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Abstract
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Doctor of Philosophy

Graduate Department of Physics

University of Toronto

June 2006

In January 2003 the BOOMERANG telescope completed a second successful flight

over the Antarctic continent. In this thesis an overview of the BOOMERANG instrument

is given, with emphasis on the pointing system. The analysis of the BOOMERANG 2003

(B03) flight data from Cosmic Microwave Background (CMB) maps to angular power

spectra is also described. The final B03 temperature angular power spectrum represents

the most precise intermediate scale measurement of CMB temperature anisotropy to

date. The final polarization power spectrum represents a ∼ 5σ detection in the ℓ = 100

to ℓ = 1000 multipole range. The Polarization Sensitive Bolometers (PSBs) used in B03

are the first of their kind and will be used in the High Frequency Instrument (HFI) on

the Planck Surveyor satellite. The successful B03 CMB anisotropy measurements using

PSBs represents a critical first step for the Planck satellite mission.

The B03 data alone constrains the parameters of the standard ΛCDM model–a Uni-

verse in which Cold Dark Matter and a cosmological constant, Λ, are the dominant energy

components–remarkably well and is consistent with constraints from a multi-experiment

combined CMB data set (hereafter CMBall). Several extensions to the standard model

are tested using both the CMBall data set and a combined CMBall + Large Scale Struc-

ture (LSS) data set. The resulting constraints from the CMBall+LSS data set, represent-

ing the most up-to-date parameter analysis, are: slight evidence (both < 2σ) for a run-
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ning index and curvature; an upper (95% confidence) limit on the tensor-to-scalar ratio

of At/As < 0.36; an upper (95% confidence) limit on the neutrino mass of mν < 0.40 eV

mν < 0.4eV (mν < 1.0eV from CMB data alone); and, after adding the supernova (SNIa)

data, a constraint on the dark energy equation of state of w = −0.94+0.093
−0.097 (68% confi-

dence interval). Also included is an analysis of the CMBall + HST (H0 value determined

from the Hubble Space Telescope Key Project) constraints to a model which includes a

CDM isocurvature mixture. The resulting allowed isocurvature CMB bandpower con-

tamination is only a few percent.
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Chapter 1

Introduction

BOOMERANG is a balloon-borne, microwave telescope designed to measure the intensity

and polarization anisotropies of the Cosmic Microwave Backgound (CMB). The CMB is

a field of electromagnetic radiation that is cosmic in origin, that is originating from

the Universe itself. It radiates in the microwave, ranging from 0.3 GHz to 630 GHz,

with a near perfect blackbody spectrum which peaks at 160.4 GHz, corresponding to a

temperature of 2.725 K. The CMB covers the entire sky and appears as a background

behind all other objects for instance stars, galaxies, etc. While the CMB is extremely

uniform, there are tiny fluctuations or anisotropies in CMB intensity and polarization.

These anisotropies trace tiny non-uniformities in the early Universe which grow into the

large scale structure observed in the sky today.

Polarization of a radiation field is generally expressed in terms of the Stokes param-

eters I, Q, U and V. The latter, the Stokes V, characterizes circular polarization and

since the CMB is not expected to be circularly polarized it can be ignored. The Stokes

I describes the radiation intensity, while Q and U represent linear polarization. Note

that since the CMB field is conventionally described in terms of temperature all of these

quantities are determined in µK and the Stokes I is sometimes replaced by T. So the

inital observables (derived from the raw data) that BOOMERANG obtains are T, Q

1



Chapter 1. Introduction 2

and U maps describing the temperature and polarization anisotropies of the CMB sky in

units of µK.

In cosmology it has become both customary and convenient to provide a statistical

description of the CMB anisotropies (the T, Q, U maps) in the form of their angular

power spectra. CMB fluctuations are distributed over the surface of a sphere (the sky).

The spherical harmonic transform of the CMB field is the spherical polar equivalent of

the Fourier transform of a density field described in three Cartesian dimensions. From

the amplitudes of the spherical harmonic components the angular power spectra may

be constructed in terms of the variance, Cℓ, of the CMB fluctuations as a function of

multipole number ℓ. For example the measured CMB temperature fluctuation field, T,

can be decomposed in terms of the spherical harmonic coefficients

aT,lm =

∫
dΩY 0

lm
∗
T (n̂)

where the term Y 0
lm represents the spherical harmonic functions and n̂ is the line of sight

unit vector. The temperature angular power spectrum (in shorthand TT) is then

CTT
l =

1

2l + 1

∑

m

< aT∗
lma

T
lm > . (1.1)

The multipole or angular wavenumber, ℓ, of a spherical harmonic mode is related to an

angular separation on the sky of θ ≈ π/ℓ.

The polarization field is a bit more complicated to describe. From linear combinations

of Q and U and using spin-weighted (spin 2) spherical harmonic functions E-mode and

B-mode polarization can be derived (see Section 6.5). This is simply another more

convienient formalism for characterizing the polarization of a radiation field. It is useful

in cosmology because one type of initial pertubations (scalar) are known to produce only

E-mode polarization, while another type (tensor) produce both E-mode and B-mode

polarization. The E-mode and B-mode definitions are analogous to electric and magnetic
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fields, since B-modes are curl-like and E-modes are curl-free. The final data set from the

BOOMERANG 2003 flight is comprised of four power spectra: the temperature power

spectrum, TT; the EE (curl-free) and BB (curl-like) polarization power spectra; and the

TE cross-power spectrum. Two other cross spectra are presented, TB and EB, but are

consistent with zero (as predicted by theory) and are not used in the final parameter

estimation analysis.

The measured CMB angular power spectra may be compared with angular power

spectra derived from cosmological models. The position and amplitude of the peaks and

dips of the CMB spectra are sensitive to such parameters as the geometry of the Universe,

the cosmological constant and the energy densities associated with baryons and cold dark

matter [8]. Thus, the CMB angular power spectra have become invaluable observables for

constraining cosmological models. The CMB temperature spectrum has been measured

with high precision on large angular scales by the Wilkinson Microwave Anisotropy Probe

(WMAP) experiment [35], while smaller angular scales have been probed by ground and

balloon-based CMB experiments [73, 70, 21, 48, 32]. Figure 1.1 summarizes the current

status of measurements of the CMB temperature angular power spectrum. These data

are remarkably consistent with a ΛCDM model in which the Universe is spatially flat

and is composed of radiation, baryons, neutrinos and the ever mysterious duo, cold dark

matter (CDM) and dark energy (the cosmological constant, Λ).

One of the firm predictions of this standard model is that the CMB is intrinsically

polarized. On large angular scales the polarization is sensitive to the details of the

reionization–the era when the first stars and galaxies formed–and the curl component

(B-mode) is a unique signature of tensor perturbations. On smaller angular scales the

polarization spectra can verify some of the basic assumptions made in the standard model.

For instance, peaks in the polarization spectra arise from the same acoustic oscillations

at last scattering as those in the total temperature spectra. However, the peaks in the

polarization spectra are predicted to be out of phase with the temperature peaks since the
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Figure 1.1: Summary of recent temperature angular power spectrum, TT, measure-
ments from various ground (VSA, DASI, CBI, ACBAR), balloon (B98, MAXIMA) and
satellite (WMAP) CMB experiments. Vertical axis is the variance in CMB tempera-
ture fluctuations. Horizontal axis is the angular wavenumber which can be related to
an angular separation on the sky by θ ≈ π/ℓ. Acronyms for the experiments can be
found in a table at the beginning of this thesis. Model plotted (solid curve) is the
previous concordance model, a best fit to WMAP(first-year)+CBI+ACBAR data from
http://lambda.gsfc.nasa.gov/product/map/.

former are sourced by the velocity term of the primordial photon-baryon fluid as opposed

to its density. Observations of the polarization power spectra, and the correlation with

the total temperature spectra can therefore be used as a powerful consistency check, as

well as potentially providing additional cosmological information.

The recent polarization measurements of the Degree Angular Scale Interferometer

(DASI) [47], WMAP [44], the Cosmic Background Imager (CBI) [71] and the Cos-

mic Anisotropy Polarization Mapper (CAPMAP) [4] experiments have confirmed that

http://lambda.gsfc.nasa.gov/product/map/
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Figure 1.2: Polarization power spectrum measurements from the WMAP (satellite),
DASI (ground based), CBI (ground based) and CAPMAP (ground based) experiments.
Model plotted (solid curve) is the previous concordance model, a best fit to WMAP(first-
year)+CBI+ACBAR data from http://lambda.gsfc.nasa.gov/product/map/.

http://lambda.gsfc.nasa.gov/product/map/
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the CMB is indeed polarized. Figure 1.2 illustrates the CMB polarization and cross-

polarization spectral measurements of these experiements. The precision of the CMB

polarization measurements are not yet at the level of the CMB temperature measure-

ments. This is not too surprising given that the CMB polarization anisotropy is an

order of magnitude smaller than the temperature anisotropy, making it a much more

difficult signal to detect. The models plotted in Figure 1.2 are predominantly derived

from TT data. Polarization measurements provide an independent means for testing this

underlying model.

Both CBI and DASI are ground based experiments and as such are limited (in both

sensitivity and observing bandwidth) by the degradation of signal by the Earth’s at-

mosphere. On a satellite WMAP avoids this issue but the angular resolution of the

experiment is limited to larger angular scales. In addition these experiments all use high

electron mobility transistor (HEMT) amplifiers to detect the polarized anisotropy. At

frequencies above ∼100 GHz the sensitivity of HEMTs is limited by the noise temperature

of the detector (see for example [80]). BOOMERANG uses sensitive bolometric detectors

which allow higher frequency, thus higher resolution observations and by observing from

balloon altitude (∼35 km) BOOMERANG is above much of the Earth’s atmosphere.

Higher frequency measurements also enable the instrument to probe foregound dust. In

addition BOOMERANG provides the testbed for the polarization sensitive bolometers

(PSBs) to be used in the High Frequency Instrument (HFI) on the Planck Surveyor satel-

lite. The B03 sky coverage is comprised of ∼195 hours of data over ∼1.8% of the sky,

with an effective beam 11.5 ± 0.23 arcminutes. Instrument calibration is based on the

90 GHz and 60 GHz WMAP data and the resulting amplitude uncertainty in calibration

is ∼ 2%.

This thesis begins with an introduction to Big Bang theory and a discussion of CMB

anisotropy in Chapter 2. Chapter 3 gives an overview of the BOOMERANG instrument.

My experimental contribution predominantly involved the integration and testing of the
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pointing system, with considerable focus on the star camera star-tracking algorithm and

testing. Chapter 4 describes in some detail the LDB environment and flight performance.

Chapter 5 describes the instrument characterization derived from various tests performed

before and during the flight. While (for completeness) a general overview of test results is

given, I was responsible for the alignment of the instrument pointing sensors as well as, the

tracking aspect of the beam measurements. Chapter 6 gives the details of the analysis

pipeline, from raw data to power spectra, and presents the resulting maps and power

spectra for the B03 flight. Aside from the cleaning of the bolometer data, I was involved

in all aspect of the data analysis. This includes (but is not limited to): the production of

the cleaned calibrated pointing fields; the overall strategy for the pointing solution; the

determination of the pointing rotation matricies; the inclusion of noise correlation code

for more accurate noise estimation; running and debugging of the Monte Carlo pipeline;

the production of the final angular power spectra and jackknife systematic tests. Chapter

7 discusses the parameter extraction technique and tests the B03 data set against the

standard model. Constraints from a multi-experiment combined CMB data set (hereafter

CMBall) are also explored. Several extensions to the standard model are tested using

both the CMBall data set and a combined CMBall + Large Scale Structure (LSS) data

set. The resulting constraints from the CMBall+LSS data set represent the most up-

to-date parameter analysis. I performed all of the analysis for Chapter 7. Finally, a

summary of the results and their implications are given in Chapter 8.



Chapter 2

Big Bang Theory

This thesis tests Big Bang theory against the B03 CMB anisotropy measurements. Big

Bang theory is reviewed in several cosmology texts and the contents of this chapter are

not new. This chapter is intended to provide an overview of the theory involved and

some of the terminology used in the cosmology today. The author found [22] and [53]

particularly useful as references.

In the most generic scenario the Big Bang theory predicts that the Universe is expand-

ing and that in the past the Universe was hotter and denser than it is now. When the

Universe was less than ∼300,000 years old there was a period when the scattering rates

of matter and radiation exceeded the expansion rate resulting in near equilibrium con-

ditions for the Universe’s constituents. Assuming for the moment that this equilibrium

applies to all scales this scenario paints a picture of a smooth, expanding Universe. This

simple picture is supported by two classes of observables. The first, is the observation

that distant objects in the Universe are receding at a rate proportional to their distance.

This was first reported by Hubble [39], in 1929, for galaxies. The second, was the discov-

ery of the Cosmic Microwave Background (CMB) in 1965 by Penzias and Wilson [64]. At

some point after the first few hundred thousand years, the Universe expanded and cooled

enough so that matter and radiation eventually decoupled. At this time, deemed the

8
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Recombination Era, protons and electrons combined to form neutral hydrogen and the

photons were allowed to travel freely throughout the Universe. The surface from which

CMB photons last scattered is often referred to as the last scattering or decoupling sur-

face. The CMB photons observed today offer a snapshot of the time of recombination. In

1991, the Far InfraRed Absolute Spectrophotometer (FIRAS) instrument on the Cosmic

Background Explorer (COBE) satellite measured the near perfect blackbody spectrum

of the CMB providing compelling evidence for the early equilibrium picture. As shown

in Figure 2.1 the FIRAS measurement [58] and the theoretical blackbody curve are in

such remarkable agreement that data points are not discernible from the model.

