Statistiques d'ordre supérieur

Sandrine Codis

CITA

codis@cita.utoronto.ca

Ecole Euclid 2017, Frejus

Au menu...

I. Introduction
I. 1 Rappels champs aléatoires cosmiques
I. 2 Rappels PT
I. 3 Bispectre
II. Topologie/géométrie
II. 1 De la topologie aux cumulants
II. 2 Des cumulants à $\mathrm{D}(\mathrm{z})$
II. 3 Information cosmologique
III. comptage de galaxies
II. 1 Théorie des grandes déviations
II. 2 Statistique à 1 point
II. 3 Statistique à 2 points
II. 4 Information cosmologique

Partie I : Introduction

Les grandes structures de l'Univers

Petite échelle : 'gastrophysique’
Comment utiliser les grandes structures pour contraindre la cosmologie et la physique fondamentale (énergie noire, neutrinos, tests de

Comment modéliser la complexité des petites échelles et leur couplage aux grandes échelles ? la RG, physique de l'inflation)?

\Rightarrow Précisions des mesures avec l'arrivée de grands relevés de galaxies comme Euclid qui utiliseront:

- le clustering (traceur lumière)
- l'effet de lentille gravitationnelle (traceur masse)
\Rightarrow La précision des contraintes cosmologiques dépendra de notre capacité à modéliser ces observables à petite échelle.

Les grandes structures de l'Univers

with AGN feedback

(e.g. van Daalen et al 2011)

Baryons

First order PT

Higher order PT

Les grandes structures de l'Univers

The LSS is sensitive to our cosmological model

Evolution of LSS is sensitive to cosmic expansion rate $\mathrm{H}(\mathrm{z})$ and growth rate of structures $D(z)$.

Studying LSS then constrains cosmological parameters, dark energy e.o.s, modification of gravity...

It usually relies on correlation functions including Baryon Acoustic Oscillation peaks (e.g Cole+05, Anderson+14), redshift space distortions (e.g Guzzo+08, Samushia+14), lensing.

$$
\langle\delta(\vec{x}) \delta(\vec{x}+\vec{r})\rangle=\xi_{2}(\|\vec{r}\|)
$$

DM simulation by C. Pichon

The LSS is sensitive to our cosmological model

Evolution of LSS is sensitive to cosmic expansion rate $\mathrm{H}(\mathrm{z})$ and growth rate of structures $D(z)$.

Studying LSS then constrains cosmological parameters, dark energy e.o.s, modification of gravity...

It usually relies on correlation functions including Baryon Acoustic Oscillation peaks (e.g Cole+05, Anderson+14), redshift space distortions (e.g Guzzo+08, Samushia+14), lensing.

$$
\langle\delta(\vec{x}) \delta(\vec{x}+\vec{r})\rangle=\xi_{2}(\|\vec{r}\|)
$$

DM simulation by C. Pichon

The LSS is sensitive to our cosmological model

Evolution of LSS is sensitive to cosmic expansion rate $\mathrm{H}(\mathrm{z})$ and growth rate of structures $D(z)$.

Studying LSS then constrains cosmological parameters, dark energy e.o.s, modification of gravity...

It usually relies on correlation functions including Baryon Acoustic Oscillation peaks (e.g Cole+05, Anderson+14), redshift space distortions (e.g Guzzo+08, Samushia+14), lensing.

Expected constraints from Euclid on dark energy equation of state (credit: Euclid Red Book, Laureijs+11)

How is the cosmic web woven? How do structures grow in the Universe?

cosmic web: voids, walls, filaments, nodes

Gaussian primordial fluctuations

theory of gravity + cosmological model (dark energy, dark matter...)
models of the early universe predict the statistics of the ICs
to be compared with observations

expansion

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

Comment caractériser entièrement les propriétés statistiques d'un GRF?
I) Avec sa moyenne et sa variance
2) Avec tous ses moments $\langle\delta n\rangle$
3) Avec sa moyenne et son spectre de puissance
4) Avec sa moyenne et sa fonction de corrélation à deux points
5) Avec l'ensemble (infini) de ses polyspectres successifs (spectre de puissance, bispectre, trispectre, etc).

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

Comment caractériser entièrement les propriétés statistiques d'un GRF?
I) Avec sa moyenne et sa variance
2) Avec tous ses moments $\langle\delta n\rangle$
3) Avec sa moyenne et son spectre de puissance
4) Avec sa moyenne et sa fonction de corrélation à deux points
5) Avec l'ensemble (infini) de ses polyspectres successifs (spectre de puissance, bispectre, trispectre, etc).

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

Initial state fully described by the 2-pt correlation function (= power spectrum)

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

$$
\langle\delta(\overrightarrow{\mathscr{X}}) \delta(\overrightarrow{\mathscr{X}}+\overrightarrow{\boldsymbol{r}})\rangle=\xi_{2}(\||\vec{r}| \mid)
$$

CMB as seen by Planck

Initial state fully described by the 2-pt correlation function (= power spectrum)

How is the cosmic web woven? How do structures grow in the Universe?

Gaussian primordial fluctuations

Initial state fully described by the 2-pt correlation function (= power spectrum)

How is the cosmic web woven? How do structures grow in the Universe?

cosmic web: voids, walls, filaments, nodes

Gaussian primordial fluctuations

Initial state fully described by the 2-pt correlation function (= power spectrum)

Subsequent gravitational evolution is non-Gaussian: need to go beyond 2-pt and study higher order statistics e.g 3-pt correlation function (=bispectrum)

How is the cosmic web woven? How do structures grow in the Universe?

cosmic web: voids, walls, filaments, nodes

Gaussian primordial fluctuations

How is the cosmic web woven? How do structures grow in the Universe?

cosmic web: voids, walls, filaments, nodes

Gaussian primordial fluctuations

How is the cosmic web woven? How do structures grow in the Universe?

cosmic web: voids, walls, filaments, nodes

Gaussian primordial fluctuations

Positively skewed PDF:
$P(x)=G(x)\left[1+\frac{1}{3!}\left\langle x^{3}\right\rangle H_{3}(x)+\ldots\right]$
$=S_{3} \sigma^{4}$
NL evolution driven by σ

\square
gravity

How is the cosmic web woven? How do structures grow in the Universe?

cosmic web: voids, walls, filaments, nodes

Gaussian primordial fluctuations

To solve the LSS dynamics : numerical simulations

To solve the LSS dynamics : numerical simulations

To solve the LSS dynamics : numerical simulations or theoretical predictions in some regimes

The Vlasov-Poisson equations (collisionless Boltzmann equation) $-f(x, p)$ is the phase-space density distribution - are fully nonlinear:

$$
\begin{array}{r}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial}{\partial t} f(\mathbf{x}, \mathbf{p}, t)+\frac{\mathbf{p}}{m a^{2}} \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{p}, t)-m \frac{\partial}{\partial \mathbf{x}} \Phi(\mathbf{x}) \frac{\partial}{\partial \mathbf{p}} f(\mathbf{x}, \mathbf{p}, t)=0 \\
\Delta \Phi(\mathbf{x})=\frac{4 \pi G m}{a}\left(\int f(\mathbf{x}, \mathbf{p}, t) \mathrm{d}^{3} \mathbf{p}-\bar{n}\right)
\end{array}
$$

$>$ single flow equations until shell crossing for a self-gravitating cold fluid:
Peebles 1980; Fry 1984;
Bernardeau 2002

$$
\frac{\partial}{\partial t} \delta(\mathbf{x}, t)+\frac{1}{a}\left[(1+\delta(\mathbf{x}, t)) \mathbf{u}_{i}(\mathbf{x}, t)\right]_{, i}=0
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{\dot{a}}{a} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{1}{a} \mathbf{u}_{j}(\mathbf{x}, t) \mathbf{u}_{i, j}(\mathbf{x}, t) & =-\frac{1}{a} \Phi_{, i}(\mathbf{x}, t)+\mathcal{X} \\
\Phi_{, i i}(\mathbf{x}, t)-4 \pi G \bar{\rho} a^{2} \delta(\mathbf{x}, t) & =0
\end{aligned}
$$

> Exact solutions: spherical collapse (gravitational evolution of a spherically symmetric field)

$$
\text { evolution of a shell of radius } r \text { and }
$$

$$
\text { mass } \mathrm{M}: \frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M}{r^{2}}+\frac{\Lambda}{3} r
$$

To solve the LSS dynamics : numerical simulations or theoretical predictions in some regimes

The Vlasov-Poisson equations (collisionless Boltzmann equation) - $f(x, p)$ is the phase-space density distribution - are fully nonlinear:

$$
\begin{array}{r}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial}{\partial t} f(\mathbf{x}, \mathbf{p}, t)+\frac{\mathbf{p}}{m a^{2}} \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{p}, t)-m \frac{\partial}{\partial \mathbf{x}} \Phi(\mathbf{x}) \frac{\partial}{\partial \mathbf{p}} f(\mathbf{x}, \mathbf{p}, t)=0 \\
\Delta \Phi(\mathbf{x})=\frac{4 \pi G m}{a}\left(\int f(\mathbf{x}, \mathbf{p}, t) \mathrm{d}^{3} \mathbf{p}-\bar{n}\right)
\end{array}
$$

