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Planck Collaboration: Gravitational lensing by large-scale structures with Planck
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Fig. 6 Planck 2015 full-mission MV lensing potential power spectrum measurement, as well as earlier measurements using the
Planck 2013 nominal-mission temperature data (Planck Collaboration XVII 2014), the South Pole Telescope (SPT, van Engelen
et al. 2012), and the Atacama Cosmology Telescope (ACT, Das et al. 2014). The fiducial ⇤CDM theory power spectrum based on
the parameters given in Sect. 2 is plotted as the black solid line.

In addition to the priors above, we adopt the same sampling
priors and methodology as Planck Collaboration XIII (2015),†
using CosmoMC and camb for sampling and theoretical predic-
tions (Lewis & Bridle 2002; Lewis et al. 2000). In the ⇤CDM
model, as well as ⌦bh2 and ns, we sample As, ⌦ch2, and the
(approximate) acoustic-scale parameter ✓MC. Alternatively, we
can think of our lensing-only results as constraining the sub-
space of ⌦m, H0, and �8. Figure 7 shows the corresponding
constraints from CMB lensing, along with tighter constraints
from combining with additional external baryon acoustic oscil-
lation (BAO) data, compared to the constraints from the Planck
CMB power spectra. The contours overlap in a region of accept-
able Hubble constant values, and hence are compatible. To show
the multi-dimensional overlap region more clearly, the red con-
tours show the lensing constraint when restricted to a reduced-
dimensionality space with ✓MC fixed to the value accurately mea-
sured by the CMB power spectra; the intersection of the red and
black contours gives a clearer visual indication of the consis-
tency region in the ⌦m–�8 plane.

The lensing-only constraint defines a band in the ⌦m–�8
plane, with the well-constrained direction corresponding ap-
proximately to the constraint

�8⌦
0.25
m = 0.591 ± 0.021 (lensing only; 68 %). (13)

This parameter combination is measured with approximately
3.5% precision.

The dependence of the lensing potential power spectrum on
the parameters of the ⇤CDM model is discussed in detail in
† For example, we split the neutrino component into approximately

two massless neutrinos and one with
P

m⌫ = 0.06 eV, by default.

Appendix E; see also Pan et al. (2014). Here, we aim to use
simple physical arguments to understand the parameter degen-
eracies of the lensing-only constraints. In the flat ⇤CDM model,
the bulk of the lensing signal comes from high redshift (z > 0.5)
where the Universe is mostly matter-dominated (so potentials are
nearly constant), and from lenses that are still nearly linear. For
fixed CMB (monopole) temperature, baryon density, and ns, in
the ⇤CDM model the broad shape of the matter power spectrum
is determined mostly by one parameter, keq ⌘ aeqHeq / ⌦mh2.
The matter power spectrum also scales with the primordial am-
plitude As; keeping As fixed, but increasing keq, means that the
entire spectrum shifts sideways so that lenses of the same typ-
ical potential depth  lens become smaller. Theoretical ⇤CDM
models that keep `eq ⌘ keq �⇤ fixed will therefore have the same
number (proportional to keq �⇤) of lenses of each depth along
the line of sight, and distant lenses of the same depth will also
maintain the same angular correlation on the sky, so that the
shape of the spectrum remains roughly constant. There is there-
fore a shape and amplitude degeneracy where `eq ⇡ constant,
As ⇡ constant, up to corrections from sub-dominant changes in
the detailed lensing geometry, changes from late-time potential
decay once dark energy becomes important, and nonlinear ef-
fects. In terms of standard ⇤CDM parameters around the best-fit
model, `eq / ⌦0.6

m h, with the power-law dependence on ⌦m only
varying slowly with ⌦m; the constraint `eq / ⌦0.6

m h = constant
defines the main dependence of H0 on ⌦m seen in Fig. 7.

The argument above for the parameter dependence of the
lensing power spectrum ignores the e↵ect of baryon suppres-
sion on the small-scale amplitude of the matter power spectrum
(e.g., Eisenstein & Hu 1998). As discussed in Appendix E, this
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Parameter dependence

Figure 4: Derivatives of Cφφ
ℓ with respect to the same late universe parameters as in Fig. 3, showing

a large change in the power spectrum as the parameters are varied: the angular diameter

distance degeneracy is broken by lensing.

allowing each of these three parameters to be constrained from the CMB alone.
Constraining late universe parameters through lensing is a future application of CMB

experiments which measure the small-scale modes, and for experiments which measure small-
scale polarization in particular. As remarked in the introduction, in the limit of low noise and

high resolution, CMB polarization experiments can ultimately reconstruct the modes of φℓm
with high signal-to-noise across a wider range of angular scales (ℓ ! 1000) than are accessible
using CMB temperature alone. In the next few subsections, we will present forecasts for

parameter constraints from CMB lensing, using a Fisher matrix formalism described in detail
in App. B.