The simple picture of the smooth expanding Universe cannot account for the existence

of galaxies and other structure that is apparent in the sky today. In order to generate

the inhomogeneity observed now, the equilibrium scenario of the early Universe must

be perturbed. That is, one must allow for the possibility of slight out-of-equilibrium

conditions at early times in the form of tiny perturbations to the energy density (or

entropy density). The fluctuations in the matter density will be the seeds from which the

structures of today grow. The fluctuations in the photon density appear as anisotropies

in the CMB radiation field. The deviations from the mean temperature in the primordial

plasma are on the order of 10−5 and for polarization the deviations are an order of

magnitude smaller.

Figure 2.2 illustrates a timeline for the history of the Universe. The time of recombina-

tion marks the moment when photons decoupled from the rest of matter, free-streaming

throughout the Universe. Today the Universe appears to be dominated by some form of

dark energy of which little is known. The most popular theory for the very earliest times

is described by inflation, a period when the Universe expanded nearly exponentially. In-

flation has the attractive feature of setting up the required initial conditions for structure

formation, as well as putting regions of the Universe which are widely separated today

into causal contact in the past.
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Figure 2.1: Measurement of the intensity of the CMB radiation versus frequency from
the FIRAS instrument [58] on the COBE satellite. The theoretical blackbody curve is
in such remarkable agreement with the data points that the two are indistinguishable.
Figure taken from http://lambda.gsfc.nasa.gov/product/cobe/firas_image.cfm.

The cosmological models are functions of several cosmological parameters such as the

age, expansion rate and content of the Universe. This chapter introduces the cosmological

parameters by briefly outlining the physics that goes into the models. In Section 2.1 the

theoretical framework for describing a simple picture of the smooth, expanding Universe,

sometimes referred to as the “Zeroth Order Universe”, is outlined, allowing introduction

of many of the cosmological parameters. Section 2.2 gives a basic overview of how the

initial perturbations are generated in the theory and how these perturbations evolve into

the anisotropies in the CMB, described statistically by the CMB angular power spectra.

http://lambda.gsfc.nasa.gov/product/cobe/firas_image.cfm
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Figure 2.2: Timeline for the history of the Universe adopted from [22].

2.1 The Zeroth Order Universe

The construction of a mathematical description of the entire Universe begins with a

theoretical framework for describing the expansion of four space-time dimensions. This

framework is provided by the metric, which relates the coordinate distance between points

on a grid to physical distance, which takes into account geometry and expansion. In its

most general form the metric can be written,

ds2 =
3∑

µ,ν=0

gµνdx
µdxν = gµνdx

µdxν (2.1)

where in the last step the summation sign is eliminated following the convention of

implicit summing over repeated indices. Also, the convention of using Greek indices (µ

and ν) for space+time and Roman indices (i and j) for space only is followed. The term

gµν is the metric tensor which characterizes the the expansion rate, the geometry and (as

will be shown later) the effect of space-time perturbations.

The metric describing a homogeneous (uniform at all points in space) and isotropic

(looks identical in every direction), expanding Universe is the Robertson-Walker (RW)
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metric which expanded and in spherical polar coordinates takes the form1,

ds2 = −dt2 + a(t)2

(
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

)
(2.2)

where a(t) is the scale factor which describes the expansion of the Universe which is set

to one today and decreases going into the past. The curvature parameter k characterizes

the geometry of the Universe. Flat space (Euclidean geometry) has k = 0, while k > 0

corresponds to positive spatial curvature (a closed Universe) and k < 0 corresponds to

negative spatial curvature (an open Universe).

The time variable in Equation 2.2 is often called the comoving time and is the time

measured by an observer at rest with respect to the local matter distribution (in the

language of General Relativity, a fundamental observer). Another time variable that is

often used is the conformal time variable which is the total comoving time that light

could have traveled since t = 0. The expression for this variable is,

η =

∫ t

0

dt′

a(t′)
. (2.3)

Regions of space-time that are more widely separated than η are not causally connected.

η is often called the comoving horizon, a concept which becomes important for motivation

of inflation.

Armed with the framework defining how quantities of length, time and angle evolve

in an expanding Universe, the next step is to relate the geometrical properties of space-

time to the matter and energy from which the Universe is composed. This feat is realized

through the application of Einstein’s gravitational field equations which are,

Gµν = 8πGTµν (2.4)

1Here and throughout the speed of light c = 1
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where G is Newton’s constant. The term, Gµν is the Einstein tensor and Tµν is the

energy-momentum tensor.

The Einstein tensor is a function of the metric tensor and its first and second deriva-

tives. More explicitly,

Gµν ≡ Rµν −
1

2
gµνR (2.5)

where Rµν and R are the Ricci tensor and Ricci scalar respectively. The Ricci tensor is

given by,

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓ

β
µα (2.6)

where

Γµ
βα =

gµν

2

[
∂gαν

∂xβ
+
∂gβν

∂xα
− ∂gαβ

∂xν

]
(2.7)

are the Christoffel symbols. The Ricci scalar is the contraction of the Ricci tensor or

R ≡ gµνRµν . For the (flat) RW metric only the time-time (R00) and space-space (Rij)

components of the Ricci tensor are non-vanishing. The time-time component of the

Einstein tensor works out to G00 = 3ȧ2/a2. The result for the space-space component is

Gij = (2ä/a+ ȧ2/a2)gij.

The energy momentum tensor, Tµν , for a perfect fluid (relevant to a homogeneous

and isotropic Universe of this section) is given by,

T µν =




−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P




(2.8)

where ρ and P are the fluid density and pressure. The time-time component of the

Einstein equations for the smooth expanding Universe reduces to the Friedman equation,

H2 =
8πG

3
ρ− k

a2
(2.9)
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where H = ȧ/a is the Hubble rate parameter. Dividing Equation 2.9 by H2, defining the

critical density ρcr = 3H2/8πG and rearranging yields the expression,

1 + Ωk = Ωtot (2.10)

with Ωtot = ρ/ρcr and Ωk = 3k/(8πGa2)/ρcr = ρk/ρcr. Note that total density, Ωtot, can

include contributions from all the possible constituents of the Universe including baryonic

matter (Ωb), photons (Ωγ), neutrinos (Ων) and two components with largely unknown

properties, dark matter (Ωc) and dark energy (ΩΛ). In short,

Ωtot = Ωm + Ωγ + Ων + ΩΛ (2.11)

where the matter density Ωm = Ωb + Ωc.

Equation 2.9 describes the evolution of the scale factor in a Universe which is com-

prised of various forms of matter and energy. The evolution of the constituents of the

Universe is governed by the continuity and Euler equations. In General Relativity these

conservation equations require the covariant derivative of the energy-momentum tensor

or

T µν
;µ ≡ ∂T µν

∂xµ
+ Γµ

αµT
αν − Γα

νµT
µα = 0. (2.12)

The ν = 0 component of this equation is the equivalent of the continuity equation for a

smooth, expanding Universe. This component works out to be,

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P) = 0 (2.13)

which can be written,

∂ρ

∂t
+ 3Hρ(1 + w) = 0. (2.14)

Here w = P/ρ defines the equation of state for a particular constituent. For radiation
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w = 1/3 with ρr ∝ a−4, and for matter w = 0 with ρm ∝ a−3. This scaling of matter

or radiation density with scale factor indicates that at early times the Universe was

radiation dominated but at some point matter became the dominant component. It

appears, from the observational evidence of a variety of cosmological datasets (e.g. CMB,

large scale structure and supernova data) that today w < 0, inconsistent with either

matter or radiation domination. The dominant energy component of the Universe now

is somewhat of an enigma, hence its descriptor dark energy. For dark energy in the form

of a cosmological constant w = −1 and ρΛ = constant. Section 7.3.2 explores the effect

of alternate forms of dark energy, allowing the equation of state for the dark energy

component to differ from -1.

2.2 Generating Anisotropies

Describing the initial perturbations to the equilibrium scenario and how these pertur-

bations evolve with time is complicated by the fact that perturbing one constituent of

the Universe will have an impact on another. For instance, electrons and protons are

coupled through Coulomb scattering. Perturbing the electron density will have an af-

fect on the protons and vice-versa. Similarly for the coupling of photons and electrons

through Compton scattering. In addition the metric itself is also, in general, perturbed

which affects all the constituents and which will in turn be affected by perturbations to

all of the other constituents. The solution to describing all of these perturbed compo-

nents lies in a set of linear, coupled Boltzmann-Einstein equations which (fortunately for

the experimental cosmologist) can be solved using such codes as cmbfast [74] or one

of its successors, camb [52]. These equations are not solved here, instead an overview

of some of the relevant details is given in order to introduce the remaining cosmologi-

cal parameters and the dependence of the angular power spectra on these parameters.

This text largely follows the derivation for the anisotropies found in Dodleson’s Modern
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Cosmology [22].

The equations which describe the evolution of the perturbations for electrons, protons,

photons, dark matter and neutrinos are derived from the Boltzmann equation,

df(~x, ~p, t)

dt
= C[f(~x, ~p, t)] (2.15)

where f is the distribution function for a particular species (recall for example that

photons in equilibrium have a Bose-Einstein distribution) which describes the probability

of finding a particle in a particular region of phase space (that is with momentum, ~p,

at position ~x, at time t). Derivatives of f depend on the metric, which must also be

perturbed. C(f) is the collision term which characterizes all of the interactions that the

perturbed species might have with other particles.

Perturbations to the matter density are parameterized by the fractional overdensities,

δc(~x, t) = δρc/ρc for the dark matter and δb(~x, t) = δρb/ρb for baryons 2. In addition,

these overdensities induce velocities in the matter which are written, ~vc(~x, t) for the dark

matter flow and and ~vb(~x, t) for the flow in the baryons. It is conventional to work with

these quantities in the Fourier domain, since modes in Fourier space evolve independently

in the linear regime (the case considered here because perturbations are small). So the set

of perturbation variables for matter are given by: δc(k, η), δb(k, η), vc(k, η) and vb(k, η)
3.

In addition to switching to the Fourier domain the switch has been made from comoving

to conformal time.

Because of their relativistic nature, the photons perturbation variable is slightly more

complicated and is given the fractional temperature variable Θ(~x, p̂, t) = δT/T . In the

Fourier domain the fractional temperature perturbation can be expanded in spherical

2Note that electrons, which are actually leptons, are conventionally included as a baryonic component
in cosmology.

3The wavenumber is described by the variable k while the curvature parameter, defined previously,
is given by the script variable k.
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harmonics to give a hierarchy of moments,

Θℓ(k, η) =
1

(−i)ℓ

∫ 1

−1

dµ

2
Pℓ(µ)Θ(k, µ, η) (2.16)

where µ = p̂ · k̂ and Pℓ is a Legendre polynomial of order ℓ. So when describing per-

turbations in the photon distribution one must consider not only the monopole, Θ0

(analogous to the density perturbation to matter), and the dipole, Θ1 (equivalent to the

matter velocity perturbation), perturbations but also the higher order moments such

as the quadrupole, Θ2. Similar arguments can be made for the polarization moments,

Θℓ,P (k, η), as well as for the characterization of the perturbations for massless neutrinos,

Nℓ(k, η).

Adding small perturbations to the RW metric can be parameterized by,

ds2 = [g(0)
µν + g(1)

µν ]dxµdxν (2.17)

where g
(0)
µν is the unperturbed RW metric tensor and g

(1)
µν is the perturbed metric tensor

which in the conformal Newtonian gauge4 can be written,

g(1)
µν =




−1 − 2Ψ(~x, t) 0 0 0

0 a2(1 + 2Φ(~x, t)) 0 0

0 0 a2(1 + 2Φ(~x, t)) 0

0 0 0 a2(1 + 2Φ(~x, t))




(2.18)

The two functions, Ψ and Φ describe scalar perturbations to the gravitational poten-

tial and scalar curvature respectively. Again these are described in the Fourier domain

as, Ψ(k, η) and Φ(k, η). With all of these perturbation variables in hand (and skipping

4 The gauge choice is the choice of coordinates used to describe the metric perturbations. A number of
gauge choices–the synchronous gauge and the covariant gauge are two others–are possible for describing
the perturbations to the metric and some of the physics is easier to describe in one gauge than in another.
The final observables, however, are the same despite the choice of gauge.
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all of the math) the resulting Boltzmann equations for the various constituents are:

Photon temperature and polarization

Θ̇ + ikµΘ = −Φ̇ − ikµΨ − τ̇

[
Θ0 − Θ + µvb −

1

2
P2(µ)Π

]
(2.19)

Π = Θ2 + ΘP2 + ΘP0 (2.20)

Θ̇P + ikµΘP = −τ̇
[
−ΘP +

1

2
(1 −P2(µ))Π

]
(2.21)

Dark matter density and velocity

δ̇ + ikv = −3Φ̇ (2.22)

v̇ +
ȧ

a
v = −ikΨ (2.23)

Baryon density and velocity

δ̇b + ikvb = −3Φ̇ (2.24)

v̇b +
ȧ

a
vb = −ikΨ + τ̇

4ρ
(0)
γ

3ρ
(0)
b

[vb + 3iΘ1] (2.25)

Massless neutrino distribution

Ṅ + ikµN = −Φ̇ − ikµΨ (2.26)

The term Π is the scalar part of the anisotropic stress tensor. More explicitly, the spatial

part of the perturbed stress-energy tensor is Tij = Pδij+PΠ. The equations which govern

the evolution of the CMB anisotropies are Equation 2.19 and Equation 2.21. These are

coupled to the other equations through the metric perturbations and the velocity of the
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baryon fluid. Note that the optical depth, τ , has been introduced which is is given by,

τ(η) =

∫ η0

η

dηneσTa (2.27)

where ne is the free electron density and σT is the Thompson cross section. It should also

be noted that the polarization strength (Equation 2.21) depends only the quadrupole,

Θ2, of the temperature perturbation and not on any of the other temperature moments.