$>$ single flow equations until shell crossing for a self-gravitating cold fluid:
Peebles 1980; Fry 1984;
Bernardeau 2002

$$
\frac{\partial}{\partial t} \delta(\mathbf{x}, t)+\frac{1}{a}\left[(1+\delta(\mathbf{x}, t)) \mathbf{u}_{i}(\mathbf{x}, t)\right]_{, i}=0
$$

$$
\frac{\partial}{\partial t} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{\dot{a}}{a} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{1}{a} \mathbf{u}_{j}(\mathrm{x}, t) \mathbf{u}_{i, j}(\mathrm{x}, t)=-\frac{1}{a} \Phi_{, i}(\mathrm{x}, t)+\mathcal{X}
$$

$$
\Phi_{, i i}(\mathbf{x}, t)-4 \pi G \bar{\rho} a^{2} \delta(\mathbf{x}, t)=0
$$

Exactsolutions: spherical collapse (gravitational evolution of a spherically symmetric field)
evolution of a shell of radius r and mass M: $\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M}{r^{2}}+\frac{\Lambda}{3} r$

To solve the LSS dynamics : numerical simulations or theoretical predictions in some regimes

The Vlasov-Poisson equations (collisionless Boltzmann equation) $-f(x, p)$ is the phase-space density distribution - are fully nonlinear:

$$
\begin{array}{r}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial}{\partial t} f(\mathbf{x}, \mathbf{p}, t)+\frac{\mathbf{p}}{m a^{2}} \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{p}, t)-m \frac{\partial}{\partial \mathbf{x}} \Phi(\mathbf{x}) \frac{\partial}{\partial \mathbf{p}} f(\mathbf{x}, \mathbf{p}, t)=0 \\
\Delta \Phi(\mathbf{x})=\frac{4 \pi G m}{a}\left(\int f(\mathbf{x}, \mathbf{p}, t) \mathrm{d}^{3} \mathbf{p}-\bar{n}\right)
\end{array}
$$

$>$ single flow equations until shell crossing for a self-gravitating cold fluid:
Peebles 1980; Fry 1984;
Bernardeau 2002

$$
\begin{aligned}
\frac{\partial}{\partial t} \delta(\mathbf{x}, t)+\frac{1}{a}\left[(1+\delta(\mathbf{x}, t)) \mathbf{u}_{i}(\mathbf{x}, t)\right]_{, i} & =0 \\
\frac{\partial}{\partial t} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{\dot{a}}{a} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{1}{a} \mathbf{u}_{j}(\mathbf{x}, t) \mathbf{u}_{i, j}(\mathbf{x}, t) & =-\frac{1}{a} \Phi_{, i}(\mathbf{x}, t)+\mathbf{X} \\
\Phi_{, i i}(\mathbf{x}, t)-4 \pi G \bar{\rho} a^{2} \delta(\mathbf{x}, t) & =0
\end{aligned}
$$

- Exact solutions: spherical collapse (gravitational evolution of a spherically symmetric field)

$$
\begin{aligned}
& \text { evolution of a shell of radius } r \text { and } \\
& \text { mass } \mathrm{M}: \frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M}{r^{2}}+\frac{\Lambda}{3} r
\end{aligned}
$$

To solve the LSS dynamics : numerical simulations or theoretical predictions in some regimes

The Vlasov-Poisson equations (collisionless Boltzmann equation) $-f(x, p)$ is the phase-space density distribution - are fully nonlinear:

$$
\begin{array}{r}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial}{\partial t} f(\mathbf{x}, \mathbf{p}, t)+\frac{\mathbf{p}}{m a^{2}} \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{p}, t)-m \frac{\partial}{\partial \mathbf{x}} \Phi(\mathbf{x}) \frac{\partial}{\partial \mathbf{p}} f(\mathbf{x}, \mathbf{p}, t)=0 \\
\Delta \Phi(\mathbf{x})=\frac{4 \pi G m}{a}\left(\int f(\mathbf{x}, \mathbf{p}, t) \mathrm{d}^{3} \mathbf{p}-\bar{n}\right)
\end{array}
$$

$>$ single flow equations until shell crossing for a self-gravitating cold fluid:
Peebles 1980; Fry 1984;
Bernardeau 2002

$$
\frac{\partial}{\partial t} \delta(\mathbf{x}, t)+\frac{1}{a}\left[(1+\delta(\mathbf{x}, t)) \mathbf{u}_{i}(\mathbf{x}, t)\right]_{, i}=0
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{\dot{a}}{a} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{1}{a} \mathbf{u}_{j}(\mathbf{x}, t) \mathbf{u}_{i, j}(\mathbf{x}, t) & =-\frac{1}{a} \Phi_{, i}(\mathbf{x}, t)+\mathcal{X} \\
\Phi_{, i i}(\mathbf{x}, t)-4 \pi G \bar{\rho} a^{2} \delta(\mathbf{x}, t) & =0
\end{aligned}
$$

$>$ Exact solutions: spherical collapse (gravitational evolution of a spherically symmetric field)

$$
\begin{aligned}
& \text { evolution of a shell of radius } \mathrm{r} \text { and } \\
& \text { mass } \mathrm{M}: \frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M}{r^{2}}+\frac{\Lambda}{3} r
\end{aligned}
$$

To solve the LSS dynamics : numerical simulations or theoretical predictions in some regimes

The Vlasov-Poisson equations (collisionless Boltzmann equation) $-f(x, p)$ is the phase-space density distribution - are fully nonlinear:

$$
\begin{array}{r}
\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial}{\partial t} f(\mathbf{x}, \mathbf{p}, t)+\frac{\mathbf{p}}{m a^{2}} \frac{\partial}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{p}, t)-m \frac{\partial}{\partial \mathbf{x}} \Phi(\mathbf{x}) \frac{\partial}{\partial \mathbf{p}} f(\mathbf{x}, \mathbf{p}, t)=0 \\
\Delta \Phi(\mathbf{x})=\frac{4 \pi G m}{a}\left(\int f(\mathbf{x}, \mathbf{p}, t) \mathrm{d}^{3} \mathbf{p}-\bar{n}\right)
\end{array}
$$

$>$ single flow equations until shell crossing for a self-gravitating cold fluid:
Peebles 1980; Fry 1984;
Bernardeau 2002

$$
\frac{\partial}{\partial t} \delta(\mathbf{x}, t)+\frac{1}{a}\left[(1+\delta(\mathbf{x}, t)) \mathbf{u}_{i}(\mathbf{x}, t)\right]_{, i}=0
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{\dot{a}}{a} \mathbf{u}_{i}(\mathbf{x}, t)+\frac{1}{a} \mathbf{u}_{j}(\mathbf{x}, t) \mathbf{u}_{i, j}(\mathbf{x}, t) & =-\frac{1}{a} \Phi_{, i}(\mathbf{x}, t)+\mathcal{X} \\
\Phi_{, i i}(\mathbf{x}, t)-4 \pi G \bar{\rho} a^{2} \delta(\mathbf{x}, t) & =0
\end{aligned}
$$

> Exact solutions: spherical collapse (gravitational evolution of a spherically symmetric field)

$$
\begin{aligned}
& \text { evolution of a shell of radius } r \text { and } \\
& \text { mass } \mathrm{M}: \frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M}{r^{2}}+\frac{\Lambda}{3} r
\end{aligned}
$$

$>$ Perturbation Theory: expand the cosmic fields with respect to initial density fields and solve perturbatively order by order $\delta(\mathbf{x}, t)=\delta_{1}(\mathbf{x}, t)+\delta_{2}(\mathbf{x}, t)+\cdots$

Perturbation Theory

Single-flow equations + perturbative expansion yield the density at order n :

$$
\delta_{n}(\mathbf{k})=\int \mathrm{d}^{3} \mathbf{q}_{1} \ldots \int \mathrm{~d}^{3} \mathbf{q}_{n} \delta_{D}\left(\mathbf{k}-\mathbf{q}_{1 \ldots n}\right) F_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right) \delta_{1}\left(\mathbf{q}_{1}\right) \ldots \delta_{1}\left(\mathbf{q}_{n}\right)
$$

where F_{n} are the PT kernels and can be computed hierarchically in k space

$$
\begin{aligned}
& F_{2}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)=\frac{5}{7}+\frac{1}{2} \frac{\mathbf{q}_{1} \cdot \mathbf{q}_{2}}{q_{1} q_{2}}\left(\frac{q_{1}}{q_{2}}+\frac{q_{2}}{q_{1}}\right)+\frac{2}{7} \frac{\left(\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right)^{2}}{q_{1}^{2} q_{2}^{2}} \\
& F_{3}\left(q_{1}, q_{2}, q_{3}\right)=\frac{5\left(q_{2}+q_{3}\right) \cdot q_{2}\left(q_{1}+q_{2}+q_{3}\right) \cdot q_{1}}{36 q_{1}^{2} q_{2}^{2}}+\frac{5\left(q_{2}+q_{3}\right) \cdot q_{3}\left(q_{1}+q_{2}+q_{3}\right) \cdot q_{1}}{36 q_{1}^{2} q_{3}^{2}}+ \\
& \frac{q_{3} \cdot q_{2}\left(q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right)\left(q_{1}+q_{2}+q_{3}\right) \cdot q_{1}}{18 q_{1}^{2} q_{2}^{2} q_{3}^{2}}+\frac{\left(q_{2}+q_{3}\right) \cdot q_{2}\left(q_{1}+q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right)}{12\left(q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right) q_{2}^{2}}+ \\
& \frac{\left(q_{2}+q_{3}\right) \cdot q_{1}\left(q_{2}+q_{3}\right) \cdot q_{2}\left(q_{1}+q_{2}+q_{3}\right) \cdot\left(q_{1}+q_{2}+q_{3}\right)}{42\left(q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right) q_{1}^{2} q_{2}^{2}}+\frac{\left(q_{2}+q_{3}\right) \cdot q_{3}\left(q_{1}+q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right)}{12\left(q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right) q_{3}^{2}}+ \\
& \frac{\left(q_{2}+q_{3}\right) \cdot q_{1}\left(q_{2}+q_{3}\right) \cdot q_{3}\left(q_{1}+q_{2}+q_{3}\right) \cdot\left(q_{1}+q_{2}+q_{3}\right)}{42\left(q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right) q_{1}^{2} q_{3}^{2}}+\frac{q_{3} \cdot q_{2}\left(q_{1}+q_{2}+q_{3}\right) \cdot\left(q_{2}+q_{3}\right)}{9 q_{2}^{2} q_{3}^{2}}+ \\
& \frac{2 q_{3} \cdot q_{2}\left(q_{2}+q_{3}\right) \cdot q_{1}\left(q_{1}+q_{2}+q_{3}\right) \cdot\left(q_{1}+q_{2}+q_{3}\right)}{63 q_{1}^{2} q_{2}^{2} q_{3}^{2}}
\end{aligned}
$$