We include unlensed temperature and polarization power spectra (TT, EE, TE) in our
analysis and include the lensing information through the deflection angle power spectrum.

We do not use the lensed power spectra to avoid the complication of the correlation in their
errors between different ℓ values and with the error in Cφφ

ℓ . Using the lensed spectra and
neglecting these correlations could lead to overly optimistic forecasts [55]. A previous study

[56] found that using lensed spectra instead of the unlensed ones (plus φℓm power spectrum)
shrunk the expected errors on w and mν for their version of CMBpol by about 40% and 30%

respectively.
We now consider neutrino mass, dark energy and curvature in turn and forecast the
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What is possible with S4?
4

Assuming the likelihood function L of the parameters
✓ given data d to be Gaussian, it can be written as

L(✓|d) / 1p|C(✓)| exp
✓
�1

2
d† ⇥

C(✓)
⇤�1d

◆
, (2)

where C is the covariance matrix of the modeled data. In
our case, d = {aT`m, aE`m, ad`m} for temperature, E-mode
polarization, and lensing-induced deflection. The vector
✓ contains the cosmology model described in Section IID.

The Fisher matrix is constructed from the curvature
of the likelihood function at the fiducial values of the
parameters:

Fij ⌘ �
*
@2 logL
@✓i@✓j

����
✓=✓0

+
(3)

where ✓0 is a vector with the fiducial parameters, which
are chosen to maximize the likelihood.

From Eqs. (2) and (3), we can write the Fisher com-
ponents Fij for CMB spectra as

Fij =
X

`

2`+ 1

2
fskyTr

✓
C�1

` (✓)
@C`

@✓i
C�1

` (✓)
@C`

@✓j

◆
(4)

where ` is the multipole of the angular power spectra and

C` ⌘

0

B@
CTT

` +NTT
` CTE

` CTd
`

CTE
` CEE

` +NEE
` 0

CTd
` 0 Cdd

` +Ndd
`

1

CA . (5)

Similar to Ref. [41], we do not consider a B-mode power
spectrum signal in this covariance matrix since we as-
sume that the fields are unlensed and that there are no
primordial B-modes. We set CEd

` to 0 because its e↵ect is
small (< 1% improvement on constraints in M⌫ for most
cases). Cdd

` is related to the lensing power spectrum C��
`

by Cdd
` = `(`+ 1)C��

` .
1-� uncertainties of each parameter are obtained by

marginalizing over the other parameters. For a parame-
ter ✓i, the marginalized error is given by

�i ⌘ �(✓i) =
p

(F�1)ii (6)

The power spectra include Gaussian noise NXX0

` defined
as

NXX0

` = s 2 exp

✓
`(`+ 1)

✓ 2
fwhm

8 log 2

◆
(7)

where s is the total intensity instrumental noise in µK-
radians, defined in Eq. (1), and ✓ 2

fwhm

is the full-width
half-maximum beam size in radians. Note that s ! s ⇥p
2 in the case of XX 0 = {EE,BB}.
For XX 0 = dd, we use the iterative method outlined

in Smith et al. [19], based on Hirata and Seljak [13]
and Okamoto and Hu [11]. We estimate Ndd

` from lens-
ing reconstruction using CEE

` and CBB
` only. Fig. 1

Figure 1: Ndd
` for three Ndet at fsky = 0.75 and 10 beam

size. The deflection angle spectrum Cdd
` is shown in black as

reference. Cdd
` is related to the lensing power spectrum C��

`

by Cdd
` = `(`+ 1)C��

` .

shows the Ndd
` level for three Ndet at fsky = 0.75 and

10 beam. We use the EB estimator because it has the
lowest noise for the range of sensitivities relevant for
CMB-S4 (105 . Ndet . 106). For reference, the range of
`(`+1)Ndd