All derivatives are in terms of conformal time and all components are in the Fourier

domain.

In addition to the above linear coupled equations, the matter and radiation pertur-

bations will have an impact on the gravitational field. The perturbed Einstein equations

describe this effect. The Einstein tensor, Gµν will now depend on the first and second

derivatives of the perturbed RW metric. Also required is a perturbed energy-momentum

tensor,

Tµν = T (0)
µν + δTµν (2.28)

The resulting time-time and spatial components of the Einstein equations give two more

relationships:

Time-time perturbed Einstein equation

k2Φ + 3
ȧ

a

(
Φ̇ − Ψ

ȧ

a

)
= 4πGa2 [ρmδm + 4ρrΘr,0] (2.29)

Spatial perturbed Einstein equation

k2(Φ + Ψ) = −32πGa2ρrΘr,2 (2.30)

where here δr includes both the neutrino and photon contributions.

The above equations describe the evolution of the perturbations around the smooth,

expanding Universe. However, several simplifications have been made. For instance, the
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perturbations to the metric are scalar in nature when in fact there could also be a tensor

perturbation, representing gravitational waves, and vector like perturbations, represent-

ing vortices (although vector modes are heavily suppressed in an expanding background

and are usually not considered unless they are actively generated). In addition the neu-

trinos are assumed to be massless and the equation describing the perturbation of the

dark energy has been neglected. The curvature, k, has also been excluded from this

treatment. Regardless, this set of nine coupled linear equations provide an overview of

the perturbed components of the Universe and how they are coupled to one another and

to the scalar metric perturbations. Solving these equations, however, requires a set of

initial conditions.

2.2.1 Initial conditions

Equations 2.19-2.26, 2.29 and 2.30 describe the evolution of nine perturbation variables.

At early times it can be shown that all of these variables depend on the curvature

potential, Φ. Therefore if the initial conditions for Φ are determined the initial conditions

for the eight other variables follow. Taking the limit kη << 1, appropriate for the earliest

times, the relationships between perturbation variables become

Ψ = −Φ (2.31)

N0 = Θ0 =
Φ

2
(2.32)

N1 = Θ1 =
ivb

3
=
ivc

3
=

−kΦ

6aH
(2.33)

δc = δb = 3Θ0 + constant. (2.34)

Note that all multipoles higher than the dipole are assumed to be negligible. Also, in

the kη << 1 limit, the wavelengths of the perturbation modes (∼ k−1) are all much

larger than the horizon and cannot be affected by causal physics. For the constant in
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Equation 2.34 describing the initial conditions for the dark matter and baryons, there are

two possibilities which characterize two different modes of the primordial perturbation.

These are the adiabatic initial condition and the isocurvature initial condition. In the

adiabatic case, the value of the constant in Equation 2.34 is zero. This corresponds

to a system which has no spatial variation in the relative number densities of different

particles; otherwise put, adiabatic modes have no spatial variation in entropy. The other

option has a non-zero constant term in Equation 2.34, corresponding to the isocurvature

initial perturbation for which the entropy varies in space. Most conventional models

have adiabatic initial conditions. In Section 7.4 models which have a sub-dominant

isocurvature component (which evolves independently from the adiabatic component)

are explored.

Equations 2.31-2.34 describe the initial conditions for each of the perturbation vari-

ables in terms of the curvature potential Φ. In this analysis the initial conditions for Φ are

prescribed by inflation; a period at the earliest of times when the Universe went through

a phase of nearly exponential expansion. While difficult to test experimentally (energy

levels required to generate inflation are ∼ 1015GeV ) inflation has become an appealing

mechanism for describing the generation of the initial perturbations and also explains the

seemingly acausal nature of the smooth CMB sky. Inflation predicts that scales which to-

day appear outside of the comoving horizon were, before the rapid expansion of inflation,

in causal contact (inside the horizon) in the past, accounting for the highly correlated

temperature of the CMB field today. After inflation Fourier modes re-enter the horizon

and serve as the initial conditions for the matter, radiation and metric perturbations.

In most models the inflation mechanism is driven by a single scalar field, φ(~x, t) with

potential V [φ(~x, t)]. In first order linear perturbation theory, this field can be decomposed

into a zero-order part and a perturbed part as φ(~x, t) = φ(0)(t)+ δφ(~x, t). The perturbed

part, δφ(~x, t) represents the quantum fluctuations in the scalar field before the rapid

expansion which will become the initial conditions for the metric perturbations. The
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approach taken is to solve for the initial power spectrum of the scalar field which is

coupled to the initial power spectrum for the scalar metric perturbations which in turn

can be related to the initial power spectrum for the CMB anisotropies.

Another prediction of inflation is that the quantum fluctuations and subsequent per-

turbations to matter and radiation are all Gaussian. This allows one to write the variance

of the perturbations to the curvature potential as,

〈Φ(~k)Φ⋆(~k)〉 = (2π)3Ps(k)δ3(~k − ~k′) (2.35)

where the Ps is the power spectrum of the primordial scalar curvature perturbations to

the metric. Initial conditions for the primordial curvature spectrum are described by a

power law and for adiabatic, single field inflation models take the form,

Ps = As(k/k⋆)
(ns−1) (2.36)

where the ns is the scalar spectral spectral index and As is the scalar amplitude (a pivot

point k⋆ = 0.05Mpc−1 is chosen).

2.2.2 The Angular Power Spectra

Given the initial conditions of the appropriate type (adiabatic or isocurvature), the next

step is to evolve the system of equations from early times (in the radiation dominated

era) through to the present day. The final step required to obtain the CMB angular

power spectra involves the integration of the product of the initial power spectrum for

the metric perturbation (scalar or tensor) and the CMB anisotropies at the present epoch.

The expression for the temperature angular power spectrum may be written,

C
TT (s)
ℓ = (4π)2

∫
k2 dk Ps(k)|Θ(s)

ℓ (k, η = η0)|2 (2.37)
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where η0 denotes the present day conformal time and the superscript (s) indicates that

this spectrum is derived from the scalar (as opposed to tensor) perturbations to the

metric. The equivalent expression for the E-mode polarization (Section 6.5 discusses the

relationship between the Stokes Q and U parameters and E and B-mode polarization) is

C
EE(s)
ℓ = (4π)2

∫
k2 dk Ps(k)|Θ(s)

Pℓ(k, η = η0)|2 (2.38)

For the cross-correlation power spectrum the expression is

C
TE(s)
ℓ = (4π)2

∫
k2 dk Ps(k)Θ

(s)
ℓ (k, η = η0)Θ

(s)
Pℓ(k, η = η0). (2.39)

Note that the scalar metric perturbations produce only E-mode polarization. The CMB

B-mode (as well additional E-mode) polarization is induced by tensor perturbations.

The tensor perturbation equations are not given here but in Section 7.3.2 models which

include an additional tensor mode are explored.

Features in the Angular Power Spectra

On the largest scales the modes of the photon anisotropy generally evolve very little

from last scattering to present day and the temperature angular power spectrum is fairly

flat. This is expected since these correspond to super-horizon modes, with wavelengths

larger than the horizon which causal physics cannot affect. This flat portion of the power

spectrum, deemed the Sachs-Wolfe plateau, covers scales up to ℓ ∼ 100.

Analytical solutions which describe the physics of the evolution of CMB fluctuations

on smaller scales have been worked out by [63, 92, 90, 10, 6] and more recently by [37].

The small scale regions of the spectra represent modes within the horizon which are

effected by causal physics. In the tightly coupled limit, appropriate immediately before

the recombination era, the electrons, photons and protons all behaved as a single fluid.

In this limit, the photon perturbation equations can be modeled as a forced harmonic
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oscillator. A driving gravitational force and opposing photon pressure cause the fluid

to oscillate. These oscillations in the primordial plasma are responsible for the series

of acoustic peaks in the small scales of the angular power spectra. These peaks are

apparent in the solid curves in Figures 1.1 and 1.2 which represent the best fit model

power spectra to the WMAP(first-year)+CBI+ACBAR data. The photon-baryon fluid

density field is predicted to be out of phase with the velocity field, ultimately leading to

a phase difference between the peaks in the temperature and polarization power spectra.

In general the position of the peaks can be characterized by the parameter θ [45]

which is defined as

θ =
100 rs(a⋆)

DA(a⋆)
(2.40)

where rs(a⋆) is the sound horizon at recombination given by,

rs(a⋆) = a⋆

∫ t

0

cs(t
′)

a(t′)
dt′ (2.41)

describing the distance traveled by a sound wave in comoving time t. The sound speed of

waves in the photon-baryon fluid is given by term cs which, for adiabatic initial conditions,

is

c2s =
1

3
(1 + 3ρb/4ργ)

−1. (2.42)

Finally, the DA(a⋆) term in equation 2.43 is the angular diameter distance to the decou-

pling surface given by,

DA(a⋆) = a⋆

∫ a⋆

1

da′

a′2H(a′)
(2.43)

in a flat Universe. Cosmological models which have the same value for θ will have peaks

which (may) differ only in height and not in position.

The damping of peaks of the temperature anisotropy spectrum at high ℓ arises from

the fact that the coupling of matter and radiation pre-recombination is imperfect. In

between scatters with electrons, photons can travel a finite distance. Since the photons
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provide the restoring force for the acoustic oscillations, a perturbation is damped out if

the photons have time to diffuse out of it. This effect is termed Silk Damping and it

effectively damps out the temperature fluctuations on scales of a few arcminutes.

The peaks in the E-mode polarization power spectrum are also generated by acous-

tic oscillations in the pre-recombination photon-baryon fluid. As mentioned earlier,

these peaks are predicted to be out of phase with the temperature peaks. A radiation

quadrupole arises from the velocity gradients of the photon-baryon fluid. Quadrupole

radiation which scatters off of an electron will be linearly polarized. This effect is taken

into account in Equation 2.21 by the inclusion of the Θ2 term.

One final important detail is the effect of reionization on the CMB power spectra.

At some point the neutral hydrogen was reionized as a result of the onset of star and

galaxy formation. The impact of reionization is that the CMB photons are able to once

again interact with free electrons. The effect on the temperature power spectrum is

a suppression of power on the order of Θe−τ for scales within the horizon size at the

reionization era. On the other hand, the power in the E-mode polarization spectrum

is augmented (at large scales) since quadrupole anisotropy present at reionization times

induce additional linear polarization.

2.3 Outstanding Questions

It is only within the past ∼10 years that the temperature anisotropy data have become

precise enough to resolve the acoustic peaks of the ΛCDM model plotted in Figure 1.1.

The goal is to achieve the same precision with polarization anisotropy measurements. A

detection of the polarization peaks predicted by the temperature anisotropy data would

be a powerful consistency check of the standard model. In addition using data from four

(TE, EE, TT, BB) power spectra instead of just one (TT) to constrain models should

reduce the uncertainties in the cosmological parameters used to describe the Universe.
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The additional data from polarization power spectra can also be used to constrain

modified version of the standard model. In Section 7.3 the impact of adding in turn one

parameter to the baseline, six-parameter, standard model is explored and the constraints

from the most up-to-date CMB and LSS data are given. More specifically this section of

the thesis will address such questions as: does the current data prefer the spectral index,

ns to vary with scale?; to what degree is a non-flat geometry is allowed?; what are the

upper limits on tensor modes?; is a massive neutrino dark matter component allowed?;

and finally does the data what allow the dark energy to take on some form other than a

cosmological constant?

Another outstanding issue is whether or not an isocurvature component can be allowed

when prescribing the initial conditions of the Universe. It has been shown that a mix

of adiabatic and isocurvature modes give acceptable fits to the current CMB anisotropy

data [15]. The question of how much isocurvature is allowed may only be answered

with the removal of parameter degeneracies broken with the addition of high precision

polarization data.

While upper limits on a tensor component are given here, as of yet the B-mode

polarization indicative of tensors has not been detected. This is perhaps the most pressing

question in modern cosmology: Do the tensor perturbations from gravity waves exists?

Answering this question is the primary (both direct and indirect) motivation for current

CMB experiments. B03 addresses this question by testing new technology to measure

polarization, as well as probing the level of polarized foregrounds.
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The Instrument

BOOMERANG is a balloon-borne telescope which measures light at 145 GHz, 245 GHz

and 345 GHz. The instrument is mounted on a ∼5 m tall aluminum gondola and the

entire flight-ready payload is ∼1650 kg. The gondola has an inner frame which can be

driven in elevation and an outer frame which scans in azimuth. The Attitude Control

System (ACS)–which includes computer controlled motors and pointing sensors–enables

the in-flight azimuth scanning and elevation changes of the gondola. BOOMERANG

uses bolometric detectors which are cooled to <0.3 K in a LHe/LN cryostat. Both

the cryostat and the telescope, with its 1.3 m mirror, are mounted on the gondola’s

inner frame. Pointing sensors provide both coarse in-flight pointing and fine post-flight

reconstructed pointing. Figures 3.1 and 3.2 show the instrument at two times during the

Antarctic campaign. For the flight much of the instrument is covered with sun shielding

which prevents stray light reflected from the balloon and from the Earth from entering

the telescope optics. Power is provided by two large solar panel arrays that are connected

to lead acid batteries. Since communication to and from the payload is very limited once

the telescope is out of line of sight communication, the instrument has been designed to

run autonomously. In addition to being stored on-board, the flight data are compressed

and transmitted via satellite to the ground. All in-flight communication is provided by

27
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Figure 3.1: Hard at work early in the
Antarctic campaign.