Perturbation Theory

Single-flow equations + perturbative expansion yield the density at order n :

$$
\delta_{n}(\mathbf{k})=\int \mathrm{d}^{3} \mathbf{q}_{1} \ldots \int \mathrm{~d}^{3} \mathbf{q}_{n} \delta_{D}\left(\mathbf{k}-\mathbf{q}_{1 \ldots n}\right) F_{n}\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right) \delta_{1}\left(\mathbf{q}_{1}\right) \ldots \delta_{1}\left(\mathbf{q}_{n}\right)
$$

E.g the power spectrum $\left\langle\delta(\mathbf{k}) \delta\left(\mathbf{k}^{\prime}\right)\right\rangle=P(\mathbf{k}) \delta_{\mathrm{D}}\left(\mathbf{k}+\mathbf{k}^{\prime}\right)$ can then be predicted at any order

$$
\mathrm{P}_{\mathrm{ab}}(\mathrm{k})=\mathrm{k}
$$

or any other $\mathrm{N}>2$-point correlation function:

Perturbation Theory

Power spectrum

2-pt correlation function

Charting PT
number of loops in standard PT for Gaussian Initial Conditions

	leading order LO	order 1 NLO	order 2 NNLO	order 2.5	order 3	...order p
2-point statistics	OK	OK	OK	EFT	partial exact results	partial resum
3-point statistics	OK	OK (but not systematics				partial resummations
4 -point statistics	OK	to be done... (cosmic variance)				
N-point statistics	OK, for topological estimators OK, in specific geometries (counts in cells)					

courtesy: Francis Bernardeau

Charting PT
number of loops in standard PT for Gaussian Initial Conditions

	leading order LO	order 1 NLO	order 2 NNLO	order 2.5	order 3	...order p
2-point statistics	OK	OK	OK	EFT	partial exact results	partial resum
3-point statistics	OK	OK (but not systematics				partial resummations
4-point statistics	OK	to be done... (cosmic variance)				
N-point statistics	OK, for topological estimators OK, in specific geometries (counts in cells)					

courtesy: Francis Bernardeau

Bispectrum

Tellarini+ $/ 6$

Sample	Power Spectrum		Bispectrum	
	$\begin{gathered} \sigma_{f_{\mathrm{NL}}} \\ \text { bias float } \end{gathered}$	$\begin{gathered} \sigma_{f_{\text {NL }}} \\ \text { hias fixed } \end{gathered}$	$\begin{gathered} \sigma_{f_{\mathrm{NL}}} \\ \text { hias float } \end{gathered}$	$\begin{gathered} \sigma_{f_{\mathrm{NL}}} \\ \text { bias fixed } \end{gathered}$
BOSS	21.30	13.28	$1.04{ }_{(2.47)}^{(0.65)}$	$0.57_{(1.48)}^{(0.35)}$
eBOSS	14.21	11.12	$1.18{ }^{(0.82)}($	$0.70_{(1.29)}^{(0.45)}$
Euclid	6.00	4.71	$0.45{ }_{(0.71)}^{(0.18)}$	$0.32_{(0.35)}^{(0.12)}$
DESI	5.43	4.37	$0.31{ }_{(0.48)}^{(0.17)}$	$0.21{ }_{(0.37)}^{(0.12)}$
BOSS + Euclid	5.64	4.44	$0.39_{(0.59)}^{(0.17)}$	$0.28{ }_{(0.34)}^{(0.11)}$

$$
\begin{aligned}
& \xi_{3}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)=\left\langle\delta(0) \delta\left(\mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{\mathbf{2}}\right)\right\rangle \\
& B\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}, \mathbf{k}_{\mathbf{3}}\right) \delta_{D}\left(\mathbf{k}_{\mathbf{1}}+\mathbf{k}_{\mathbf{2}}+\mathbf{k}_{\mathbf{3}}\right)=\left\langle\delta\left(\mathbf{k}_{\mathbf{1}}\right) \delta\left(\mathbf{k}_{\mathbf{2}}\right) \delta\left(\mathbf{k}_{\mathbf{3}}\right)\right\rangle
\end{aligned}
$$

0 for GRF
tree-order $\mathrm{PT}=2 P\left(k_{1}\right) P\left(k_{2}\right) F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)+c y c$.
For late-time galaxy clustering, it allows to:
-measure the bias parameters
-measure primordial non-gaussianities

Charting PT
number of loops in standard PT for Gaussian Initial Conditions

	leading order LO	order 1 NLO	order 2 NNLO	order 2.5	order 3	...order p
2-point statistics	OK	OK	OK	EFT	partial exact results	partial resum
3-point statistics	OK	OK (but not systematics				partial resummations
4 -point statistics	OK	to be done... (cosmic variance)				
N-point statistics	OK, for topological invariants OK, in specific geometries (counts in cells)					

courtesy: Francis Bernardeau

Charting PT
number of loops in standard PT for Gaussian Initial Conditions

courtesy: Francis Bernardeau

Charting PT
Initial Conditions

| | $\begin{array}{c}\text { lending order } \\ \text { LO }\end{array}$ | $\begin{array}{c}\text { order 1 } \\ \text { NLO }\end{array}$ | $\begin{array}{c}\text { order 2 } \\ \text { NNLO }\end{array}$ | $\begin{array}{c}\text { order } \\ \text { N }\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The feature of spherical collapse leads to analytic predictions in the mildly nonlinear regime @ few percent level until

$$
\sigma^{2} \sim 1!!
$$

Partie II : Topologie

Topological estimators

Alternative to the usual use of N -point correlation functions / poly-spectra,... which is :

- independent from bias (M / L ratio)
- easier to measure in the data (less sensitive to masks,...), more robust

Because topology is about shapes, connectivity, holes,... and is invariant under continuous deformation (stretching, twisting, bending...).

Topology of excursion sets

Topology of excursion sets

topological estimators?

$>$ Minkowski functionals (topological invariants):
d+1 MFs in d dimensions.
Mathematical genus in 2D = number of handles/holes (max number of cuttings along closed curves without disconnecting the surface)

topological estimators?

$>$ Minkowski functionals (topological invariants):
d+1 MFs in d dimensions.
Mathematical genus in 2D = number of handles/holes (max number of cuttings along closed curves without disconnecting the surface)

topological estimators?

$>$ Minkowski functionals (topological invariants):
d+1 MFs in d dimensions.
Mathematical genus in 2D = number of handles/holes (max number of cuttings along closed curves without disconnecting the surface)

topological estimators?

$>$ Minkowski functionals (topological invariants):
$\mathrm{d}+1$ MFs in d dimensions.
Mathematical genus in 2D = number of handles/holes (max number of cuttings along closed curves without disconnecting the surface)

$$
\mathrm{g}=0
$$

$\mathrm{g}=1$

$g=2$

This is a topological invariant: deux surfaces sont homeomorphes si elles ont le meme genre.

Study of excursions

topological estimators?

$>$ Minkowski functionals (topological invariants):

d+1 MFs in d dimensions.
Mathematical genus in 2D = number of handles/holes (max number of cuttings along closed curves without disconnecting the surface)

$$
g=0
$$

$\mathrm{g}=1$

$\mathrm{g}=2$

This is a topological invariant: deux surfaces sont homeomorphes si elles ont le meme genre.
In ND, we define the Euler-Poincaré characteristic (in 2D, $=2-2 \mathrm{~g}$) as the alternating sum of Betti numbers:

$$
\chi=\sum_{i}(-1)^{i} b_{i}
$$

where b_{i} is its rank of the i-th homology group ($b_{0}=$ number of connected components, $\mathrm{b}_{1}=$ circular holes, $\mathrm{b}_{2}=$ cavities,...).
Gauss-Bonnet theorem: χ is the integral of the Gaussian curvature Morse theory : it is the alternating sum of extrema.

The Euler characteristic obeys: additivity, motion invariance and conditional continuity, it is one of the MF.

topological estimators?

$>$ Minkowski functionals (topological invariants):

d+1 MFs in d dimensions.
Mathematical genus in 2D = number of handles/holes (max number of cuttings along closed curves without disconnecting the surface)

$$
g=0
$$

$\mathrm{g}=1$

$\mathrm{g}=2$

This is a topological invariant: deux surfaces sont homeomorphes si elles ont le meme genre.

In ND, we define the Euler-Poincaré characteristic (in 2D, $=2-2 \mathrm{~g}$) as the alternating sum of Betti numbers:

$$
\chi=\sum_{i}(-1)^{i} b_{i}
$$

where b_{i} is its rank of the i-th homology group ($b_{0}=$ number of connected components, $\mathrm{b}_{1}=$ circular holes, $\mathrm{b}_{2}=$ cavities,...).
Gauss-Bonnet theorem: χ is the integral of the Gaussian curvature Morse theory : it is the alternating sum of extrema.