` /2⇡ noise floor for 105 < Ndet < 106 from the
EB estimator is between 10�8 and 10�10, while Planck ’s
`(` + 1)Ndd

` /2⇡ noise floor is ⇠ 2 ⇥ 10�7 from the 143
GHz and 217 GHz channels [16]. We note that, for a
couple of cases with O �

104
�
detectors, the TT estimator

gives lower reconstruction noise for sensitivity s & 4 µK-
arcmin and the beam sizes we consider in this paper. To
demonstrate the e↵ect of using the TT estimator instead
of the EB estimator, the constraint for M⌫ , which re-
lies most heavily on lensing information, improves from
49 meV to 47 meV for the case with 104 detectors, 10

beam, and fsky = 0.75. One can also combine the es-
timators from all reconstruction channels to get a min-
imum variance Ndd

` to further improve the constraints
if the systematics and foregrounds from the other chan-
nels are well understood. The iterative delensing method
improves on the quadratic method once the instrumen-
tal noise is below the lensing B-mode level (s ⇠ 3.5µK-
arcmin, i.e. polarization noise ⇠ 5µK-arcmin) [42].

C. Low-redshift information

For parameter constraints that could benefit from low-
redshift information, we use the BAO signal forecasted
from the Dark Energy Spectroscopic Instrument (DESI)
and put 1% priors on H0, which is achievable in the next
decade.

DESI will measure the spectra of approximately 24 mil-
lion objects in the redshift range 0 < z < 1.9 (we do not
include the Ly-↵ forest at z > 1.9 for simplicity). We

SPT/ACT

Planck

Noise per Fourier mode in reconstructed lensing field
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Mnu constraint vs. 
Beamsize

9

CMB CMB+BAO

10 20 30 40 10 20 30 40

104 detectors

fsky = 0.25 71.7 72.8 74.4 76.6 22.8 23.0 23.4 23.9

fsky = 0.50 54.7 55.7 57.2 59.2 20.6 20.9 21.3 21.9

fsky = 0.75 48.1 49.0 50.5 52.5 20.1 20.4 20.9 21.5

105 detectors

fsky = 0.25 63.3 65.2 66.7 68.3 19.7 19.8 19.9 20.1

fsky = 0.50 46.4 47.2 48.2 49.4 16.9 17.0 17.1 17.2

fsky = 0.75 38.5 39.2 40.0 41.0 15.7 15.8 15.9 16.0

106 detectors

fsky = 0.25 54.9 58.1 62.2 64.7 19.1 19.2 19.3 19.4

fsky = 0.50 40.8 42.7 45.1 46.5 16.4 16.4 16.5 16.6

fsky = 0.75 34.1 35.7 37.2 38.3 15.1 15.2 15.3 15.3

Table III: 1-� constraints on M⌫ , in units of meV, from CMB
and from CMB+BAO. “CMB” includes lensing.

Figure 5: Constraints on total neutrino mass across all sky
fractions comparing CMB without lensing to CMB with lens-
ing for experiments having 105 detectors and 10 or 40 beams.
The constraints on M⌫ are greatly improved by CMB lens-
ing. This general trend is observed across all experimental
configurations when the lensing power spectrum is added.

w0 = �1 and wa = 0. Two questions ensues: (1) how
well could future experiments di↵erentiate a cosmologi-
cal constant from inhomogenous dark energy? (2) how
does dark energy evolve, if it does? This later question
is the first step to capturing the much broader class of
possible dark energy models. Once we precisely measure
the equation of state, we will have a much better sense
for directions in the theoretical modeling.

The e↵ects of dark energy on cosmological observa-
tions are encapsulated in the Hubble parameterH ⌘ ȧ/a,
where a = a(t) is the scale factor. The Friedmann equa-
tion relates the expansion rate of the universe with the

energy densities of the contents in it:

H(a)2 = H2
0 (⌦ra

�4 + ⌦Ma�3 + ⌦Ka�2+

⌦DE exp

✓
3

Z 1

a

da0

a0
[1 + w(a0)]

◆
),

(16)

where ⌦r, ⌦M , ⌦DE , and ⌦K are the density of radiation,
matter, dark energy, and curvature respectively, and w(z)
is the specific parametrization of the equation of state for
dark energy.
The Hubble expansion rate H also governs the growth

of linear perturbations, �, in structure formation:

�̈ + 2H �̇ � 4⇡G⇢M� = 0. (17)