Figure 3.2: Flight ready payload.

the NASA National Scientific Balloon Facility (NSBF).

The entire payload is hung on steel cables from a ∼800,000 cubic meter, helium-

filled NSBF-provided balloon. Ideally payloads reach altitudes of 35 km which has the

advantage of being above about 99.5% of the Earth’s noisy atmosphere. The Antarctic

vortex winds can carry an instrument in a circular path around the continent at a latitude

of ∼ 78◦ south in about 10 to 24 days time. Float temperature can vary from -50◦ in the

shade up to 50◦ in the sun.

This chapter gives an outline of the various components of BOOMERANG. The

instrument has been described in great detail in [19, 59, 66, 41].

3.1 The Telescope

B03 is an off-axis Gregorian type telescope. The optics include three mirrors which are

depicted in Figure 3.3. The optical system is designed to minimize the telescope response
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Figure 3.3: Schematic of the B03 optics. The 1.3 m primary mirror is mounted on the gondola
inner frame. The secondary and tertiary mirrors are contained inside the cryostat and are kept
at 1.65 K.

to sidelobes. The 1.3 m primary mirror is a 45◦ off-axis paraboloid with a focal length

of 1280 mm. The secondary mirror is an ellipsoid and has an effective focal length of 20

cm. The tertiary is a 10 cm diameter paraboloid and has an effective focal length of 33

cm. In the shade (which is the case for most of the flight) the primary is at an average

temperature of -20◦C. The secondary and the tertiary are contained inside the cryostat

and are kept at a temperature of about 1.65 K. By tipping the inner frame the primary

can see an elevation from 33◦ up to 55◦ above the horizon.

The radiation from the sky is reflected at 45◦ from the primary, through the thin

polypropylene window of at the bottom of the cryostat. Before hitting the secondary

the light passes though a series of low pass filters which eliminate any radiation above a
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frequency of 15 cm−1. This filtering helps to reduce unnecessary thermal loading in the

cryostat. The radiation then passes into the cold optics box where it is reflected from

the secondary, onto the tertiary and then out to the focal plane. To provide stray light

control the optics box is coated with an absorbing material and both of the mirrors are

baffled. The tertiary is an image of the primary, and acts as a Lyot stop to reducing the

amount of flare in the optical system. This is in part achieved by sizing the tertiary so

that only rays from the central 50% of the primary are accepted.

3.2 The Receiver

3.2.1 The Focal Plane

After traveling through the optics box a ray of radiation passes though one of a set of feeds

before arriving at the focal plane. The focal plane houses a total of sixteen detectors.

The detectors are arranged in eight pixels with two detectors in each pixel. Four of

the pixels measure light in a band centred at 145 GHz, while the other four two-colour

pixels measure radiation in bands centered at 245 GHz and 345 GHz. All of the channels

are sensitive to polarization. The choice of 145 GHz for the CMB observing frequency

represents a trade-off between sensitivity to CMB radiation (relative to thermal dust

foregrounds) and resolution. The 245 GHz and 345 GHz channels provide instrument

sensitivity to the dust foreground.

Figure 3.4 illustrates the arrangement of the detectors in the focal plane. The smaller

circles in the top row represent the 245 GHz and 345 GHz detectors which have ∼ 7′ beams

with channels sensitive to one polarization orientation. The bottom row represents the

145 GHz channels which are sensitive to two orthogonal polarizations and have larger

∼ 9.5′ beams. The labels at the top and bottom of the figure indicate the naming

convention for the detectors used in B03.
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Figure 3.4: Arrangement of the B03 detectors in the focal plane. The top row represents
the 245 GHz and 345 GHz detectors which are sensitive to one polarization orientation. The
bottom row represents the 145 GHz channels which are sensitive to two orthogonal polarizations.
Photometers (245 GHz and 345 GHz channels) have ∼ 7′ beams and the 145 GHz PSBs have
∼ 9.5′ beams. Labels indicate the naming convention for the detectors used in B03.

3.2.2 The Detectors and Feeds

In the past, experiments such as WMAP, CBI and DASI have used coherent receivers,

employing high electron mobility transistor (HEMT) amplifiers to detect the polarized

anisotropy. While this technique has the desirable feature of being inherently sensitive

to polarization, above ∼100 GHz the sensitivity of HEMTs is limited by the noise tem-

perature of the detector (see for example [80]). An alternate detection approach, taken

by several temperature anisotropy experiments (for example both BOOMERANG and

MAXIMA), has been to use incoherent bolometric receivers. Bolometers offer wideband

frequency coverage and higher intrinsic sensitivity and are made polarization sensitive

by placing the detectors behind a polarizing grid. This strategy is used for the 245 GHz
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Figure 3.5: Schematic of a bolometric detector consisting of an absorbing material of heat
capacity, C, and a thermometer. The absorber is connected by a weak thermal conductance,
G, to a heat bath at temperature T0. Incident radiation of power, Pin, causes a temperature
change, ∆T , in the absorber.

and 345 GHz foreground channels for B03. In addition B03 tests for the first time Po-

larization Sensitive Bolometers used in the CMB 145 GHz channels, offering a test-bed

for this new technology which is to be used in the High Frequency Instrument (HFI) on

the Planck Surveyor satellite in 2009.

A bolometer consists of an absorbing material and a thermometer. The absorber

of heat capacity, C, is connected by a weak thermal conductance, G, to a heat sink at

temperature T0. Incident radiation of power, Pin, hits the bolometer and is converted into

thermal agitation of the detector absorber. The temperature change, ∆T , in the absorber

is measured with a current biased thermistor. A schematic of bolometer operation is

shown in Figure 3.5. The energy balance equation for this system is,

C
d∆T

dT
= Pin −G∆T. (3.1)

Integration of this equation yields the response time of the bolometer to incoming radi-

ation or the time constant given by τ = C/G.

The absorber for the B03 bolometers consists of a silicon nitride micromesh grid cov-

ered in a layer of gold. A Neutron Transmutation Doped (NTD) germanium thermistor

measures the temperature change and is located at the edge of the absorber. The B03
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Figure 3.6: Photograph of a 145 GHz polarization sensitive bolometer (PSB). The absorbing
grid is metalized only in one direction, making the detector polarization sensitive. Grid diameter
is 2.6 mm. Photo courtesy of Bill Jones.

detectors consist of two types of bolometers. “Spider web” bolometers, designed to have

a low cosmic ray cross section, are used in the 245 GHz and 345 GHz channels. These

detectors are identical to those used in the B98 experiment. These channels are made

polarization sensitive by placing a polarizing grid at the entrance of the photometer feed

structure. The 145 GHz channels employ polarization sensitive bolometers (PSBs) which

are made polarization sensitive by metalizing the micromesh grid in only one direction.

Figure 3.6 is a picture of a PSB. The PSBs are organized in pairs which are oriented to

be sensitive to orthogonal polarizations. The PSBs in a pair are separated 65 µm apart

at the end of the PSB feed structure.

The detector feeds are depicted in Figures 3.7 and 3.8. The feed structures have

been optimized to control sidelobes and help to reduce thermal load inside the cryostat,

in addition to providing the desired frequency response. Both the photometer and PSB

feeds use a back-to-back horn pair, followed by a re-concentrating feed. This configuration

effectively rejects out-of-band radiation, providing an RF-tight box for the bolometers.

In the two colour photometers (245 GHz and 345 GHz channels) the radiation enters
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Figure 3.7: A 2-colour photometer feed structure. A polarizing grid at the feed entrance
makes the 245 GHz and 345 GHz channels polarization sensitive. Feed structures are designed
to optimally reject out-of-band and out-of-beam contamination.

from the right, travels through a polarizing grid into a corrugated shaped feed. After

passing though a series of filters, the radiation enters the photometer body where it hits

a dichroic filter which reflects radiation above 295 GHz into the 345 GHz channel and

transmits the lower frequency radiation into the 245 GHz channel.

In the PSB feed, radiation enters the corrugated back-to-back horn, passes through

the filter stack and then into a re-concentrating feed and onto the PSB pair, which

measures simultaneously orthogonal polarization components.

3.2.3 Detector Readout Electronics

A schematic of the bolometer readout electronics is shown in Figure 3.9. The bolometers

are biased with an AC current at 140 GHz. The AC bias modulation serves to move

the signal information to a frequencies well above the 1/f knee of the bolometers and

electronics. Each bolometer signal is buffered by a pair of low noise JFETS inside the

cryostat which reduce signal impedance and provide gain to the bolometer signal power.

The JFET output is then amplified in a pre-amplifier and subsequently bandpass filtered

to remove noise outside the signal bandwidth. The signal is demodulated in the lock-
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Figure 3.8: A 145 GHz PSB feed structure. Each PSB channel is sensitive to two orthogonal
polarization modes. Feeds are optimally designed to preserve the polarization of the incoming
radiation.

in amplifier by multiplication with the bias reference. The demodulated signal travels

through a 10 Hz low pass filter, followed by a 10 mHz high pass filter before being

digitized by a 16 bit analog-to-digital converter in the DAS.

3.3 The Cryostat

The B03 cryogenics system can keep detectors at < 0.3 K for up to two weeks. A

schematic of the cyrostat is shown in Figure 3.10. It consists of toroidal shaped tanks

suspended inside one another by Kevlar cords. Kevlar has the advantage of low thermal

conductivity while providing mechanical support. The outermost tank is filled with 65

litres of nitrogen. To reduce the thermal input from the 300 K environment the nitrogen

tank is wrapped in 30 layers of superinsulation aluminized mylar. Suspended inside the

nitrogen tank is a 60 litre liquid 4He tank. Radiative thermal loading on the 4He tank is

reduced by way of a vapour cooled shield. This copper shield surrounds the helium tank

and is cooled by the cold gas which has evaporated from the 4He tank.

The cold optics box and the focal plane are contained inside the 4He tank. At the
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Figure 3.9: A schematic of the bolometer readout electronics. The bolometers are biased with
140 GHz AC current. The bolometer signal is buffered by a pair of low noise JFETS. The JFET
output is amplified in the pre-amplifier and then bandpass filtered. The lock-in demodulates
the signal which then travels through a 10 Hz low-pass filter, followed by a 10 mHz high-pass
filter.
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Figure 3.10: A schematic of the BOOMERANG cryostat. The B03 cryogenics system can
keep detectors at < 0.3 K for up to two weeks. Toroidal shaped tanks are suspended inside one
another by Kevlar cords. The outermost tank is filled with 65 litres of nitrogen. Suspended
inside the nitrogen tank is a 60 litre liquid 4He tank. Figure courtesy of Francesco Piacentini.

focal plane the detectors are kept at sub-Kelvin temperatures by a 3He refrigerator.

The refrigerator holds ∼ 48 litres STP of 3He and is a closed-cycle, sorption pumped

system. The cool down begins with the addition of the liquids to the cryostat which

lower the temperature of the focal plane to about 4 K. Pumping on the 4He bath lowers

the temperature to 1.65 K. At float, the bath is opened to space. A slow pump down

(∼14 hours) is required to prevent the production of thermo-acoustical oscillations in the

system. The next step in the cooling process is the heating of the cryopump to 40 K

which expels the 3He which subsequently condenses in the evaporator. Once all of the
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3He gas has been collected in the evaporator a mechanical heat switch is closed which

connects the cryopump to 1.65 K. Finally, the cryopump cooling causes pumping on the

liquid 3He in the evaporator which reduces the evaporator temperature to the desired

0.275 K. The cryogenics system for BOOMERANG was designed and built in Italy and

is described in greater detail in [55] and [56].

3.4 The Attitude Control System

The Attitude Control System (ACS) consists of three motors, an elevation encoder, three

gyroscopes, a differential Global Positioning System (GPS), a Pointed-Sun Sensor(PSS),

a Fixed Sun Sensor (FSS), a Star Camera (SC) and six computers. Two of the computers,

a pair of redundant 386 CPUs, make up the Flight Logic Computer (FLC) which controls

in-flight pointing. Two others, contained in the Pressure Vessel (PV), are responsible for

data storage. In addition to data storage, one of the PV computers also runs the program

which controls the SC motion. Finally, two (Z80) computers are relegated to the readout

(and control for case of the PSS) of the sun sensors.

The task of the ACS is two-fold. First, it must provide the coarse in-flight pointing.

While the overall trajectory is determined by the Antarctic winds, the gondola azimuth

and inner frame elevation are controlled in-flight by the ACS. The second task of the ACS

is to record data which will be used post-flight to reconstruct the fine pointing. One of

the greatest challenges facing balloon-borne cosmology experiments is the attainment of

the precise pointing required by the experiment scientific goals.