The Euler characteristic obeys: additivity, motion invariance and conditional continuity, it is one of the MF.

topological estimators?

$>$ Minkowski functionals (topological invariants):
d+1 MFs in d dimensions:
-Euler-Poincaré characteristic
and??
in 2D: length of isocontour + encompassed volume
in 3D: surface of isocontour+encompassed volume+integrated mean curvature

Euler characteristics (related to genus)

area/length of isocontours

geometrical estimators?

$>$ critical sets:

peak/saddle/void counts length of filaments surface of walls

Study of excursions

topological estimators?

$>$ Minkowski functionals (topological invariants):
d+1 MFs in d dimensions:
-Euler-Poincaré characteristic
and??
in 2D: length of isocontour + encompassed volume
in 3D: surface of isocontour+encompassed volume+integrated mean curvature

Euler characteristics (related to genus)

area/length of isocontours

geometrical estimators?

$>$ critical sets:

peak/saddle/void counts length of filaments surface of walls

Study of excursions

2.1 From topology to cumulants

2.2 From cumulants to

2:3 From $\mathrm{B}(z)$ to equation

of state of Park-Energy

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives. Why?

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

$$
\text { peaks }=\text { point process }
$$

Let us come back to peak theory (Bardeen et al '86).
The number density of peaks is:

$$
n_{\text {peak }}(\vec{r})=\sum_{k} \delta_{D}\left(\vec{r}-\vec{r}_{\text {peak } k}\right)
$$

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

peaks $=$ point process

A Taylor expansion of x_{i} around a peak k reads:

$$
\nabla x_{i}(\vec{r})=0+\sum_{j} \underbrace{}_{\mathcal{H}}\left(\vec{r}_{\text {peak } k}\right) \times\left(\vec{r}-\vec{r}_{\text {peak } k}\right)_{j}
$$

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

peaks $=$ point process

A Taylor expansion of x_{i} around a peak k reads:

$$
\nabla \widehat{x}_{i}(\vec{r})=0+\sum_{j} \underbrace{}_{\mathcal{H}}\left(\vec{r}_{\text {peak } k}\right) \times\left(\vec{r}-\vec{r}_{\text {peak } k}\right)_{j}
$$

which can be inverted : $\left(\vec{r}-\vec{r}_{\text {peak } k}\right)=\mathcal{H}^{-1}\left(\vec{r}_{\text {peak } k}\right) \cdot \nabla(\vec{r})$

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

Let us come back to peak theory (Bardeen et al '80).
The number density of peaks is:

$$
n_{\text {peak }}(\vec{r})=\sum_{k} \delta_{D}\left(\vec{r}-\vec{r}_{\text {peak } k}\right)
$$

A Taylor expansion of x_{i} around a peak k reads:

$$
\nabla \widehat{x}_{i}(\vec{r})=0+\sum_{j} \underbrace{}_{\mathcal{H}}\left(\vec{r}_{\text {peak } k}\right) \times\left(\vec{r}-\vec{r}_{\text {peak } k}\right)_{j}
$$

which can be inverted : $\left(\vec{r}-\vec{r}_{\text {peak } k}\right)=\mathcal{H}^{-1}\left(\vec{r}_{\text {peak } k}\right) \cdot \nabla(\vec{r})$
So that in the end:

$$
\left\langle n_{\text {peak }}\right\rangle=\int \frac{\mathrm{d}^{3} \vec{r}}{V} n_{\text {peak }}(\vec{r})=\int \mathrm{d} x \mathrm{~d}^{3} x_{i} \mathrm{~d}^{6} x_{i j} P\left(x, x_{i}, x_{i j}\right)\left|\operatorname{det} x_{i j}\right| \delta_{D}\left(x_{i}\right)
$$

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

Let us come back to peak theory (Bardeen et al '86).
The number density of peaks is:

$$
n_{\text {peak }}(\vec{r})=\sum_{k} \delta_{D}\left(\vec{r}-\vec{r}_{\text {peak } k}\right)
$$

A Taylor expansion of x_{i} around a peak k reads:

$$
\nabla \bigcap_{i}(\vec{r})=0+\sum_{j} \underbrace{}_{\mathcal{H}}\left(\vec{r}_{\text {peak } k}\right) \times\left(\vec{r}-\vec{r}_{\text {peak } k}\right)_{j}
$$

which can be inverted: $\left(\vec{r}-\vec{r}_{\text {peak } k}\right)=\mathcal{H}^{-1}\left(\vec{r}_{\text {peak } k}\right) \cdot \nabla(\vec{r})$
So that in the end:

$$
\begin{gathered}
\left\langle n_{\text {peak }}\right\rangle=\int \frac{\mathrm{d}^{3} \vec{r}}{V} n_{\text {peak }}(\vec{r})=\int_{\text {ergodicity! }} \mathrm{d} x \mathrm{~d}^{3} x_{i} \mathrm{~d}^{6} x_{i j} P\left(x, x_{i}, x_{i j}\right)\left|\operatorname{det} x_{i j}\right| \delta_{D}\left(x_{i}\right) \\
\text { spatial average }=\text { ensemble average }
\end{gathered}
$$

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

Let us come back to peak theory (Bardeen et al '80).
The number density of peaks is:

$$
n_{\text {peak }}(\vec{r})=\sum_{k} \delta_{D}\left(\vec{r}-\vec{r}_{\text {peak } k}\right)
$$

A Taylor expansion of x_{i} around a peak k reads:

$$
\nabla \widehat{x}_{i}(\vec{r})=0+\sum_{j} \underbrace{}_{\mathcal{H}}\left(\vec{r}_{\text {peak } k}\right) \times\left(\vec{r}-\vec{r}_{\text {peak } k}\right)_{j}
$$

which can be inverted: $\left(\vec{r}-\vec{r}_{\text {peak } k}\right)=\mathcal{H}^{-1}\left(\vec{r}_{\text {peak } k}\right) \cdot \nabla(\vec{r})$
So that in the end:

$$
\begin{gathered}
\left\langle n_{\text {peak }}\right\rangle=\int \frac{\mathrm{d}^{3} \vec{r}}{V} n_{\text {peak }}(\vec{r})=\int_{\text {ergodicity! }} \mathrm{d} x \mathrm{~d}^{3} x_{i} \mathrm{~d}^{6} x_{i j} P\left(x, x_{i}, x_{i j}\right)\left|\operatorname{det} x_{i j}\right| \delta_{D}\left(x_{i}\right) \times \Theta\left(-\lambda_{1}\right) \\
\text { spatial average }=\text { ensemble average }
\end{gathered}
$$

Joint PDF of the field

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.

Why?

Let us come back to peak theory (Bardeen et al '86).
The number density of peaks is:

$$
n_{\text {peak }}(\vec{r})=\sum_{k} \delta_{D}\left(\vec{r}-\vec{r}_{\text {peak } k}\right)
$$

A Taylor expansion of x_{i} around a peak k reads:

$$
\nabla \widehat{x}_{i}(\vec{r})=0+\sum_{j} \underbrace{}_{i j}\left(\vec{r}_{\text {peak } k}\right) \times\left(\vec{r}-\vec{r}_{\text {peak } k}\right)_{j}
$$

which can be inverted: $\quad\left(\vec{r}-\vec{r}_{\text {peak } k}\right)=\mathcal{H}^{-1}\left(\vec{r}_{\text {peak } k}\right) \cdot \nabla(\vec{r})$
So that in the end:

$$
\begin{aligned}
& \left\langle n_{\text {peak }}\right\rangle=\int \frac{\mathrm{d}^{3} \vec{r}}{V} n_{\text {peak }}(\vec{r})=\int_{\text {ergodicity! }} \mathrm{d} x \mathrm{~d}^{3} x_{i} \mathrm{~d}^{6} x_{i j} P\left(x, x_{i}, x_{i j}\right)\left|\operatorname{det} x_{i j}\right| \delta_{D}\left(x_{i}\right) \times \Theta\left(-\lambda_{1}\right) \\
& \text { spatial average=ensemble average }
\end{aligned}
$$

Gaussian JPDF

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.
Minkowski functionals (Euler characteristic[genus] in 3 and 2D, area/length of isocontours, contour crossings), extrema counts, skeleton length, etc are then obtained by integration of the JPDF. For instance, the critical pt density and the 3D Euler characteristic read:

$$
\begin{aligned}
& \left\langle n_{\text {crit }}\right\rangle_{(\nu)}=\int \mathrm{d} x \mathrm{~d}^{3} x_{i} \mathrm{~d}^{6} x_{i j} P\left(x, x_{i}, x_{i j}\right)\left|\operatorname{det} x_{i j}\right| \delta_{D}\left(x_{i}\right) \times \Theta\left(x-\sigma_{0} \nu\right) \\
& \chi_{3 \mathrm{D}}(\nu)=-\int P\left(x, x_{i}, x_{i j}\right) \delta_{\mathrm{D}}\left(x_{i}\right) \operatorname{det} x_{i j} \Theta\left(x-\sigma_{0} \nu\right)
\end{aligned}
$$

Those integrations can in principle be computed for any PDF.

$$
\text { the trick: use the invariants of the field }\left(x, x_{i}^{2}, \operatorname{tr}\left(x_{i j}\right), \operatorname{det}\left(x_{i j}\right), \ldots\right) \text { ! }
$$

The result for the Gaussian 3D Euler characteristic is:

$$
\chi_{3 \mathrm{D}}(\nu) \propto e^{-\nu^{2} / 2} H_{2}(\nu)
$$

Non-Gaussian expansion

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.
How to go beyond Gaussianity?