Primordial CMB fluctuations constrain dark energy
parameters through the e↵ects H have on them at re-
combination, i.e. z ' 1100 – acoustic peaks positions are
sensitive to the value of w [61]. If w < �1, both CTT

`
and CEE

` would shift towards higher ` and if w > �1,
they would shift towards lower `. The wa parameter gives
the same e↵ects as w0 but at a smaller amplitude. One
gets the same qualitative feature when H0 (value of H(z)
at z=0) is decreased or increased respectively. Therefore,
when we only use information from the CMB (z ' 1100),
dark-energy equation of state parameters are degenerate
with geometrical parameters, like H0 and ⌦K .
To break this degeneracy, low redshift probes like weak

lensing (CMB and optical), BAO, and H0 measurements
are essential. Here we focus on CMB lensing in relation
to dark energy. CMB lensing is sensitive to structures at
various redshifts (the lenses) and the CMB (the source),
cf. Ref. [62]. Because they are both a function of H(z),
we can observe the e↵ects of dark energy through them.
The e↵ect of the equation of state w on the lensing power
spectrum is an overall enhancement or suppression in
power across all scales with a minor scale dependence.
Because CMB lensing probes redshifts higher than opti-
cal surveys, it is particularly useful for studying struc-
ture formation beyond z > 2 – a direct observatory of
the early history of dark energy. Specifically, if e↵ects
of a non-standard dark energy manifest at high z (e.g.
z ⇠ 5), then structure formation could be significantly
suppressed, which CMB lensing can uniquely constrain.

B. Results and discussion

As discussed in the previous section, to constrain the
dark-energy equation of state, it is essential to have ob-
servations from various redshifts and multiple probes. In
this section, we present the constraints on w0, wa, and
the Figure of Merit (FoM) as defined by the Dark Energy
Task Force (DETF) [39], from the CMB, with and with-
out H0 prior, and with and without BAO measurements
from DESI.

In addition to constraints on w0 and wa, and the
DETF-FoM, we quote constraint on wp at ap where ap

Wu+ 2014



• To date, all results have been obtained with Hu and 
Okamoto quadratic estimator

• To date, lensing temperature has dominated S/N in results 
(exception: Polarbear 2015, 4σ pol. lensing)

• At low noise these both change - we are in a new regime

4’ beam 1.4’ beam

Note: no iterative delensing here; factor of a few at low noise



Noise levels & Delensing

• Lensed B-modes give a noise floor of 5 uK-arcmin

• Hu & Okamoto quadratic estimator becomes non-optimal

• Hirata & Seljak maximum likelihood method (or something like it) 
necessary 

• Reconstruction and Delensing strongly linked

• Forecasted lensing noise based on iterative delensing ideaformal way, our forecasting procedure is to iterate the pair of equations
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to convergence, starting by taking CBres
` = CBlen

` in the first iteration.

We have arrived at this forecasting procedure via a heuristic argument, but we can test its validity

by comparing with the results in Table I of [16], which show values of CBres
` obtained from Monte

Carlo simulations of an iterative delensing estimator, for a wide range of instrumental parameters.

We find that all entries in the table agree at the ⇡10% level, showing that this simple heuristic

procedure actually provides rather accurate forecasts. Given the implementational complexity and

computational cost of the iterative delensing estimator, this forecasting procedure is one of the main

results of this paper. Using the optimizations from Appendix B, iterative delensing forecasts can be

generated in a few CPU-seconds.
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Figure 3: Forecasted improvement ↵ = �0(r)/�(r) in the statistical error on r due to polarization

delensing, for varying noise level and beam. In the limit of low noise and high resolution, we find no

limit (from delensing residuals alone) to how well r can be measured.

In Fig. 3, we show forecasts for “internal” lens reconstruction using small-scale CMB polarization,

for varying noise level and beam and taking `max = 4000 throughout. Delensing can significantly
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to convergence, starting by taking CBres
` = CBlen

` in the first iteration.

We have arrived at this forecasting procedure via a heuristic argument, but we can test its validity

by comparing with the results in Table I of [16], which show values of CBres
` obtained from Monte

Carlo simulations of an iterative delensing estimator, for a wide range of instrumental parameters.

