -- we can do that!

To see a subhalo lensing event, we'd have to get lucky!

- nearly impossible to find a subhalo through lensing, unless subhalos are more numerous and/or more concentrated than expected
- if Fermi points the way, high-precision astrometry can follow; we can detect subhalos within 100 pc of us with (stripped) masses ≥ 1000 M_☉.
 For more details see Erickcek & Law 2011 (arXiv:1007.4228)

EXTRA SLIDES

Subhalo Density Profiles

Unfortunately, even the best simulations can only probe the density profiles of the largest subhalos ($M_{
m sub} \gtrsim 10^8 M_{\odot}$), and the inner 350 pc are unresolved.

• Via Lactea II: $\rho(r) \propto r^{-(\gamma \simeq 1.24)}$ for large subhalos. Diemand et al. 2008 • Aquarius: $\rho(r) \propto r^{-(\gamma < 1.7)}$ for large subhalos. Springel et al. 2008

• Simulations of first halos: Earth-mass halos at a redshift of 26 have $\rho(r) \propto r^{-(1.5 < \gamma < 2.0)}$ extending to within 20 AU of the Diemand et al. 2005; Ishiyama et al. 2010

We'll assume a "generalized NFW profile:"

$$\rho(r) = \frac{\rho_0}{\left(\frac{r}{r_0}\right)^{\gamma} \left(1 + \frac{r}{r_0}\right)^{3-\gamma}}$$

 r_0 is set by the concentration ho_0 is set by the virial mass

 $ho(r) \propto r^{-\gamma}$ $ho \propto r^{2-\gamma}$

 $r \ll r_0$

 $r \gg r_0$ $\rho(r) \propto r^{-3}$

The Signal We're Looking For

Adrienne Erickcek: AAS, January 13, 2010

The Signal We're Looking For

Adrienne Erickcek: AAS, January 13, 2010