Non-Gaussian expansion

Let us think about such properties of random fields as Euler characteristic (genus), density of extrema, ... Their computation requires the knowledge of the joint PDF :

$$
P\left(x, x_{i}, x_{i j}\right)
$$

of the field x and its first x_{i} and second $x_{i j}$ derivatives.
How to go beyond Gaussianity?
Gram-Cbarlier expandion (analogous to the Taylor expansion for PDF): The moment expansion of the general JPDF $\mathrm{P}(\mathrm{x})$ around a Gaussian PDF $\mathrm{G}(\mathrm{x})$ is an Hermite expansion:

$$
P(x)=G(x)\left[1+\sum_{n=3}^{\infty} \frac{1}{n!}\left\langle x^{n}\right\rangle_{G C} H_{n}(x)\right] \text { woallorocer in non gaunsianity }
$$

where Hermite polynomials are polynomials of order n in x , orthogonal wrt the Gaussian kernel G.

The same kind of expansion holds for $P\left(x, x_{i}, x_{i j}\right)$

Moment expansion for NG statistics

Minkowski functionals (Euler characteristic[genus] in 3 and 2D, area/length of isocontours, contour crossings), extrema counts, skeleton length, etc are then obtained by integration of the JPDF. For instance, the 3D Euler characteristic reads :

$$
\chi_{3 \mathrm{D}}(\nu)=-\int P\left(x, x_{i}, x_{i j}\right) \delta_{\mathrm{D}}\left(x_{i}\right) \operatorname{det} x_{i j} \Theta\left(x-\sigma_{0} \nu\right)
$$

Those integrations can in principle be computed to all orders in non-Gaussianity.

$$
\left.\begin{array}{c|c|}
\hline \text { The trick: use the invariants of the field }\left(x, x_{i}^{2}, \operatorname{tr}\left(x_{i j}\right), \operatorname{det}\left(x_{i j}\right), \ldots\right) \\
+ \text { Gram-Charlier expansion of the JPDF! }
\end{array} \right\rvert\, \begin{aligned}
& 5=10-5 \text { in r-space } \\
& 8=10-2 \text { in z-space }
\end{aligned}
$$

We finally get moment expansion for each NG statistics in real space (Gay et al '12) and in redshift space (Codis et al '13) e.g

$$
\begin{aligned}
& \chi_{3 \mathrm{D}}^{\mathrm{s}}(\nu)=\frac{e^{-\nu^{2} / 2}}{8 \pi^{2}} \frac{\sigma_{1 \| \mid} \sigma_{1 \perp}^{2}}{\sigma^{3}}\left[H_{2}(\nu)+\frac{1}{\gamma_{\perp}^{2}} \sum_{n=3}^{\infty} \sum_{\sigma_{n-2}} \frac{(-1)^{j+m}}{i!j!m!(2 m-1) 2^{m}} H_{i}(\nu)\left(\left\langle x^{i} q_{\perp}^{2 j} J_{2 \perp} x_{3}^{2 m}\right\rangle_{\mathrm{GC}}-\left(1-\gamma_{\perp}^{2}\right)\left\langle x^{i} q_{\perp}^{2 j} \zeta^{2} x_{3}^{2 m}\right\rangle_{\mathrm{GC}}\right)\right. \\
& \left.+2 \frac{\sqrt{1-\gamma_{\perp}^{2}}}{\gamma_{\perp}} \sum_{n=3}^{\infty} \sum_{\sigma_{n-1}} \frac{(-1)^{j+m}}{i!j!m!(2 m-1) 2^{m}}\left\langle x^{i} q_{\perp}^{2 j} \zeta x_{3}^{2 m}\right\rangle_{\mathrm{GC}} H_{i}(\nu) H_{1}(\nu)-\sum_{n=3}^{\infty} \sum_{\sigma_{n}} \frac{(-1)^{j+m}}{i!j!m!(2 m-1) 2^{m}}\left\langle x^{i} q_{\perp}^{2 j} x_{3}^{2 m}\right\rangle_{\mathrm{GC}} H_{i}(\nu) H_{2}(\nu)\right],
\end{aligned}
$$

generalizing the result of Matsubara'96 (Gaussian term) to all orders in non-Gaussianity.
key ingredient: genus (DM)=genus(light) if bias is monotonic!

Effect of

redshift space distortion

Finger-of-God Effect

Effect of

redshift space distortion

Kaiser Effect

$$
\delta_{g}^{(z)}=\left(1+\oint_{\Omega_{\mathrm{m}} / / \mathrm{b}, \gamma \simeq 0.55(\mathrm{GR})} \mu^{2}\right) \delta_{g}^{(r)}
$$

dynamical parameter

Effect of

 redshift space distortion

MFs for scale-invariant power spectra : NG corrections
(gravity, $\mathrm{ss}=-1$)

Horizon 4π simulation:

Critical point Counts

$10^{4} \frac{\partial n_{\mathrm{ext}}(v)}{\partial v}$
4096^{3}
$2 \mathrm{Gpc} / \mathrm{h}$ across
from a catalog of
haloes above $10^{11} \mathrm{M}_{\text {sun }}$

Horizon 4π simulation : 3 D and 2 D genus

4096^{3}
$2 \mathrm{Gpc} / \mathrm{h}$ across

Horizon 4π simulation : measure β ?
 $\chi_{3 \mathrm{D}} / \chi_{m}$

Horizon light cone

2.1 From topology to cumulants

2.2 From cumulants to

 D(z)
2:3 From $B(z)$ to equation
 of state of Park-Energy

Senerailzed oreoneticicat sn

Purpose: Express the invariant cumulants in terms of σ (hence $\mathrm{D}(\mathrm{z})$) through Perturbation theory

$$
F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)=\frac{5}{7}+\frac{\mathbf{k}_{1} \cdot \mathbf{k}_{2}}{k_{1}{ }^{2}}+\frac{2}{7} \frac{\left(\mathbf{k}_{1} \cdot \mathbf{k}_{2}\right)^{2}}{k_{1}{ }^{2} k_{2}{ }^{2}} \Longrightarrow \mathcal{F}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)=F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right) \mathcal{G}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)
$$

Geometric shape factor= powers of k

Generalized oreoneticicat sn

Purpose: Express the invariant cumulants in terms of σ (hence $\mathrm{D}(\mathrm{z})$) through Perturbation theory

$$
F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=\frac{5}{7}+\frac{\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}}{k_{1}{ }^{2}}+\frac{2}{7} \frac{\left(\mathbf{k}_{\mathbf{1}} \cdot \mathbf{k}_{\mathbf{2}}\right)^{2}}{\left.{k_{1}{ }^{2} k_{2}{ }^{2}} \Longrightarrow \mathcal{F}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right)=F_{2}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right) \mathcal{G}_{\alpha, \beta, \gamma}\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}\right), ~\right), ~}
$$

$$
\frac{1}{\sigma}\left\langle x x_{1}{ }^{2}\right\rangle=\frac{4\left(48+62 n+21 n^{2}\right)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{6(3+n)(8+7 n)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)
$$

3pt field- gradient cumulant

$$
\mathrm{n}=-3: \quad \frac{1}{\sigma}\left\langle x^{3}\right\rangle=\frac{34}{7} \Longrightarrow \frac{1}{\sigma}\left\langle x x_{1}^{2}\right\rangle=\frac{34}{7} \frac{2}{3^{2}}
$$

Generalized oreoneticicat sn

Purpose: Express the invariant cumulants in terms of σ (hence $D(z)$) through Perturbation theory
 skewness at tree order
$\frac{1}{\sigma}\left\langle x x_{1}{ }^{2}\right\rangle=\frac{4\left(48+62 n+21 n^{2}\right)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{3+n}{2}, \frac{3}{2}, \frac{1}{4}\right)-\frac{6(3+n)(8+7 n)}{21 n^{2}}{ }_{2} F_{1}\left(\frac{3+n}{2}, \frac{5+n}{2}, \frac{3}{2}, \frac{1}{4}\right)$
3pt field- gradient cumulant

$$
\frac{1}{\sigma}\left\langle x^{3}\right\rangle=\frac{34}{7} \Longrightarrow \frac{1}{\sigma}\left\langle x x_{1}^{2}\right\rangle=\frac{34}{7} \frac{2}{3^{2}}
$$

Generailzed oreoneticicat sn

We can express the invariant cumulants in terms of σ (hence $D(z)$) through Perturbation theory

generalized S_{3} :		$n_{\text {s }}=0$	
		prediction	measurement
	$\left\langle x^{3}\right\rangle / \sigma$	3.144	3.08 ± 0.08
	$\left\langle x q^{2}\right\rangle / \sigma$	2.096	2.05 ± 0.03
	$\left\langle{ }^{2} J_{1}\right\rangle / \sigma$	-3.248	-3.15 ± 0.06
	$\left\langle x . J_{1}^{2}\right\rangle / \sigma$	3.871	3.75 ± 0.06
	$\left\langle{ }^{2} \cdot ._{2}\right\rangle / \sigma$	1.545	1.54 ± 0.02
	$\left\langle q^{2} J_{1}\right\rangle / \sigma$	-1.335	-1.28 ± 0.02
	$\left\langle{ }^{3}{ }^{3}\right\rangle / \sigma$	-4.644	-4.50 ± 0.08
	$\left\langle J_{1} J_{2}\right\rangle / \sigma$	-0.679	-0.65 ± 0.01
	$\left\langle J_{3}\right\rangle / \sigma$	1.304	1.28 ± 0.03