We find that all entries in the table agree at the ⇡10% level, showing that this simple heuristic

procedure actually provides rather accurate forecasts. Given the implementational complexity and

computational cost of the iterative delensing estimator, this forecasting procedure is one of the main

results of this paper. Using the optimizations from Appendix B, iterative delensing forecasts can be

generated in a few CPU-seconds.
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delensing, for varying noise level and beam. In the limit of low noise and high resolution, we find no

limit (from delensing residuals alone) to how well r can be measured.

In Fig. 3, we show forecasts for “internal” lens reconstruction using small-scale CMB polarization,

for varying noise level and beam and taking `max = 4000 throughout. Delensing can significantly
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Which CMB modes need to be 
measured? 3

Fig. 2.— Source terms for the lensed B modes. We have plot-
ted `B(@CB

`B
/@CX

`X
)CX

`X
where X 2 {E,�} such that the color

along each column gives the fraction contribution per multipole to
the lensed B modes from the corresponding source. The lensing
B modes at lB = 600, for example, are sourced largely by con-
tributions from the lensing potential at l� ⇡ 175 and lE ⇡ 650.
Delensing can be performed if one has measurements of these two
fields in the corresponding multipole ranges.

ACTpol (Niemack et al. 2010), and PolarBear (Kermish
et al. 2012) make sample-variance limited measurements
of the E-mode polarization on these scales.
For the lensing potential, most of the lensing B modes

are generated by gravitational potential fluctuations on
half-degree scales or larger (` . 500). There are again a
number of possible tracers for these modes. CMB lens-
ing measurements can be used, although polarization-
based lensing measurements require high sensitivity and
sensitivity to smaller angular scales than are required
for large-scale tensor B-mode experiments (such as BI-
CEP2). Alternatively, astrophysical tracers could be
used to estimate the potential, provided they are suf-
ficiently correlated with the lensing potential.
The idea behind delensing is to build a noisy estimate

of the lensing B modes using Wiener-filtered E modes
and lensing potential �. This estimate is then subtracted
from the perfectly reconstructed B modes, leaving as a
di↵erence the residual B modes:
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A formal derivation of this expression can be found in
Smith et al. (2009). In writing Equation (7), we have sub-
stituted the unlensed E-mode power spectrum coming
from the derivation of Equation (6) by the lensed E-mode
power spectrum, which has been shown by Lewis et al.
(2011) to produce an estimated lensed B-mode power
spectrum e↵ectively accurate to higher order. The exper-
imental noise power spectrum can be written as (Knox
1995):

NE
` = NB

` = �2
P exp

✓
` (`+ 1) ✓2FWHM

8 ln 2

◆
, (8)

where �P is the polarization pixel noise in [µK radian]
and ✓FWHM is the FWHM of the beam, assuming this
beam is Gaussian. We do not consider an additional
foreground noise power spectrum.
The lensing reconstruction noise power spectrum N�

`
can be obtained through the prevalent quadratic esti-
mator method (Hu 2000). This technique builds an es-
timate of the lensing potential from the optimally fil-
tered o↵-diagonal correlations between two lensed CMB
fields X,X 0 2 {T,E,B}. We use the EB estimator which
yields the best signal to noise ratio at high experimental
sensitivities. The resulting quadratic lens reconstruction
noise level can be expressed as (Okamoto & Hu 2003):
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We used the fast real-space algorithm proposed by Smith
et al. (2012) to compute the geometrical factors described
in Equations (4) and (5) necessary for the numerical im-
plementation of Equations (7) and (9).
It can be seen from Equation (9) that the lensing B

modes act as a contaminant for the lensing reconstruc-
tion process. Substituting the signal+noise lensed B
modes of Equation (9) by delensed B modes, defined in
this forecast as

CB,del
` ⇡ CB,unl

` + CB,res
` +NB

` , (10)

one can estimate the lensing potential with higher signal-
to-noise and then produce lower residual B modes. Re-
peating these steps until convergence of CB,del

` is referred
to as iterative delensing (Seljak & Hirata 2004; Smith
et al. 2009). Quadratic delensing will indicate the use
of a delensed power spectrum CB,del

` computed through
only one iteration.