The coarse in-flight pointing (∼several arcminutes) controlled by the FLC is provided

by the combined efforts of three motors, an elevation encoder, the azimuth gyroscope, the

FSS and the GPS. Azimuth scanning is facilitated by two torque motors and the speed of

the scan is regulated by azimuth gyroscope feedback. The azimuth motors apply torque

to a large flywheel in one direction and to the flight train in the opposite direction. A



Chapter 3. The Instrument 39

ANTENNA #3

ANTENNA #2 ANTENNA #1

MASTER
ANTENNA

AZIMUTH

GONDOLA FRONT

2.3 m

4 m

3.6 m

1.9 m

2.3 m 

ROLL

PITCH

Figure 3.11: A schematic of the GPS array indicating the orientation of the array axes with re-
spect to the front of the gondola. Accuracy of the attitude information is inversely proportional
to antenna separation (with a recommended maximum baseline length of 4 m).

more complete description of the azimuth motor control is given in [14]. Absolute azimuth

position information is determined by either the GPS or the FSS. Telescope elevation

changes are provided by the elevation motor and encoder which enable steering of the

inner frame through a range of 33 to 55 degrees above the horizon. Both azimuth and

elevation motors are controlled using PWM (pulse width modulated) controlled current

driven by software Proportional-Integral-Derivative (PID) control algorithms in the FLC.

Fine reconstructed pointing is derived from the combination of data from the SC, PSS,

FSS as well the gyroscopes and the GPS. The azimuth, pitch and roll gyroscopes are KVH

E-Core 2030 series which use fiber optic technology to measure the phase difference in a

light source which is split and fed into opposite paths around a sensing coil. If the coil

is rotating (the gondola is rotating around one of the azimuth, pitch or roll axes) the

phase difference in the two paths is sensed as an amplitude change in the recombined

light, which in turn is proportional to the velocity around that particular axis of rotation.

The gyroscopes have an angle random walk or noise level of 5 degrees/hour/Hz1/2. The

gyroscopes are anti-alias filtered by Bessel low pass filters each with a 5 Hz cutoff.

The differential TANS Vector GPS attitude determination system consists of four
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antennas and a receiver processing unit. It provides azimuth, pitch, roll, as well as velocity

and time data. Figure 3.11 illustrates the GPS array highlighting antenna distances and

the locations of the azimuth, pitch and roll axes. The accuracy of the azimuth, pitch and

roll data is roughly ∼6 arcminutes which is too coarse to be used in the reconstructed-

pointing solution. However, the GPS-supplied east, north and up velocity data, with an

accuracy of 0.1 m/s, can be used to derive the gondola pitch and roll. In the stable LDB

environment the gondola can be modeled as a pendulum. The arcsine of the acceleration

of the gondola (determined from the derivative of the GPS velocity fields) is proportional

to the pitch or roll. The resulting derived pitch and roll are accurate to about ∼ 2

arcminutes.

The FSS provides sun azimuth, while the PSS provides both sun azimuth and eleva-

tion. The sun sensors are described in greater detail in [66].

3.4.1 The Star Camera

The simplest approach to acquiring star positions is to use a fixed bore-sight sensor. For

B03 image smearing while scanning at rates up to 1 degree/sec would be too high to for

this approach to work. The alternate strategy is to acquire star position data with a

camera on a pointable mount.

The B03 star camera shown in Figure 3.12 consists of a video, COHU brand (4920

series), monochrome, Peltier cooled, CCD camera equipped with a Maksutov 500 mm

focal length, f/5.6 telephoto lens. This setup yields approximately 4 arcsecond per pixel

resolution and ∼30 arcminute field of view. Affixed to the lens is a seven ring baffle which

is covered in aluminized mylar. The interior of the baffle is painted with black water-

based theater paint to prevent any light scatter from entering the SC optics. For the

flight a 715 nm high pass filter was installed and the camera gain was set at a minimum

in order to optimize star recognition and minimize the risk of saturation from the glow

of the daytime Antarctic sky.
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Figure 3.12: Flight ready star camera. The stepper motor drivers and encoders are covered in
foam in an effort to prevent freezing at float altitude.

The star camera is fixed on a yoke-type equatorial mount. Motion control of the

two-axis system (arbitrarily named the ρ and θ axes) is provided by two Applied Motion

Products high torque stepper motors. An encoder on each axis provides position feedback

for controlling the motion of the mount. Two clock cards (one for each axis) provide pulses

to the stepper motors. The stepper motors move one step per pulse. Speed is changed by

altering the pulse frequency. Since B03 is a scanning telescope additional feedback from

the azimuth gyroscope is required so that the star camera can remain locked onto a star
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Figure 3.13: Schematic of star camera hardware and electronics. Video signal and encoder
readouts are output to one of the PV computers. The motor driver commands are returned to
the SC.

while the telescope is scanning. Video images are captured with a MATROX METEOR

frame grabber at a rate of 10 Hz. Figure 3.13 is a schematic of the SC electronics and

hardware.

Outputs from the SC are fed into the flight computer which is contained in a pres-

surized vessel (PV). In addition to data storage, this computer also runs the program

which controls the SC motion. The algorithm inputs are video images, encoder readouts

and ACS data and the output is the motor position control. The first step in the star

capture algorithm is checking the mode of the telescope (ascent, scanning, etc.). Next

the time, latitude and longitude of the payload are obtained. This is followed by a search

of a list of stars to determine which is the the brightest, optimally positioned (in the scan

centre) star to grab. The star camera then scans over to the vicinity of the star location

and rasters until the desired star is in the field of view. The star camera remains locked

onto the star until the telescope mode changes or the star goes out of range. Figure 3.14

outlines the logic of SC star tracking program.
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Figure 3.14: Block diagram of the SC star capture algorithm.



Chapter 4

The LDB Flight

After over two months of instrument integration and testing B03 was launched on January

6th, 2003 from McMurdo Station, Antarctica. The flight path is depicted in Figure 4.1.

The B03 flight suffered from a daily loss of altitude. Despite dropping 171 kg of ballast,

the payload altitude continued to drop throughout the flight. The path was further

complicated by the lower altitude winds which kept the balloon in the same spot for

nearly 5 days. After 15 days in the air the flight was terminated on January 21st. The

payload landed near the Japanese base, Dome Fuji, located at 3810 m elevation on the

Antarctic plateau. Thankfully, in spite of the rather inconvenient final location of the

telescope, the data vessel was obtained within a week. The remainder of the instrument

was salvaged the following year. This chapter outlines the environment at float, as well

as telescope performance during the fight.

4.1 Altitude and Temperature

The altitude of the payload over the flight is show in Figure 4.2. The payload dropped

in altitude by about 2 km each day, as a results of a suspected leak in the balloon.

Generally speaking, the lower altitude environment is less stable, and can complicate

telescope systematics. The loading on the bolometric detectors increases as the payload

44
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Figure 4.1: The B03 flight path. The flight began on January 6th, 2003 and was termi-
nated 15 days later on January 21st. Late in the flight the payload moved very little as
a result of low altitude winds. Figure provided by NSBF.

drops further into the Earth’s atmosphere. In addition at lower altitude the ambient

temperature decreases which has an effect on sensor performance.

Figure 4.3 illustrates the temperature of various sensors and locations on the gondola

over duration the flight. The diurnal temperature cycle, as well as the long term tem-

perature decrease with altitude loss are both apparent. Temperature data from two of

the temperature sensors versus altitude are shown in Figure 4.4. The scoop temperature

sensor was located on the front of the instrument and is a good indicator of the ambient

temperature in the shade at float. The FSS temperature sensor was fixed to the sun-

facing FSS. Averages for both altitude and temperature over daily periods where the sun

is above (or below) an elevation threshold are given in Figure 4.4. Errors represent the

standard deviation of the mean temperature (or mean altitude) for a given sun elevation
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Figure 4.2: Gondola altitude during the flight. Sand ballast was dropped twice during
the flight in an effort to increase payload altitude.

bin. Results of Figure 4.4 indicate that the temperature, for a given sun elevation and

gondola location, increases by ∼ 5◦C over the 26 km to 37 km altitude range. The back

(sun facing side) of the gondola ranged from 19◦C up to about 52◦C. The shaded side of

the gondola ranged from −50◦C up to a maximum of −18◦C.

4.2 Ballast Drop

Sand ballast was dropped twice during the flight in an attempt to ameliorate the altitude

loss problem. The first ballast drop of ∼ 35 kg was performed on the fourth day of the

flight. Figure 4.2 shows that this first ballast drop had negligible impact on the payload

altitude. Thus, on the fifth day of the flight the remaining ballast, ∼ 136 kg, was released.

As can be seen in Figure 4.2 the second ballast drop had the desired effect of increasing

the payload altitude. However, dropping this much ballast upset the balance of the

gondola, causing the gondola to tilt, primarily in pitch. This tilt is evident in Figure 4.5
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Figure 4.3: The temperature at various locations on the gondola during the flight. The
diurnal temperature cycle and the long-term temperature decrease (with altitude loss)
are apparent.

which shows the gondola pitch as measured by the star camera both before and after the

ballast drop. The horizontal lines indicate the mean pitch which changes by roughly 0.1

degrees after the ballast is dropped.

4.3 Sky Brightness

During the flight the SC captured images which were stored to disk on the PV flight

computer. These images are used in the determination of the sky brightness at float
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Figure 4.4: Temperature data from two of the temperature sensors versus altitude. The
scoop temperature sensor was in the shade at float and the FSS temperature sensor was
fixed to the sun-facing FSS. Averages for both altitude and temperature over daily periods
where the sun is above (or below) an elevation threshold are given. Errors represent the
standard deviation of the mean temperature (or mean altitude) for a given sun elevation
bin.

altitude in the Antarctic daytime sky. This can be a useful figure when considering

future pointing sensor strategies. In order to determine the sky brightness the SC was

calibrated using images of Sirius. Additional information required includes the SC field of

view and the integrated sensor response. The equation below describes the sky brightness

which (for the anti-sun facing SC) depends predominantly on altitude but is also slightly
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Figure 4.5: The gondola pitch before and after the ballast drop. The horizontal lines
indicate the mean pitch which changes by roughly 0.1 degrees after the ballast is dropped.

correlated with sun elevation and SC line-of-sight.

R =
[

R
t(λ)SSirius(λ)dλ

CSirius
]CBackground

Ω
∫
t(λ)dλ

Here SSirius is the flux distribution of Sirius derived from data in [20], CSirius is the

intensity of Sirius in CCD counts, integrated over the image, and CBackground is the

intensity of the sky background in CCD counts, integrated over the image. The function

t(λ) is the CCD sensor spectral response, taken from the COHU camera manual, and Ω is

the camera field of view in steradians. The resulting values for sky brightness for various

altitudes are shown in Figure 4.6. The error bars are dominated by the uncertainty in

the camera noise offset which was not well determined before the flight. Figure 4.6 also

shows theoretical sky brightness values generated by the MODTRAN [5] software model

which is in good agreement with the data. The range for the sky brightness data is from
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Figure 4.6: Sky brightness versus altitude. The error bars are dominated by the uncer-
tainty in the camera noise offset. Theoretical sky brightness (solid curve) is generated
by the MODTRAN [5] software model and is in good agreement with the data.

∼ 2 µW/cm2/µm/sr at roughly 38 km altitude, up to ∼ 24 µW/cm2/µm/sr at 28 km.

Figure 4.7 show the sky brightness derived from background data taken during ascent.

At low altitude the agreement between the data and the MODTRAN model is poor. This

is likely due to the close proximity of Mount Erebus during ascent. Mount Erebus is the

largest and most active volcano in Antarctica. As such, it is a major source of atmospheric

aerosols and gases [77]. In fact, Erebus is one of the top ten known CO2 producing

volcanos in the world [89]. Two model brightness profiles are show in Figure 4.7. The

MODTRAN parameter IVULCN controls the choice of aerosol profile and the type of

extinction for the stratospheric aerosols. Setting the variable IVULCN = 0 corresponds

to the nominal background stratospheric vertical distribution and extinction model. The

resulting nominal MODTRAN brightness curve is lower than the curve derived from the

ascent data. Setting the variable IVULCN = 6, corresponds to changing the aerosol

profile to moderate volcanic. This curve is in marginally better agreement with the data.
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Figure 4.7: Sky brightness derived from background data taken during ascent. The poor
agreement between model and data at low altitude is likely due to the close proximity
of Mount Erebus during ascent, a known source of stratospheric aerosols. Two model
brightness profiles are shown, varying the parameter IVULCN which controls the choice
of aerosol profile and the type of extinction for the stratospheric aerosols. IVULC = 0 is
the nominal case. IVULCN = 6 corresponds to a moderate volcanic aerosol profile. At
high altitude the model profiles converge and are in good agreement with the data.

The two model curves illustrate the sensitivity of the model to aerosol profile. At high

altitude the model profiles converge and are in good agreement with the data.

4.4 Flight Performance

The 15 day flight resulted in ∼11.5 days of good science data. Data near the end of

the flight was deemed unusable because of the low altitude wind shear which made

pointing the telescope impossible. In addition erratic signals, caused by such events as

elevation changes and the large ballast drop, had to be cut from analysis. A total of



Chapter 4. The LDB Flight 52

Figure 4.8: Map of B03 observation time taken from [57] for the “Shallow” and “Galaxy”
survey regions. The CMB deep survey region corresponds to the smaller box.

228 hours of data covering three survey regions are obtained. The CMB deep survey

region is comprised of 119 hours of data. The CMB shallow region accounts for 79

hours of observation. Finally, a Galactic plane region consists of 30 hours of observing

time. The sky coverage is illustrated in Figure 4.8, with the three observation regions

highlighted. The CMB deep and shallow region area and observation time were chosen

in order to optimize the telescope’s sensitivity to the polarization (deep) and cross-

polarization (shallow) power spectra.