Remember, we have analytical predictions e.g. $\chi_{3 \mathrm{D}}^{\mathrm{s}}(\nu)=\frac{e^{-\nu^{2} / 2}}{8 \pi^{2}} \frac{\sigma_{1 \|} \sigma_{1 \perp}^{2}}{\sigma^{3}}\left[H_{2}(\nu)+\frac{1}{\gamma_{\perp}^{2}} \sum_{n=3}^{\infty} \sum_{\sigma_{n-2}} \frac{(-1)^{j+m}}{i!j!m!(2 m-1) 2^{m}} H_{i}(\nu)\left(\left\langle x^{i} q_{\perp}^{2 j} J_{2 \perp} x_{3}^{2 m}\right\rangle_{\mathrm{GC}}-\left(1-\gamma_{\perp}^{2}\right)\left\langle x^{i} q_{\perp}^{2 j} \zeta^{2} x_{3}^{2 m}\right\rangle_{\mathrm{GC}}\right)\right.$ $\left.+2 \frac{\sqrt{1-\gamma_{\perp}^{2}}}{\gamma_{\perp}} \sum_{n=3}^{\infty} \sum_{\sigma_{n-1}} \frac{(-1)^{j+m}}{i!j!m!(2 m-1) 2^{m}}\left\langle x^{i} q_{\perp}^{2 j} \zeta x_{3}^{2 m}\right\rangle_{\mathrm{GC}}^{H_{i}}(\nu) H_{1}(\nu)-\sum_{n=3}^{\infty} \sum_{\sigma_{n}} \frac{(-1)^{j+m}}{i!j!m!(2 m-1) 2^{m}}\left\langle x^{i} q_{\perp}^{2 j} x_{3}^{2 m}\right\rangle_{\mathrm{GC}} H_{i}(\nu) H_{2}(\nu)\right]$,
that depend on generalized S_{3} times σ at first order i.e some numbers times σ where $\sigma=\sigma_{D M}(z)=D(z) \sigma_{0}$
2.1 From topology to

cumulants

2.2 From ctimulants to

 $D(z)$2.3 From $D(z)$ to equation

of state of Dark Energy

Fiducial
 DE experiment

- Generate scale invariant ICs
- Evolve them with gravity
- identify critical sets
- compute differential counts
- estimate amplitude of NG distorsion via PT
- deduce geometric critical set σ

Figure of merit : 3D dark energy probe

- Assume error on $\mathrm{D}[\mathrm{z}]$
- Explore likelihood w.r.t w_{a} and wo

2 D genus measures β

2D MFs (and in particular 2D genus) can give access to $\beta=\Omega_{\mathrm{m}} \gamma / \mathrm{b}$ varying the orientation of slices and measuring e.g the amplitude of 2 D genus (or other 2 D MFs):

$$
\chi_{2 \mathrm{D}}^{(0)}\left(\nu, \theta_{\mathcal{S}}\right)=\frac{H_{1}(\nu) e^{-\nu^{2} / 2}}{2(2 \pi)^{3 / 2}} \frac{\sigma_{1 \perp} \sqrt{2 \cos ^{2}\left(\theta_{\mathcal{S}} \sigma_{1 \|}^{2}+\sin ^{2}\left(\theta_{\mathcal{S}} \sigma_{1 \perp}^{2}\right.\right.}}{\sigma^{2}}
$$

so that:
$\frac{\chi_{2 \mathrm{D}}^{(0)}\left(\nu, \theta_{1}\right)}{\chi_{2 \mathrm{D}}^{(0)}\left(\nu, \theta_{2}\right)}=\sqrt{\frac{2 \cos ^{2} \theta_{1} \sigma_{1 \|}^{2}+\sin ^{2} \theta_{1} \sigma_{1 \perp}^{2}}{2 \cos ^{2} \theta_{2} \sigma_{1 \|}^{2}+\sin ^{2} \theta_{2} \sigma_{1 \perp}^{2}}}$
so that:
$\frac{\chi_{2 \mathrm{D}}^{(0)}\left(\nu, \theta_{1}\right)}{\chi_{2 \mathrm{D}}^{(0)}\left(\nu, \theta_{2}\right)}=\sqrt{\frac{2 \cos ^{2} \theta_{1} \sigma_{1 \|}^{2}+\sin ^{2} \theta_{1} \sigma_{1 \perp}^{2}}{2 \cos ^{2} \theta_{2} \sigma_{1 \|}^{2}+\sin ^{2} \theta_{2} \sigma_{1 \perp}^{2}}}$
$10^{5} \times \chi_{2 D^{(1)}}$

with:

$$
\sigma_{1 \|}=\sqrt{\frac{1}{3}+\frac{2 \beta}{5}+\frac{\beta^{2}}{7}} \sigma_{1}
$$

$$
\sigma_{1 \perp}=\sqrt{\frac{2}{3}+\frac{4 \beta}{15}+\frac{2 \beta^{2}}{35}} \sigma_{1}
$$

Topology=a cosmic standard ruler?

Blake+ / 4

Summary : What can we learn from MFs?

We are able to predict accurately Minkowski functionals and extrema counts in redshift space at large enough scale.

These statistics:

- can probe modification of gravity as they can give access to $\boldsymbol{\beta}=\Omega_{\mathrm{m}} \mathrm{v} / \mathrm{b}$, $\gamma \simeq 0.55(G R)$ varying the orientation of slices and measuring the amplitude of 2D genus;
- can probe dark energy through the measure of $\sigma_{\mathrm{DM}}=\mathrm{D}(\mathrm{z}) \sigma_{0}$ (times «skewness» which is predicted by theory).

Partie III : comptages de galaxies

Our goal: predict multi-scale densities PDF for $\sigma \sim 1$

Our goal: predict multi-scale densities PDF for $\sigma \sim 1$

Our goal: predict multi-scale densities PDF for $\sigma \sim 1$

Upshot: large deviations theory

« an unlikely fluctuation is brought about by the least unlikely of all unlikely paths»

Outline

3.1. Large deviation principle (LDP)
3.2. Cosmic PDFs
3.3. A new cosmological probe?

Outline

3.1. Large deviation principle (LDP)

3.2. Cosmic PD Ps
3.3. A new cosmological probe?

Large-deviation Theory

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

Events $y_{1}=$ tails $=0, y_{2}=$ heads $=1$ occur with probability $p_{1}=p_{2}=1 / 2$. Let's repeat n times this experiment: $w=\left(w_{1}, \ldots, w_{n}\right) \in\{0,1\}^{n}$ and consider the average number of heads: $X=\sum_{i=1}^{n} w_{i} / n$
When n goes to infinity, X is expected to tend to $1 / 2$.

Large-deviation Theory

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

Events $y_{1}=$ tails $=0, y_{2}=$ heads $=1$ occur with probability $p_{1}=p_{2}=1 / 2$. Let's repeat n times this experiment: $w=\left(w_{1}, \ldots, w_{n}\right) \in\{0,1\}^{n}$ and consider the average number of heads: $X=\sum_{i=1}^{n} w_{i} / n$
When n goes to infinity, X is expected to tend to $1 / 2$. In mathematical terms, for all non-zero epsilon,

$$
\begin{aligned}
& \left.\lim _{n \rightarrow \infty} \mathcal{P}(\|X-1 / 2\|<\epsilon)\right)=1 \\
& \left.\lim _{n \rightarrow \infty} \mathcal{P}(\|X-x\|<\epsilon)\right)=0, \forall x:\|x-1 / 2\|>\epsilon
\end{aligned}
$$

This decay can be shown to be exponential:

$$
\mathcal{P}(\|X-x\|<\epsilon)) \underset{n \rightarrow \infty}{\approx} \exp \left(-n I_{p}(x)\right)
$$

where the rate function controls the rate of exponential decay:

$$
I_{p}(x)=x \ln x+(1-x) \ln (1-x)+\ln 2
$$

In particular, the rate function is strictly positive except in $1 / 2$ where $\mathrm{I}=0$ so that we observe a concentration around the mean for large n.
X satisfies a Large-deviation Principle

Large-deviation Theory

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

a. The rate function is the Legendre-Fenchel transform of the (scaled) cumulant generating function

$$
\begin{gathered}
\text { Varadhan's } \\
\text { theorem }
\end{gathered} \quad \varphi(\lambda)=\sup _{\lambda}(\lambda x-I(x)) \text { where } \varphi(\lambda)=\lim _{n \rightarrow \infty} \frac{K(n \lambda)}{n}
$$

This property comes from a saddle-point (or Laplace) approximation of

In the large n limit, the behaviour away from the saddle point does not matter!

Large-deviation Theory

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

a. The rate function is the Legendre-Fenchel transform of the (scaled) cumulant generating function

$$
\begin{gathered}
\text { Varadhan's } \\
\text { theorem }
\end{gathered} \quad \varphi(\lambda)=\sup _{\lambda}(\lambda x-I(x)) \text { where } \varphi(\lambda)=\lim _{n \rightarrow \infty} \frac{K(n \lambda)}{n}
$$

This property comes from a saddle-point (or Laplace) approximation of

In the large n limit, the behaviour away from the saddle point does not matter!

Large-deviation Theory

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

a. The rate function is the Legendre-Fenchel transform of the (scaled) cumulant generating function

$$
\begin{gathered}
\text { Varadhan's } \\
\text { theorem }
\end{gathered} \quad \varphi(\lambda)=\sup _{\lambda}(\lambda x-I(x)) \text { where } \varphi(\lambda)=\lim _{n \rightarrow \infty} \frac{K(n \lambda)}{n}
$$

This property comes from a saddle-point (or Laplace) approximation of

In the large n limit, the behaviour away from the saddle point does not matter!