3
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stituted the unlensed E-mode power spectrum coming
from the derivation of Equation (6) by the lensed E-mode
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sensitivities. The resulting quadratic lens reconstruction
noise level can be expressed as (Okamoto & Hu 2003):
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We used the fast real-space algorithm proposed by Smith
et al. (2012) to compute the geometrical factors described
in Equations (4) and (5) necessary for the numerical im-
plementation of Equations (7) and (9).
It can be seen from Equation (9) that the lensing B

modes act as a contaminant for the lensing reconstruc-
tion process. Substituting the signal+noise lensed B
modes of Equation (9) by delensed B modes, defined in
this forecast as

CB,del
` ⇡ CB,unl

` + CB,res
` +NB

` , (10)

one can estimate the lensing potential with higher signal-
to-noise and then produce lower residual B modes. Re-
peating these steps until convergence of CB,del

` is referred
to as iterative delensing (Seljak & Hirata 2004; Smith
et al. 2009). Quadratic delensing will indicate the use
of a delensed power spectrum CB,del

` computed through
only one iteration.

Simard+ 2015
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FIG. 1: Fractional contributions from E(l) and B(l) at l = |l| to the lensing reconstruction at
L 2 {300, 800, 1500, 2000} (four panels, where in each panel l = L is marked with a dotted line), for the fiducial

noise and resolution used in this paper. At the lower L the EE reconstruction (dashed lines) is mainly from
squeezed shapes with l � L, however the EB estimator the E� and especially B-mode signal is important at much
lower l (solid lines). Mathematically what is plotted is A

ij
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) as a function of l
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, or
equivalently for l
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in the case of the second field in the quadratic estimator, normalized to sum to unity.

function indicate that the contributions to the estimators come from rather di↵erent configurations: the EE estimator
has a lot of signal in squeezed shapes with L ⌧ l

1

, l

2

and hence l

1

⇠ l

2

, corresponding to reconstructing the large-scale
lensing shear and convergence from the e↵ect on the local small-scale power spectrum; however for the EB estimator,
sin(2'

l1l2) ⇠ 0 for l

1

⇠ l

2

, and instead the dominant signal comes from correlating lensing-induced B modes on a
scale comparable to the lensing mode. This leads to a relatively modest reconstruction noise correlation between the
estimators, especially on large scales, so the combination can significantly reduce the variance if the noise level is not
low enough that the EB mode estimator dominates (because there are no unlensed small-scale B modes to contribute
to the estimator variance). See Fig. 1 for the contributions to the lensing signal at various di↵erent scales.

B. Cut sky and E/B leakage

The CMB E and B modes are defined as a harmonic transform of the Q and U Stokes parameters without a
boundary. In the presence of a boundary (as on cut sky maps), the harmonics are no longer orthogonal, causing
power to be leaked from the dominant E mode into the subdominant B mode if they are naively evaluated over only
the observed patch of sky. A number of methods have been developed to remove the spurious B mode power originating
from non-periodic boundary conditions on small patches of sky, e.g. [2, 22–24]. A clean separation into pure-B modes is
e↵ectively optimal for small noise levels where leakage from E is dominating the variance of the contaminated observed
B modes. For intermediate noise levels inverse variance filtering would appropriately down weight the contaminated
modes in an optimal way, and a full implementation of a nearly-optimal lensing reconstruction method [6, 8, 9] should
therefore optimally handle the mixing e↵ect at the expense of a very numerically costly inverse-variance filtering step.

In this paper we focus on suboptimal but simple methods for handling the cut sky as used by some recent ground-
based observations, where a window function W (x) is used to apodize the observed area smoothly to zero at the
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Which algorithm to use?

• Hirata & Seljak (2003) global maximum likelihood

• Local maximum likelihood (Anderes+ 2011)

• Iterative template solution (Hanson, Smith, Dvorkin)

• Gibbs sampling (Anderes+ 2015)

• Others?



Extragalactic foregrounds?

• For single-frequency temperature maps, the trispectra of 
point sources and tSZ give few-%-level biases (van Engelen+2013, 
Osborne+2013)

• size of bias depends strongly on both beam size (flux 
cut) and map noise level

• clustering of sources and correlation with φ both give 
contributions



Projecting out the foregrounds 
Temperature case: Osborne+ 2013

9

FIG. 3: Same as Fig. 2, but evaluated for an l
max

= 3000 lens
reconstruction.

have considered a data-based approach to mitigate this
contamination, by constructing estimators for the source
contribution which are used to project out the contam-
inating trispectra. This provides another tool, in con-
junction with frequency dependence and modelling, to
quantify or reduce biases from the non-Gaussianity of un-

resolved foreground point sources. This approach works
well for radio point sources and tSZ clusters, particu-
larly on large scales, and generally reduces the contam-
ination by an order of magnitude or more. The only
trispectrum which we have had trouble interpreting, and
which does not improve significantly with our default
source-hardened estimator is the IR population, in par-
ticular the 4-source contribution. We note, however, that
with high-frequency measurements from Planck and Her-
schel, maps of the cosmic infrared background fluctua-
tions which source the IR component are now available
over much of the sky and may be used to strongly sup-
press this contribution in practice, as was done in [6].