4.4.1 Cryostat and Receiver Performance

The receiver worked well throughout the flight. The cryostat kept the detectors cold for

11 days after which it began to warm up. The cryostat was then successfully re-cycled

in-flight, and 19 additional hours of data were acquired. The payload diurnal altitude

oscillations are correlated with the bolometer response. Changes in altitude have an
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impact on the bolometer optical load, and the temperature of the cryostat, both of which

may have an effect on the bolometer resistance. This drift in bolometer responsivity is

monitored by the amplitude of the calibration lamp pulses throughout the flight and is

at most a few percent.

The upper right panel of Figure 4.9 illustrates the calibration drift in B145W1 over the

course of the flight. The drift is most correlated (a correlation coefficient of -0.67) with

the readout of the 4He cryopump temperature sensor, shown in the upper left panel of

Figure 4.91. At lower altitudes, corresponding to higher pressure, the cryostat operates at

a warmer temperature causing a decrease in the detector calibration. The 4He cryopump

temperature data is linearly correlated with GPS altitude. This relationship is used to

convert 4He cryopump temperature into the corresponding gondola altitude. The lower

panel in Figure 4.9 is a plot of gondola altitude versus calibration drift. The resulting

empirical relationship between altitude and calibration drift derived from these data is,

Altitude[m] = 166769Calibration− 132937 (4.1)

Thus, the altitude change (and subsequent pressure change) from 30 km to 25 km causes

a calibration drop of about 3%, from 0.98 at 30 km to 0.95 at 25 km. While optical

loading from the atmosphere is higher at lower altitudes there is no evidence at all for

an effect from the atmosphere directly.

4.4.2 ACS Performance

The ACS performed well throughout the flight. Motion control was virtually flawless

in both the azimuth scanning and the drive of the inner frame elevation. The GPS

and FSS provided the required coarse, ∼10 arcminute in-flight azimuth pointing and the

1The calibration drift is also correlated with other temperature sensors and the GPS altitude but
with a complicated phase shift.
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Figure 4.9: The upper right panel is a plot of the calibration drift in B145W1 over the
flight. The drift is correlated with the 4He cryopump temperature (upper left panel).
At lower altitudes, corresponding to higher pressure, the cryostat operates at a warmer
temperature causing a decrease in the detector calibration. The lower panels show plots
of gondola altitude and cryopump temperature both versus calibration drift. The cali-
bration changes by a few percent over a 5 km range.

gyroscopes functioned continuously. Near the end of the flight, once the payload altitude

dropped below ∼23 km, high winds made motion control unfeasible and the ACS was

shut down.

Performance of the tracking sensors, the SC and the PSS, was marred by communi-

cation problems in the ACS flight logic computer. With both sensors operating at the

same time the computer was unable to parse the large amounts of incoming and outgoing

data. To resolve this issue the PSS was turned off early in the flight. The SC provided

the fine pointing data for the first and last thirds of the flight. The cold temperature at

low (pre-ballast drop) altitude on day 4 caused the SC to freeze up, at which point the

PSS was turned back on, providing fine pointing for the middle third of the flight. Fig-
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Figure 4.10: Raw data from the SC and PSS. The SC was operational for the first and
final thirds of the flight. The PSS operated for the middle third of the flight.

ure 4.10 shows raw data from both the SC and PSS indicating when each of the sensors

was operational. Unfortunately, the PSS data was determined to have large, long time

scale drifts which could not be reconciled with the other pointing sensors and thus was

not used in the final pointing solution.

Gondola Buffeting

The derivation of the final pointing solution is described in detail in Section 6.2. In

Figure 4.11 the final solution for gondola pitch is compared with the pitch derived from

the GPS velocities. This comparison is made for the first third and last third of the flight,

when the SC was operational and is the dominant component in the final pitch solution.

On short time scales the two pitch timestreams are generally in agreement. Buffeting or

excess pendulations of ∼ 0.1 degree amplitude are apparent on times scales greater than

a few minutes in the final pitch solution. The pitch derived from the GPS velocities is

not sensitive to pendulations at this frequency. The buffeting of the gondola against the
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wind becomes more apparent near the end of the flight, at lower altitude. As mentioned

previously once altitude dropped below ∼23 km winds were too high to allow operation

of the ACS.

Star Camera Performance

The star camera performance was complicated by two factors; an overflowing data buffer

(PV to serial concentrator) and an overworked ACS CPU. Despite turning off the PSS,

the raw SC data is complicated by repeated frames. The SC was unfrozen (literally) for

∼65% of the flight. Throughout the flight (when it wasn’t frozen) the SC performance

can be characterized by three ”modes”.

The first mode is a ”lock/unlock” mode. In this mode the star camera initially locks

onto a star with the nominal ACS (10 Hz) operation. The star gradually drifts out of

the field of view because of repeated SC feedback (out-dated star positions) arising from

buffer overflow. Eventually star lock is lost, only to be regained moments later when the

SC has received updated ACS parameters and is able to lock onto the same star again.

This process is repeated every minute or so for this SC mode of operation and is corrected

by removal of repeated frames and linear interpolation of gaps (see Section 6.2.1).

In the second mode the SC remains locked on a star. This happens ironically when

the ACS is not operating at its nominal data processing rate. With the ACS running

slow, the SC program seems to have enough time to to get updated parameters. Once

the ACS is operating at full speed the SC eventually loses lock again.

The first and second modes alternate, each lasting for about 40 minutes. Of course

when switching from one mode to the other the SC has a brief intermediate mode when

it is completely not obvious what is going on and how it can be fixed. Thankfully

these stretches of data are short and can be flagged and eventually filled with integrated

gyroscope data. In conclusion, 40% of the SC azimuth and 70% of the SC elevation data

were salvageable. The pointing reconstruction details are outlined in Chapter 6.
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Figure 4.11: Comparison of the final pointing solution (see Section 6.2) for gondola
pitch with the pitch derived from the GPS velocities, zooming in on four regions of the
timestream. At high frequencies the two pitch timestreams are generally in agreement.
Excess pendulations of ∼ 0.1 degree amplitude (detected by the SC) are apparent on
times scales greater than a few minutes in the final pitch solution.
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Instrument Characterization

A number of tests were performed before and during the flight in an effort to obtain var-

ious instrument parameters such as calibration, channel beams, detector time constants

and polarization parameters. Pre-flight tests for balloon-borne experiments must be ex-

tensive in order to ensure instrument operation during the flight. The summary here

is by no means exhaustive, giving the results of only the most pertinent tests. Further

discussion of receiver pre-flight testing can be found in [59, 41, 66].

5.1 Pointing Sensor Alignment

Precise alignment of the pointing sensors is crucial for in-flight motion control and post-

flight pointing reconstruction. The pre-flight calibration of the differential GPS was

performed, obtaining a baseline orientation accurate to ∼ 10 arcminutes. This self-

survey calibration was run for no less than ∼ 8 hours, on a level platform (zero pitch

and roll) as recommended in the TANS VECTOR Specifications and Users’s Manual.

Once GPS frame orientation was obtained, the azimuth offset angle between the FSS

and the GPS was determined. The FSS gives the azimuth of the sun relative to the back

gondola outer frame. This GPS to FSS offset angle is required to translate the GPS

array azimuth (relative to north) into gondola azimuth. A schematic of the GPS array

58
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Pointing Parameter Measured Value
GPS to Gondola Azimuth 114.965 deg

SC Pixels to Arcseconds in x 3.79 arsec/pix
SC Pixels to Arcseconds in y 4.00 arcsec/pix

SC ρ/θ to SC az/el:
’azimuth’ 260.2 deg

’pitch’ 139.0 deg
’roll’ -2.4 deg

Table 5.1: B03 pointing alignment parameters.

indicating the orientation of the array axes with respect to the front of the gondola is

depicted in Figure 3.11. Once the GPS array alignment is determined it is important that

that array remained fixed to ensure that the offset angle remain constant. Depending

on which sensor is operational either the GPS or FSS (the FSS is the default) provide a

continuous measure of the gondola azimuth throughout the flight.

The FSS is complicated to calibrate since the sensor response is not linear but has

dependence on both sun elevation and azimuth. The FSS was first calibrated on the

ground using a bright lamp. The sensor was then re-calibrated using flight data in the

form of a lookup table with an azimuth element for each sun elevation. A full description

of the FSS calibration for the B98 and B03 flight can be found in [19, 66].

The calibration and alignment of the star camera with the gondola was a two-step

process. First the conversion factor from pixel to degrees on the sky was obtained by

observing a white spot on a dark background sheet ∼20 meters away. The spot was

tracked to the edges of the field of view (in both x and y) and the ρ and θ encoder readouts

were used to translate pixel position into degrees. Next, the angles which translate star

position in the SC ρ and θ coordinates to star azimuth and elevation (relative to the SC

frame) were determined. The process of surveying the star camera mount was initially

approximated using an angle gauge to measure the tilt of the star camera mount relative

to the gondola outer frame. The fine tuning of the calibration angles was done at night in

the field in Palestine, Texas during pre-flight integration and testing during the summer



Chapter 5. Instrument Characterization 60

of 2001. A program which took input RA and DEC and translated this to star camera

encoder counts was written, pointing the star camera to the desired (approximate at first)

region on the sky. The angles were adjusted empirically using two widely separated guide

stars on the sky. When the two stars, in turn, appeared in the centre of the field of view,

the mount was properly aligned with the (level!) gondola. Upon arrival in Antarctica

the survey of the star camera mount was repeated to ensure that (after > 1.0 years in

a damp storage facility in New Zealand) the alignment was still in fact correct1. The

various alignment angles and conversion factors are summarized in Table 5.1.

5.2 Beams

Two methods were used to characterize the beam profiles of B03. The first involved a

pre-flight measurement of the beams by mapping a thermal source which is attached to

a tethered dirigible. The source is made out of a microwave emitting material, eccosorb,

and is positioned a distance ∼1.5 km away from and ∼1 km up from the B03 gondola.

Two sources were used to characterize the beams. A small sphere (∼45 cm diameter) was

used to measure the main beam lobe and a larger cylindrical source (∼76 cm diameter

and ∼91 cm in height) was used to map out the beam sidelobes. The telescope scanned

over the source while the star camera tracked the source position. A modified version of

the star camera tracking code, which tracked dark rather than bright objects in the field

of view, was developed in order to lock onto the source which, in the visible, appears

dark on top of the bright Antarctic daytime sky. The resulting FWHM beam widths

determined from fits to the small sphere source are given in column one of Table 5.2.

The second method of beam determination involves calculation of the physical beam

using the BMAX physical optics model of the system. The resulting FWHM beams

(azimuth and elevation) from the optics model calculation are presented in Table 5.2.

1And miracle of all miracles it was!
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B03 Measured Calculated Calculated
Channel FWHM FWHMAz FWHMEl

145W1 9.8 9.76 9.92
145W2 9.8 9.76 9.92
145X1 9.6 9.75 9.88
145X2 9.7 9.78 9.88
145Y1 10.0 9.78 9.87
145Y2 10.0 9.75 9.88
145Z1 9.9 9.75 9.92
145Z2 9.6 9.78 9.92

Table 5.2: B03 physical beams in arcminutes determined from the far field beam mapping
experiment and from physical optics calculations. Calculated and measured beams are
in good agreement.

The agreement of the measured physical beam and the predictions of the BMAX code is

very good. The physical optics calculations were performed by Bill Jones and full details

can be found in [41].

Having verified the accuracy of the physical optics calculations, the physical beam

must be convolved with the pointing error in order to determine the final effective beam

on the sky. The pointing solution methodology is described in detail in Section 6.2. The

resulting pointing error is determined from comparison of calculated physical beams with

profiles from the five brightest quasar sources in the deep field CMB maps. The pointing

error is assumed to be Gaussian and uniform over all observed regions of the sky. The

final effective beam used for all of the 145 GHz channels in the analysis is assumed to

be Gaussian with a FWHM = 11.5± 0.23 arcminutes, consistent with the FWHM of the

quasars.

5.3 Time Constants

The frequency response of a bolometer can be modeled as a first order (one pole) low pass

filter. The contribution from the bolometer thermal time constant is combined with the

transfer function of the readout electronics to give the full system transfer function. The
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full detector + readout transfer function which must be deconvolved from the timestream

data in order to obtain the true signal on the sky. The transfer functions were determined

pre-flight, first by measuring the electronics transfer function. The electronics result is

multiplied by the bolometer transfer function which were measured using a 77 K liquid

nitrogen load observed through a cold (2 K) Neutral Density Filter. This setup simulates

the in-flight detector loading. The resulting time constants for the 145 GHz channels

range from 43-97 ms with uncertainties ∼ 10%.

5.4 Calibration and Sensitivity

The bolometer responsivity depends both on the incident power and on the operating

temperature. Varying altitude during the flight can affect both of these quantities. The

resulting long-term gain drifts in the bolometers were determined by monitoring the am-

plitude response from the calibration lamp, which flashed every ∼15 minutes throughout

the flight.