Large-deviation Theory

what is the most likely way for an unlikely event to happen?
Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

a. The rate function is the Legendre-Fenchel transform of the (scaled) cumulant generating function

$$
\begin{gathered}
\text { Varadhan's } \\
\text { theorem }
\end{gathered} \quad \varphi(\lambda)=\sup _{\lambda}(\lambda x-I(x)) \text { where } \varphi(\lambda)=\lim _{n \rightarrow \infty} \frac{K(n \lambda)}{n}
$$

This property comes from a saddle-point (or Laplace) approximation of

$$
\exp (n \varphi(\lambda)) \equiv\langle\exp (n \lambda x)\rangle_{x}=\int P_{n} \exp (n \lambda x) \approx \int \exp (-n I(x)+n \lambda x)
$$

In the large n limit, the behaviour away from the saddle point does not matter!
b. The rate function of any mapping of x is

$$
\text { Contraction principle } \quad I(y)=\inf _{x, x \rightarrow y} I(x)
$$

The rate function for y is the smallest rate function (=most likely) of the values x that lead to y .

Large-deviation Theory

what is the most likely way for an unlikely event to happen?
Exponential decay of the probability of rare events in some random systems.
Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
2. Properties
3. LDP @ LSS

The parameter that drives the exponential decrease of the probabilities is the variance: $n \leftrightarrow 1 / \sigma^{2}$

Large-deviation Theory

what is the most likely way for an unlikely event to happen?

Exponential decay of the probability of rare events in some random systems.
Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing 2. Properties 3. LDP @ LSS

The parameter that drives the exponential decrease of the probabilities is the variance: $n \leftrightarrow 1 / \sigma^{2}$
-know the rate function of the initial conditions of the Universe e.g (Gaussian):

$$
I\left(\tau\left(R_{0}\right)\right)=\sigma^{2}\left(R_{p}\right) \times 1 / 2 \tau\left(R_{0}\right)^{2} / \sigma^{2}\left(R_{0}\right)
$$

Large-deviation Theory

what is the most likely way for an unlikely event to happen?

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing 2. Properties 3. LDP @ LSS

The parameter that drives the exponential decrease of the probabilities is the variance: $n \leftrightarrow 1 / \sigma^{2}$
-know the rate function of the initial conditions of the Universe e.g (Gaussian):

$$
I\left(\tau\left(R_{0}\right)\right)=\sigma^{2}\left(R_{p}\right) \times 1 / 2 \tau\left(R_{0}\right)^{2} / \sigma^{2}\left(R_{0}\right)
$$

-deduce the rate function of the final densities from the Contraction Principle

$$
I(\rho)=I\left(\tau=\zeta^{-1}(\rho)\right)
$$

Large-deviation Theory

what is the most likely way for an unlikely event to happen?

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

The parameter that drives the exponential decrease of the probabilities is the variance: $n \leftrightarrow 1 / \sigma^{2}$
-know the rate function of the initial conditions of the Universe e.g (Gaussian):

$$
I\left(\tau\left(R_{0}\right)\right)=\sigma^{2}\left(R_{p}\right) \times 1 / 2 \tau\left(R_{0}\right)^{2} / \sigma^{2}\left(R_{0}\right)
$$

-deduce the rate function of the final densities from the Contraction Principle

$$
I(\rho)=I\left(\tau=\zeta^{-1}(\rho)\right)
$$

-provided we can identify the most likely initial density contrast that leads to a given final density

$$
\text { final density } \rho \rho=\zeta\left(\tau^{\alpha}\right) \text { initial contrast }
$$

Large-deviation Theory

what is the most likely way for an unlikely event to happen?

Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

The parameter that drives the exponential decrease of the probabilities is the variance: $n \leftrightarrow 1 / \sigma^{2}$
-know the rate function of the initial conditions of the Universe e.g (Gaussian):

$$
I\left(\tau\left(R_{0}\right)\right)=\sigma^{2}\left(R_{p}\right) \times 1 / 2 \tau\left(R_{0}\right)^{2} / \sigma^{2}\left(R_{0}\right)
$$

-deduce the rate function of the final densities from the Contraction Principle

$$
I(\rho)=I\left(\tau=\zeta^{-1}(\rho)\right)
$$

-provided we can identify the most likely initial density contrast that leads to a given final density

$$
\text { final density } \rho=\zeta\left(\tau^{\wedge}\right) \text { initial contrast }
$$

-compute the scaled cumulant generating function (SCGF) via Varadhan's theorem

$$
\varphi(\lambda)=\sup _{\lambda}(\lambda \rho-I(\rho))
$$

Large-deviation Theory

what is the most likely way for an unlikely event to happen?
Exponential decay of the probability of rare events in some random systems. Central Limit theorem : convergence towards a Gaussian... what about the tails?

1. A canonic example: coin tossing
 2. Properties
 3. LDP @ LSS

The parameter that drives the exponential decrease of the probabilities is the variance: $n \leftrightarrow 1 / \sigma^{2}$
-know the rate function of the initial conditions of the Universe e.g (Gaussian):

$$
I\left(\tau\left(R_{0}\right)\right)=\sigma^{2}\left(R_{p}\right) \times 1 / 2 \tau\left(R_{0}\right)^{2} / \sigma^{2}\left(R_{0}\right)
$$

-deduce the rate function of the final densities from the Contraction Principle

$$
I(\rho)=I\left(\tau=\zeta^{-1}(\rho)\right)
$$

-provided we can identify the most likely initial density contrast that leads to a given final density

$$
\text { final density } \rho=\zeta\left(\tau^{\prime}\right) \text { initial contrast }
$$

-compute the scaled cumulant generating function (SCGF) via Varadhan's theorem

$$
\varphi(\lambda)=\sup _{\lambda}(\lambda \rho-I(\rho))
$$

-compute the density PDF via an inverse Laplace transform of the SCGF

$$
\exp \varphi(\lambda)=\int P(\rho) \exp (\lambda \rho) \leftrightarrow P(\rho)=\int_{-\imath \infty}^{\imath \infty} \frac{\mathrm{d} \lambda}{2 \imath \pi} \exp (\lambda \rho-\varphi(\lambda))
$$

Large-deviation Theory

what is the most likely initial configuration a final density originates from?

This most likely path can be found for very specific configurations with sufficient degree of symmetry e.g density in concentric spheres. In that case:

Different initial configurations can lead to the same final state! What is the most likely one?
Spherical symmetry enforces this most likely path to be the so-called Spherical Collapse dynamics:

$$
\begin{aligned}
\tau \rightarrow \rho & =\zeta_{\mathrm{SC}}(\tau) \\
r_{0} \rightarrow r & =r_{0} \rho^{-1 / 3}
\end{aligned}
$$

Large-deviation Theory in a nutshell

LDP tells us how to compute the cumulant generating function from the initial conditions using the spherical collapse as the «mean dynamics »:

$$
\varphi\left(\left\{\lambda_{k}\right\}\right)=\sup \left(\lambda_{i} \rho_{i}-I\left(\rho_{i}\right)\right) \quad \begin{gathered}
\text { Varadhan's } \\
\text { theorem }
\end{gathered}
$$

The density PDF is then obtained via an inverse Laplace transform of the CGF

$$
\exp \varphi(\lambda)=\int P(\rho) \exp (\lambda \rho) \leftrightarrow P(\rho)=\int_{-\imath \infty}^{\imath \infty} \frac{\mathrm{d} \lambda}{2 \imath \pi} \exp (\lambda \rho-\varphi(\lambda))
$$

Parameter-free theory which depends on cosmology through : the spherical collapse dynamics and the linear power spectrum.

Predictions are fully analytical if one applies the LDP to the log. (Uhlemann, $S C^{\prime} 16$)

Outline

A. One-cell density PDF

1st step: compute the cumulant generating function $\varphi(\lambda)=\sup _{\lambda}(\lambda \rho-I(\rho))$ or equivalently $\varphi(\lambda)=\lambda \rho-I(\rho)$ with stationary condition $\lambda=I^{\prime}(\rho)$
! inverting the stationary condition is not possible for all λ !

A. One-cell density PDF

1st step: compute the cumulant generating function $\varphi(\lambda)=\sup _{\lambda}(\lambda \rho-I(\rho))$ or equivalently $\varphi(\lambda)=\lambda \rho-I(\rho)$ with stationary condition $\lambda=I^{\prime}(\rho)$

2nd step: compute the PDF
The inverse Laplace transform requires integration into the complex plane:

$$
\mathcal{P}(\rho)=\int_{-\imath \infty}^{+\imath \infty} \frac{\mathrm{d} \lambda}{2 \imath \pi} \exp (-\lambda \rho+\varphi(\lambda))
$$

Numerical integration AND analytical approximations at low and large densities:

$$
\mathcal{P}(\rho)=\sqrt{\frac{I^{\prime \prime}(\rho)}{2 \pi}} \exp (-I(\rho)) \quad \mathcal{P}(\rho)=\frac{3 a_{3 / 2}}{4 \sqrt{\pi}} \exp \left(\varphi_{c}-\lambda_{c} \rho\right) \frac{1}{(\rho+\ldots)^{5 / 2}}
$$

at low density

A. One-cell density PDF

1st step: compute the cumulant generating function $\varphi(\lambda)=\sup _{\lambda}(\lambda \rho-I(\rho))$ or equivalently $\varphi(\lambda)=\lambda \rho-I(\rho)$ with stationary condition $\lambda=I^{\prime}(\rho)$