Finally, we also note that although we have focussed
here on biases to the lensing potential power spectrum,
the methodology we have discussed can also be carried
over directly to other estimators of trispectrum non-
Gaussianity.
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• Project data-derived 
S2×S2 and S2×Φ  
terms from the 
lensing estimate -- 
“bias-hardening”

Black: Sehgal 2010 sim

Green: Sehgal 2010, bias-hardened

Red: simple modelling

Grey: disconnected N0 bias Here, lmax = 3000, no noise



Polarized extragalactic sources

Figure 12: Comparison of the signal power spectrum Cφφ
ℓ and the bias terms in Eqs. (22), (23),

for an experiment with ∆P = 4 µK-arcmin, θFWHM = 7 arcmin, Smax
T = 200 mJy.

In Fig. 12, we show the predicted bias for a (7′ FWHM, ∆P = 4µK − arcmin) experiment,
with Smax

T = 200mJy. This is the 100% completeness limit expected for the Planck 100GHz

channel [116], and should therefore be readily achievable. For illustration, we plot the biases
due to the components of Eqs. (22), (23). Their behaviour here is characteristic of all of
our forecasts. The 1-pt poisson term has a contribution which increases rapidly with ℓ, and

typically dominates by ℓ = 1000. The 2-pt poisson term is always subdominant, except at
extremely low-ℓ. The cross term Cpφ

ℓ gives the largest contribution on intermediate scales.

Note that these terms have different scalings with Smax. The two poisson-type biases are
due chiefly to point sources immediately below the removal threshold, whereas the Cpφ

ℓ term
receives contributions from all of the unresolved sources, and thus scales more slowly with

Smax.
To consider the effect of point source contamination more thoroughly we will need an

estimate of the Smax which is achievable for a given experiment. The subject of point source
extraction is an active one, with many techniques in active development [117]. For summary

purposes, however, we will take the following simplified model of this process. Suppose that
we clean for point sources internally, by identifying all of the peaks in the CMB which are
greater than 5σ, relative to the total variance of the map. In temperature, the ∆χ2 due to a

single point source with a flux of ST is given by

∆χ2 =
S2

T

4π

∑

ℓ

2ℓ + 1

CTT
ℓ + NTT

ℓ

. (24)

29

• CMBPol white paper (Smith+ 2008)

• assume Poisson radio sources 
(but correlated with φ) at 
150GHz

• 10% pol. fraction

• Biases small 



Polarized extragalactic sources

Figure 13: Lensing reconstruction biases. Black/Green solid curves are Cφφ
ℓ /N (0)

ℓ divided by 100.

The black dashed curves are ∆mν (Cφφ
ℓ ) (Eq. 27). The curves labelled in mJy are the

total biases for the corresponding value of Smax
T . Solid blue curves are for a ‘fiducial’

Smax
T – the smaller of 200mJy and the value determined from Eq. (25). The upper and

lower dashed blue curves correspond to Smax
conf. for M = 20 and M = 10 (only M = 10 is

shown for the 2′ experiment for clarity, as the M = 20 curve overlaps with the fiducial

curve). The Smax
T = 19.1mJy curve for the 2′ experiment is the value of Eq. (25)

assuming that only multipoles ℓ < 3000 are used for source cleaning.
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• Strong dependence on flux cut (beam size)

CMBPol white paper (Smith+ 2008)



Galactic Dust?

• How large is the four-point function of polarized 
galactic dust at high ell?



Instrumental Systematics

• What level of control do we need on these?

• gain variations, monopole leakagge, quadrupole leakage, 
pointing/beam offsets 

• Is the BB power spectrum (or other quadratic estimators) a 
useful diagnostic after data are taken?



Impact of nonlinear growth?

• Bias from 2nd order perturbations (tree-level 
bispectrum)

• ~1% for an ACT-like survey

Boehm+ in prep
Sherwin+ in prep

Preliminary