The absolute calibration factor or responsivity, Si, for each channel is determined

by comparing angular power spectra measured by B03, WMAP and B98 in the same

region of the sky. The uncalibrated B03 voltage signal is related to the CMB intensity

measured by WMAP as IWMAP = VB03/Si. The calibration procedure begins by making

resampled WMAP maps for each B03 channel to ensure that the flagging and pointing

are consistent. The calibration factor is determined from the ratio of the cross spectra,

Si(ℓ) =
〈aWMAP

ℓm a∗B03
ℓm 〉

〈aWMAP
ℓm a∗WMAP

ℓm 〉 or Si(ℓ) =
〈aB98

ℓm a∗B03
ℓm 〉

〈aB98
ℓm a∗WMAP

ℓm 〉 (5.1)

Here, the beams for the respective experiments have been deconvolved from the aℓms

and, to the limit that all transfer functions have been properly removed, there should be

no variation in the two ratios. Both ratios yield calibration factors as a function of ℓ. To

obtain the final µK/VDAS calibration factor for each channel the data are binned in the



Chapter 5. Instrument Characterization 63

B03 Calibration NET
Channel (µK/VDAS) (µKCMB

√
s)

145W1 163500.0 143.359
145W2 172700.0 138.604
145X1 167200.0 156.062
145X2 222700.0 152.749
145Y1 180200.0 158.001
145Y2 188900.0 166.965
145Z1 243600.0 186.031
145Z2 384200.0 281.18

245W 397900.0 281.358
245X 505900.0 357.726
245Y 446800.0 315.935
245Z 468600.0 331.351

345W 648800.0 458.771
345X 599500.0 423.91
345Y 876300.0 619.637
345Z 436900.0 308.929

Table 5.3: B03 calibration and sensitivity. The calibration is determined by comparing
angular power spectra measured by B03, WMAP and B98 in the same region of the sky.
The error in the final calibration is 2%. The sensitivity is in terms of in-flight noise
equivalent temperatures (NETs) at a frequency of 1 Hz.

ℓ range from 100-300 and an average and standard deviation are determined. The final

values from both ratios are entirely consistent. The calibration results are summarized

in Table 5.3. The error in calibration is roughly 2%.

The in-flight noise is obtained via the Fourier transform of the timestream data (after

the data have been deconvolved from the system transfer function). Figure 5.1 illustrates

deep field averaged power spectral densities (PSDs) for channel B145W1. The top curve

is the PSD of the raw timestream (signal plus noise) from channel B145W1. The middle

curve is an estimate of the channel noise in terms of the noise only auto PSD. The CMB

signal lies in the 0.05 to 1 Hz range. The bottom curve illustrates the cross correlation of

B145W1 with B145W2. In general, in the 0.05-1 Hz range, the correlated noise is at least

one order of magnitude below the auto-correlated noise. Noise correlations are irrelevant

for the TT spectrum analysis, but must be treated carefully in order to extract the order
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Figure 5.1: Deep field averaged power spectral densities (PSDs) for channel B145W1.
Comparison of the top curve–signal plus noise PSD–and middle curve–noise only auto
PSD–illustrates that the CMB signal lies in the 0.05 to 1 Hz range. The bottom curve
is the cross correlation of B145W1 with B145W2. In the 0.05-1 Hz range, the correlated
noise is at least one order of magnitude below the auto-correlated noise.

of magnitude smaller polarization signal. The noise estimation technique and treatment

of correlated noise is discussed further in Section 6.4.

The detector sensitivity or noise equivalent temperature (NET) in units µKCMB

√
s is

determined by dividing the measured in-flight voltage noise (in V/sqrtHz) by the channel

responsivity to CMB. The NETs give a measure of the performance of the bolometer and

readout electronics. Strictly speaking the NET is the temperature difference that will

create a signal to noise ratio of unity. The in-flight NETs at 1 Hz are given in Table 5.3.

5.5 Polarization Properties

The polarization of a detector is characterized by two variables: the polarization angle,

ψi, and polarization efficiency, ρi. The ψi alignment angle gives the orientation of the
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bolometer on the sky. The polarization efficiency is the percentage or fractional efficiency

of a detector to incident polarization. For example, a PSB with 95% efficiency will

transmit 95% of the incident radiation in the intended linear polarization and 5% in the

orthogonal polarization.

The polarization properties of each channel were measured before the flight using two

methods. The first measurement involved placing a thermal source at the prime focus of

the cold optics and determining the polarization properties for the receiver alone. The

source is a 77K liquid nitrogen bath which is modulated by a chopper wheel rotating at

2Hz. A rotating polarization grid, with a ∼10 min period of rotation, is placed directly

beneath the cryostat window, in front of the chopped source. In the second measurement

the polarization properties of the whole instrument are determined by simulating a far

field polarized source. The far field source is produced by placing the liquid nitrogen

load, chopper and grid combination in the focus of the spare B03 primary. The spare

primary is inverted and mounted in an aluminum frame at a distance ∼ 6 m from the

B03 telescope. The equation which describes the observed signal in both cases is given

by a modified Malus’s Law whereby,

Vi = SiI0(1 − ρisin
2(ψi − ψgrid)) (5.2)

where Si is the absolute calibration of a given detector, I0 is the incident power, ρi is

the detector’s polarization efficiency (or ǫi = 1 − ρi is the cross polar response), ψi is

the detector’s polarization angle and ψgrid is the transmission angle of the polarization

grid. The polarization properties are determined by fits to the above equation for a

variety of grid angles. Results from the two methods are entirely consistent when the

polarization properties of the simulated far field source are taken into account. The

results are presented in Table 5.4. The uncertainty in polarization angle measurement is

roughly 2◦ and in cross polarization is 3%.
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B03 Polarization Polarization
Channel Angle (deg) Efficiency, 1 − ǫ
145W1 134.90 0.920
145W2 44.80 0.938
145X1 178.40 0.945
145X2 89.00 0.930
145Y1 157.90 0.949
145Y2 67.00 0.940
145Z1 109.50 0.818
145Z2 23.20 0.912

245W 139.3 0.993
245X 42.9 0.993
245Y 179.5 1.000
245Z 86.9 0.986

345W 139.8 0.992
345X 42.8 0.992
345Y 179.7 0.996
345Z 86.5 0.982

Table 5.4: The polarization angles and polarization efficiencies, determined pre-flight
for each channel. The uncertainty in polarization angle measurement is 2◦ and in cross
polarization is 3%.



Chapter 6

The CMB Pipeline: From Raw Data

to Power Spectra

In this chapter the CMB analysis pipeline is outlined beginning with the raw data ob-

tained from the pointing sensors and bolometers followed by the the temperature and

polarization maps, and ending with the power spectra. The final stage of analysis, the

extraction of parameters from the power spectra, is outlined in Chapter 7. The first task

to perform, outlined in Sections 6.1 and 6.2, is the cleaning and calibration of the raw

sensor data in order to produce what can be deemed the idealized data set. Once an

idealized data set is realized a noise model, in parallel with a best estimate signal-only

map, are obtained using an iterative map-making process. These details are given in

Sections 6.3 and 6.4. With a noise model, idealized data set, an iterative map maker

and CMB sky simulator a Monte Carlo approach, described in Section 6.5, can be used

to estimate the power spectra. The resulting power spectra from the analysis pipeline

are presented in Section 6.6. An overview of the analysis pipeline is show in Figure 6.1.

67
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Figure 6.1: CMB analysis pipeline overview.

6.1 Bolometer Data

This section gives a brief outline of the issues involved in the cleaning and deconvolution

of bolometer data. A more detailed description of various techniques can be found in

[19, 59, 41]. The raw bolometer data contains various undesirable artifacts such as

comic ray spikes, calibration lamp spikes and thermal instabilities resulting from elevation

changes. In addition to these effects the bolometer data is convolved with a transfer

function derived from the detector thermal response and the filtering of the receiver

readout electronics. Given that the signal to be extracted is very tiny it is paramount
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that these effect be carefully accounted for and removed from the timestream.

The first step in bolometer data cleaning is the identification of segments of timestream

when events occurred, for example launch or fridge cycling, which completely marred the

timestream data. These “glitches” are removed and flagged as bad data. The remaining

gaps in the data are filled with constrained realizations of the noise. These segments of

flagged data are subsequently not used in analysis but gap filling is necessary to allow

for the Fourier transform of the data timestream.

The ”de-glitched” bolometer data are deconvolved with pre-flight determined transfer

functions. At this point, spikes caused by cosmic rays and calibration lamp pulses, are

removed from the de-glitched, deconvolved data. Care must be taken to ensure that bright

sources, which can be mistaken for comic ray spikes, remain in the timestream. These

foreground sources are eventually removed from the CMB maps, but in the intermediate

analysis, are used as pointing calibrators. A gyro-correlated signal is removed in the final

stage of data cleaning. Long term calibration drifts, resulting from change in cryostat

pressure associated with varying altitude, are corrected for in the final step.

6.2 Pointing Solution

6.2.1 Cleaned, Calibrated and Derived Pointing Data

Spikes in the raw pointing data caused by spurious events are removed and where possible

(over a few samples) the data is linearly interpolated. This is done simply by comparing

the pointing data in one sample with the data in neighboring samples and linearly inter-

polating if that particular sample is above some reasonable threshold. The data cleaning

for the gyros, GPS and the FSS was straight-forward since all of these instruments op-

erated continuously throughout the flight. The star camera data cleaning is much more

difficult since its operation was not continuous and is complicated by repeated data (see

Section 4.4.2).
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Post-flight re-calibrations are applied to the SC, PSS and FSS data. For the SC/PSS

azimuth and elevation this is a matter of rotating the coordinates through a small angle

until the azimuth correlated signal in elevation is minimized. The FSS is recalibrated

using azimuth data from the GPS and the SC. A look-up table of sun elevation versus

raw FSS azimuth is constructed. Each element of the table contains a GPS/SC-derived,

sun azimuth relative to the gondola, averaged over the whole flight. Raw FSS data is

replaced by the corresponding element in the table.

The raw data from the azimuth, pitch and roll gyroscopes also required re-calibration

given that the signals from these sensors are not completely orthogonal. To achieve

this the gyroscope data are rotated until the correlated signal is a minimum. The large

amplitude pendulations just after launch provided a good signal-to-noise ratio to ensure

decorrelation of the gyroscope sensor signals.

Star Camera Data

Considerable effort was made to remove repeated samples of SC data. An algorithm was

developed which searched for repeated frames and removed them from the timestream.

The strategy for finding contaminated frames is to search for frames which were repeated

in more than one pointing field, ensuring that the correct frame was removed. This

worked well for the ’lock/unlock mode’ (see Section 4.4.2) but not as well for ’intermediate

modes’. In the end, data which could not be salvaged was flagged by hand. Figure 6.2

show the SC azimuth field, before and after corrections have been made. The effect of

repeated frames on elevation data is less severe since the gondola moves very little in

elevation during a scan. For this reason more of the elevation data can be preserved.

The star camera was unfrozen (literally) for 65% of the flight. From this 40% of the SC

azimuth and 70% of the SC elevation data were salvageable. Much of the flagged data is

within ∼30 seconds of unflagged data and the gyroscope data can be used to fill in the

gaps.
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Figure 6.2: Comparison of raw and corrected SC azimuth. In the corrected field repeated
frames have been removed from the timestream.

Cleaned SC data are rotated from SC ρ−θ coordinates into azimuth-elevation coordi-

nates. At this stage star position pixel information is included. The pre-flight determined

calibration angles are adjusted at this point to ensure that the correlation between az-

imuth and elevation in the final SC pointing fields is minimal.

Derived Pitch and Roll

A useful derived quantity is obtained from the GPS up, north and east velocity data.

The relatively stable LDB environment allows one to model the gondola as a pendulum;

the arcsine of the acceleration of the gondola (determined from the derivative of the GPS

velocity fields) is proportional to the pitch or roll. Is should be noted that the GPS

provides platform pitch and roll data but it is only accurate to ∼ 6 arcminutes. The

pitch and roll which are derived from the GPS velocity data (accurate to 0.1 m/s RMS)
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Figure 6.3: Comparison of the derived GPS velocity pitch with the SC determined pitch
over a three hour time scale. These pointing fields are in good agreement for this chunk
of data.

are precise to ∼ 2 arcminutes on time scales less than a few hours. With this model first

estimates of gondola pitch and roll, PITCHGV and ROLLGV may be calculated from

the GPS velocity data. In Figure 6.3 the derived GPS velocity pitch is plotted (over

roughly a three hour time scale) along with the SC-determined pitch. These pointing

fields are in good agreement for this chunk of data. Agreement seems to worsen at lower

altitudes, where wind shear is presumably higher.

6.2.2 Determination of Absolute Gondola Attitude
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Clean, calibrated pointing fields are combined to determine the gondola attitude, an

Euler matrix describing the azimuth, pitch and roll of the gondola outer frame relative to

the Earth. Figure 6.4 illustrates the gondola attitude matrix and the various coordinates

systems used to describe the position of the Sun or a guide star. The pointing fields

used in the final analysis include the FSS azimuth, the SC elevation, the PITCHGV and

ROLLGV fields derived from the GPS velocity and the gyro-integrated azimuth, pitch

and roll provide pointing information at different frequencies. For example the FSS, SC

and PITCHGV and ROLLGV provide the long time scale, absolute pointing while the

gyros provide the short time scale pointing data. At frequencies below ∼50 MHz the

pointing solution is based on the best fit azimuth, pitch and roll to the sun and star

positions as determined by the star camera, the FSS, PITCHGV and ROLLGV . Above

this frequency threshold the solution is provided my integrated gyroscope data.

The SC-Gondola Rotation Matrix

The determination of the gondola attitude necessitates that the star and sun position

information be in the same frame of reference. This requires calculation of the rotation

matrix, RSCtoG, which converts star position in the SC frame into star position in the

gondola reference frame. The gondola reference frame is (arbitrarily) chosen to be the

the position of the sun/star relative to the back of the gondola outer frame. The FSS is

bolted to the back of the gondola and thus is already in the required frame of reference.