2nd step: compute the PDF
The inverse Laplace transform requires integration into the complex plane:

$$
\mathcal{P}(\rho)=\int_{-\imath \infty}^{+\imath \infty} \frac{\mathrm{d} \lambda}{2 \imath \pi} \exp (-\lambda \rho+\varphi(\lambda))
$$

Numerical integration technically done by choosing the path of zero imaginary part

One-cell density PDF

Horizon-Run: $3.1 \mathrm{~h}^{-1} \mathrm{Gpc}$
$R=10 \ldots 15 \mathrm{~h}^{-1} \mathrm{Mpc}$

B. Two-cell PDF

Same formalism can be used to compute the statistics of cosmic densities in $\mathrm{N}>$ I concentric cells Introduce slope = possible proxy for peaks \& voids

$$
\begin{array}{r}
P\left(\rho_{1}, \rho_{2}\right) \mathrm{d} \rho_{1} \mathrm{~d} \rho_{2} \stackrel{\rho=\rho_{1}}{\longleftrightarrow} P(\rho, s) \mathrm{d} \rho \mathrm{~d} s \\
s=R_{1} \frac{\rho_{2}-\rho_{1}}{R_{2}-R_{1}} \text { density slope }
\end{array}
$$

$$
\begin{aligned}
& \text { 1st step: compute the cumulant generating function } \varphi(\lambda, \mu)=\sup _{\lambda, \mu}(\lambda \rho+\mu s-I(\rho, s)) \\
& \text { or equivalently } \varphi(\lambda, \mu)=\lambda \rho+\mu s-I(\rho, s)) \text { with stationary condition }\left\{\left\{\begin{array}{l}
\lambda=\frac{\partial I(\rho, s)}{\partial \rho} \\
\mu=\frac{\partial I(\rho, s)}{\partial s}
\end{array}\right.\right.
\end{aligned}
$$

1st step: compute the cumulant generating function
! There is a critical line where the stationary condition is singular.

B. Two-cell PDF

Same formalism can be used to compute the statistics of cosmic densities in $\mathrm{N}>\mathrm{I}$ concentric cells Introduce slope = possible proxy for peaks \& voids

$$
\begin{array}{r}
P\left(\rho_{1}, \rho_{2}\right) \mathrm{d} \rho_{1} \mathrm{~d} \rho_{2} \stackrel{\rho=\rho_{1}}{\longleftrightarrow} P(\rho, s) \mathrm{d} \rho \mathrm{~d} s \\
s=R_{1} \frac{\rho_{2}-\rho_{1}}{R_{2}-R_{1}} \text { density slope }
\end{array}
$$

1st step: compute the cumulant generating function $\varphi(\lambda, \mu)=\sup _{\lambda, \mu}(\lambda \rho+\mu s-I(\rho, s))$ or equivalently $\varphi(\lambda, \mu)=\lambda \rho+\mu s-I(\rho, s))$ with stationary condition $\left\{\begin{array}{l}\lambda=\frac{\partial I(\rho, s)}{\partial \rho} \\ \mu=\frac{\partial I(\rho, s)}{\partial s}\end{array}\right.$
2nd step: compute the PDF via 2D Inverse Laplace Transform

$$
P(\rho, s)=\int_{-i \infty}^{i \infty} \mathrm{~d} \lambda \int_{-i \infty}^{i \infty} \mathrm{~d} \mu \exp (-\lambda \rho-\mu s+\varphi(\lambda, \mu))
$$

This is difficult because we need to choose a 2D path in 4D space with lots of the oscillations and analytical approximations have a poor range of validity.

B. Two-cell PDF

Same formalism can be used to compute the statistics of cosmic densities in $N>1$ concentric cells Introduce slope = possible proxy for peaks \& voids

$$
\begin{array}{r}
P\left(\rho_{1}, \rho_{2}\right) \mathrm{d} \rho_{1} \mathrm{~d} \rho_{2} \stackrel{\rho=\rho_{1}}{\longleftrightarrow} P(\rho, s) \mathrm{d} \rho \mathrm{~d} s \\
s=R_{1} \frac{\rho_{2}-\rho_{1}}{R_{2}-R_{1}} \text { density slope }
\end{array}
$$

1st step: compute the cumulant generating function $\varphi(\lambda, \mu)=\sup _{\lambda}(\lambda \rho+\mu s-I(\rho, s))$ or equivalently $\varphi(\lambda, \mu)=\lambda \rho+\mu s-I(\rho, s))$ with stationary condition $\left\{\begin{array}{l}\lambda=\frac{\partial I(\rho, s)}{\partial \rho} \\ \mu=\frac{\partial I(\rho, s)}{\partial s}\end{array}\right.$
2nd step: compute the PDF via 2D Inverse Laplace Transform

$$
P(\rho, s)=\int_{-i \infty}^{i \infty} \mathrm{~d} \lambda \int_{-i \infty}^{i \infty} \mathrm{~d} \mu \exp (-\lambda \rho-\mu s+\varphi(\lambda, \mu))
$$

This is difficult because we need to choose a 2D path in 4D space with lots of the oscillations and analytical approximations have a poor range of validity.

Apply the large-deviation principle to the log of the density! This is a simple change of variable but it removes the singularities and provides very accurate analytical approximations (almost indistinguishable from the numerical integration)!

Two-cell PDF

Two-cell PDF: statistics of the slope

Higher density environments have more negative slopes (peaks!).

Outline

Where is the cosmology dependence?

To get one-cell PDF, one has to:

1) know the rate function of the initial conditions e.g (Gaussian):

$$
I\left(\tau\left(R_{0}\right)\right)=\sigma^{2}\left(R_{p}\right) \times 1 / 2 \tau\left(R_{0}\right)^{2} / \sigma^{2}\left(R_{0}\right)
$$

where the initial variance is a function of the linear power spectrum

$$
\sigma^{2}(R)=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k} P_{\operatorname{lin}}(k) W_{\mathrm{TH}}^{2}(k R)
$$

2) deduce the rate function of the final densities from the Contraction Principle

$$
I(\rho)=I(\tau=\underbrace{-1}(\rho))
$$

3) compute CGF and then PDF

modification initial statistics of gravity primordial non-Gaussianities
growth of structure dark energy

ML estimator for the variance

15,000 square degrees
$\mathrm{R}=10 \mathrm{~h}^{-1} \mathrm{Mpc}$ $0.1<z<1$

One-cell velocity divergence PDF

One-cell velocity divergence PDF

Use velocity PDF for cosmology

Here the rest of the cosmology is fixed...

$$
\theta_{\mathrm{SC}}=f\left(\Omega_{m}\right) \nu\left(1-\rho^{1 / \nu}\right)
$$

15,000 square degrees
$\mathrm{R}=10 \mathrm{~h}^{-1} \mathrm{Mpc}$ $0.1<z<1$

How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments... We use a quadratic log bias model:

$$
\log \rho_{m}=b_{0}+\beta_{1} \sigma \log \rho_{h}+\beta_{2} \sigma \log ^{2} \rho_{h}
$$

How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments... We use a quadratic log bias model:

$$
\log \rho_{m}=b_{0}+\beta_{1} \sigma \log \rho_{h}+\beta_{2} \sigma \log ^{2} \rho_{h}
$$

How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments...
We use a quadratic log bias model:

$$
\log \rho_{m}=b_{0}+\bigodot_{=\mathbf{b}_{1}}^{\beta_{1} \sigma} \log \rho_{h}+\underbrace{}_{2} \sigma \log ^{2} \rho_{h}
$$

Measuring the PDF then allows to constrain σ and the bias parameters:

How to deal with biased tracers?

Halo bias can be accounted for and marginalised over for cosmological experiments...
We use a quadratic log bias model:

$$
\log \rho_{m}=b_{0}+\underbrace{\beta_{1} \sigma}_{=\mathbf{b}_{1}} \log \rho_{h}+\underbrace{\beta_{2} \sigma}_{=\mathbf{b}_{2}} \log ^{2} \rho_{h}
$$

Measuring the PDF then allows to constrain σ and the bias parameters:
$+2 p t$ PDF

Conclusion:

Multi-scale densities PDF can be predicted in the mildly non-linear regime with surprising accuracy e.g $<1 \%$ on $\mathrm{P}(\rho)$ for $\mathrm{\sigma}=\mathrm{O}(1)$ even in the rare event tails, thanks to large deviations theory.

Predictions are fully analytical and explicitly cosmology-dependent!

We can have a model for bjased tracers of the density, velocities, 2 pt stat and (in progress) cosmic shear maps.

Large deviation principle:

an unlikely fluctuation is brought about by the least unlikely of all unlikely paths.

Statistiques d'ordre supérieur TD

Sandrine Codis
CITA

codis@cita.utoronto.ca

Ecole Euclid 2017, Frejus

Statistiques d'ordre supérieur : TD

Exercice 1: PDF du champ de densité cosmique

-Mesurer la PDF de la densité aux trois redshifts proposés.
-Comparer à une Gaussienne, un développement de Edgeworth tronqué à $n=3$ puis $n=4$. On utilisera ici deux méthodes: les cumulants mesurés et les cumulants à l'ordre des arbres -Utiliser le code LSSFast pour calculer la prédiction dans le régime de grande déviation et comparer le résultat à la mesure et au développement de Edgeworth.

Exercice 2: Topologie

-Ecrire la PDF jointe d'un champ Gaussien aléatoire 2D δ et de ses derivées premières et secondes.
-Trouver quelles combinaisons lineaires des variables sont décorrélées.
-Ecrire le developpement de Gram-Charlier dans ces variables
-Calculer le genus 2D Gaussien
-Calculer sa premiere correction non-Gaussienne