The Euler matrix RSCtoG is constant over the flight (to the required level of accuracy)

and is determined by fitting for the Euler angles which minimize the difference between

the SC determined star position and the star position derived from a first guess gondola

attitude (using FSS azimuth, ROLLGV and PITCHGV ).
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Sun and Star Positions Relative to Gondola

The next step involves the determination of the two vectors describing the star and sun

positions which use the best available sensor data for each time sample. The (measured)

star position vector (azimuth and elevation of current locked star in the gondola refer-

ence frame), x̂G
⋆ , and (measured) sun position vector (azimuth and elevation of sun in

the gondola reference frame), x̂G
⊙, along with the (known) star and sun positions relative

to Earth, x̂E
⋆ and x̂E

⊙ make up a solvable system of equations with the unknowns char-

acterized by three Euler angles of the gondola attitude matrix RGtoE . This system of

equations can be summarized by,

RGtoEx̂G
⋆ = x̂E

⋆ (6.1)

RGtoEx̂G
⊙ = x̂E

⊙. (6.2)

Solving for the Euler Angles

The angles of the gondola attitude matrix, RGtoE are solved for using a simple grid

search of the three-dimensional χ2 space to determine the least squares solution. That is

minimizing the χ2 term

χ2 =

(
(RGtoEx̂G

⋆ − x̂E
⋆ )2

σ̂2
⋆

+
(RGtoEx̂G

⊙ − x̂E
⊙)2

σ̂2
⊙

)
(6.3)

where the errors are based on the estimated accuracy (from noise and systematics) of the

sensor throughout the flight. The initial guess at each step in the grid search is based on

the solution of the previous sample. This process yields the absolute gondola attitude for

each time sample of the flight. However, gaps exist in this solution where absolute sensor

data is not available. In addition this intermediate solution is very noisy on shortest time

scales.
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Filling in the Gaps

Gaps in the pointing data less than ∼40 seconds long are filled with integrated gyro

data and above ∼50 MHz the pointing solution is strictly gyro signal. Gaps longer than

∼40 seconds are flagged. The gyro data and absolute attitude data are filtered using a

complementary sine-squared kernel which high pass filter the gyros and low pass filters

the azimuth, pitch, roll solution from the absolute sensors. The low pass filter edges are

0.060 Hz, 0.060 Hz and 0.050 Hz for azimuth, pitch and roll respectively. The high pass

filter edges are 0.080 Hz, 0.080 Hz and 0.060 Hz for azimuth, pitch and roll. Filtered

high and low frequency timestreams are added together providing a final gondola attitude

solution at all frequencies.

Determination of Detector RA, DEC and ψ

The elevation encoder signal is added to the gondola pitch, thereby translating gondola

(outer frame) attitude into telescope (inner frame) attitude. The beam offsets for each

detector are obtained from fits to the five brightest QSOs in the CMB field. Galactic

and CMB source centroid offsets reveal a 0.1◦ shift in gondola pitch after the mid-flight

ballast drop. To account for this approximately 6 hours of data during and after the

ballast drop are flagged and a pitch shift is applied to all pointing data preceding the

drop. The reconstructed elevation and azimuth of each beam on the sky, along with the

measured polarization angles for each detector, and the GPS latitude, longitude and time

are combined to determine the right ascension, declination and ψ angle for each beam.

The CMB field pointing error, based on comparisons of analytical beams with observed

beams, is ∼2.5’ in azimuth and ∼1.5’ in elevation. The FWHM effective beam used in

final analysis is 11.5’ ± 0.23.



Chapter 6. The CMB Pipeline: From Raw Data to Power Spectra 77

6.3 Making I, Q and U Maps

A monochromatic plane electromagnetic wave propagating in the k-direction can be rep-

resented by

Ei = ai(t)cos[ω0t− θi(t)]

Ej = aj(t)cos[ω0t− θj(t)]

where ai,j and θi,j are the amplitudes and phases in the two transverse directions and

ω0 is the frequency of the wave. Polarization is characterized in terms of the Stokes

parameters [13] which are given by,

I =< a2
i > + < a2

j >

Q =< a2
i > − < a2

j >

U =< 2aiajcos(θi − θj) >

V =< 2aiajsin(θi − θj) >

The quantity I is the radiation intensity, Q and U represent linear polarization and

V represents circular polarization. Since CMB fluctuations are generally discussed in

terms of temperature rather than intensity fluctuations the relationship δI/I0 = 4δT/T0

(derived from the Stefan-Boltzmann Law) can be use to switch from units of intensity

to units of brightness temperature. Thompson scattering is not expected to generate

circular polarization in the CMB and the Stokes V is zero.

The challenge of making maps from CMB data timestreams has been discussed in

detail by many (for example [68], [82], [33], [81], [61], [24] and [27]). For B03 analysis

the CMB polarization measurement requires the production of polarization maps, the

Stokes Q and U, in addition to the usual CMB temperature maps. This section gives a
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brief outline of JIQU, the iterative polarized map maker used in B03 analysis. A more

rigorous description of JIQU is given in [41, 42].

The timestream data can be modeled as

d = Pm + n (6.4)

where d is the time-ordered data (TOD) vector and n is the detector noise vector, both

of which are in the time domain and are the length of the number of samples in the

timestream, NT . The term m represents the map triplet of the Stokes I, Q and U

arranged in a vector which is in the spatial or pixel domain and is of length 3 ×NPIX ,

where NPIX is the number of pixels in a map. The P term represents the NT ×(3×NPIX)

pointing matrix which relates pixels to time samples. The elements of P can be described

by,

Ptp =





(1, ρcos(2ψt), ρsin(2ψt)) t ∈ p

0 t /∈ p
(6.5)

where ρ represents the detector polarization efficiency and ψ is the polarization orienta-

tion of the detector. Thus at time t the observed data coming from one detector takes

the form,

dt = It + ρcos(2ψt)Qt + ρsin(2ψt)Ut + nt. (6.6)

In principle there is a calibration factor in the above equation which has been left out to

simplify the notation.

Armed with a description of the polarized data for each time sample, the map-making

formalism can be developed and the unknowns (the data derived signal-only and noise-

only maps) in Equation 6.4 can be found. The formalism is rooted in Bayes’ Theorem

which states that the probability of the theory (parameters we seek) given the data is

proportional to the likelihood of the data given the theory. In this case the data is the

TOD and the parameters are the map triplet, m and the noise model, n. This can be
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written

P (m,n|d) ∝ P (d|m,n) = L(d|m,n). (6.7)

The likelihood is maximized in order to obtain the best possible estimate of the I, Q, U

maps. The likelihood expression is given by,

L(d|m,n) =
1

|(2π)NtN|1/2
exp(−1

2
(d −Pm)TN−1(d− Pm)) (6.8)

where N is the noise covariance matrix given by N = Ntt′ =< nnT >.

In order to make a map solution tractable, the assumptions of noise which is both

Gaussian and stationary has to be made. These assumptions are valid once non-Gaussian

events (spikes, turnarounds) have been removed from the timestream and the data has

been divided up into chunks (over which the noise is relatively stable). For B03 the data

were divided into roughly hour-long chunks, which corresponded to the time between

elevation changes.

Maximizing the likelihood (Equation 6.8) with respect to the m is equivalent to

minimizing the term in the exponential. The solution for the maximum likelihood map

(see for example [82]) is given by,

m = (PTN−1P)−1PTN−1d. (6.9)

This expression is computationally difficult to determine since it requires inversions of

rather large matrices. In addition this solution requires that the noise be known a priori,

which is not the case.

The approach taken is to use iterative methods where it becomes possible to solve for

both the signal-only and the noise-only maps simultaneously. A Jacobi iterator is used

which has been shown to converge to the maximum likelihood solution [68]. The kth +



Chapter 6. The CMB Pipeline: From Raw Data to Power Spectra 80

1 iteration is given by

mk+1 = mk + δmk+1 (6.10)

where,

δmk+1 = diag[PT (Nk)−1P]−1PT (Nk)−1(d −Pmk) (6.11)

is the Jacobian iterator. This correction is applied to each iteration of the signal maps

until both the maps and the noise become stable.

More explicitly, setting nk = d−Pmk, the last part of Equation 6.11 can be written,

n̂k = (Nk)−1nk = F−1

( F(nk)

F(nk)2

)
. (6.12)

where the assumption of noise stationarity over a chunk allows the calculation to be

carried out in the Fourier domain. Applying PT to the filtered noise timestreams yields

for each pixel,

n̂k
p =

∑

t∈p

Pptn̂
k
t =

∑

t∈p




n̂k
t

ρcos(2ψt)n̂
k
t

ρsin(2ψt)n̂
k
t



. (6.13)

The first part of Equation 6.11 can be written,

diag[PT (Nk)−1P]−1 = diag

[
∑

tt′

Ppt(N
k
tt′)

−1Pt′p′

]−1

(6.14)

=
∑

t

(nk
t )

2M−1
pp′ δpp′ (6.15)

where the Stokes decorrelation matrix, Mpp′, for any given pixel is

Mpp′ =
∑

t∈p

PptPtp′ =
∑

t∈p




1 ρcos(2ψt) ρsin(2ψt)

ρcos(2ψt) ρ2cos(2ψt)
2 ρ2sin(2ψt)cos(2ψt)

ρsin(2ψt) ρ2cos(2ψt)sin(2ψt) ρ2sin(2ψt)
2



.

(6.16)
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In the ideal case the decorrelation matrix is sufficient to separate I, Q and U com-

ponents. In practice, however polarization efficiency, ρ, and the polarization angles, the

ψs, are not sufficiently well known. In order to ensure that the Stokes parameters are

uncorrelated the map-making algorithm was applied to the sum and difference of the

data from a PSB pair, rather than to the individual timestreams.

The final I, Q and U maps, with 5 arcminute pixels, for the deep and shallow regions

are shown in Figures 6.5 and 6.6. The Q and U maps are noise dominated. The majority

of the polarization signal is derived from the deep Q and U maps.

6.4 Constructing a Noise Model

The raw noise timestreams that comprise the outputs of the map maker are not a perfect

realization of detector noise. These estimates are are flawed in two ways. First, there

exists an intrinsic noise bias which results from finite chunk length and finite signal-to-

noise ratio, as well as any residual signal which has not been subtracted from the data

timestream (see [3] and [41] for a discussion). This bias is corrected for using Monte

Carlo methods. The procedure begins by performing noise estimation (running the map

maker) on an ensemble of signal plus noise realizations for a given set of simulated noise

PSDs. The average of the ensemble output noise estimates are then compared to the

input simulated noise. This ratio represents the noise bias which is then applied as a

correction factor to the best estimate noise PSD (for each detector) obtained from the

real data.

Second, the detectors have correlated noise which must be taken into consideration.

Auto and cross-correlated noise PSDs for B145W1 are depicted in Figure 5.1. Beginning

with the (bias-corrected) noise PSDs a noise correlation matrix is constructed which

contains all of the PSB pair and autocorrelated noise information at a given frequency.

Taking the simple case of one PSB pair this would be:
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Figure 6.5: Top panel: CMB deep Stokes I map derived from all of the 145 GHz channels.
Bottom panel: CMB deep Stokes Q and U maps made from the data of all eight 145 GHz
channels. The polarization maps are noise dominated. The majority of the polarization signal
is derived form the deep (as opposed to the shallow) Q and U maps.
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Figure 6.6: Top panel: CMB shallow Stokes I map derived from all of the 145 GHz channels.
Bottom panel: CMB shallow Stokes Q and U maps made from the data of all eight 145 GHz
channels. The shallow polarization maps are very noise dominated and contribute very little
to the polarization signal.
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C(f) =




< n1(f)2 > < n1(f)n2(f) >

< n2(f)n1(f) > < n2(f)2 >


 (6.17)

where n1 (for ’PSB1’) and n2 (for ’PSB2’) are the Fourier transforms of the (bias-

corrected) noise estimate timestreams for two detectors and f denotes frequency domain.

The Cholesky factorization of the complex (Hermitian positive definite) C(f) matrix is

determined or H(f), where C(f) = H(f)H(f)T. Next normal uncorrelated complex vari-

ates or white noise timestreams are constructed, one for each channel. For this one

PSB pair example w1(t) for PSB1 and w2(t) for PSB2. In the final step, the Fourier

transformed white noise timestreams are “rotated from the correlation space” via:

H(f)



w1(f)

w2(f)


 = [N1(f), N2(f)]. (6.18)

The above operation is performed for each frequency and the inverse Fourier transform

of end products are the desired uncorrelated noise timestreams for each detector.

6.5 Making Power Spectra out of CMB Maps

This section outlines the formalism for converting T, Q, and U fluctuations in the maps

into the power spectra CTT
ℓ , CEE

ℓ , CBB
ℓ , CTE

ℓ , CTB
ℓ and CEB

ℓ . This derivation of the power

spectra follows [91], which is also reviewed in the HEALPix documentation [31].

The approach taken is to expand the Stokes parameters in terms of spherical harmonic

components from which the power spectra can be constructed. The rotationally invariant

temperature anisotropy can be directly expanded into spherical harmonics. Unlike the

scalar quantity T, the Stokes Q and U depend not only on line of sight position on the sky,

but also on the rotations around that position. In order to obtain rotationally invariant

polarization power spectra the polarization maps are treated as combined quantities



Chapter 6. The CMB Pipeline: From Raw Data to Power Spectra 85

Q± iU and spin-weighted (spin-2) spherical harmonics [30] are used. The expansions are

as follows,

T (n̂) =
∑

lm

aT,lmY
0
lm(n̂) (6.19)

(Q± iU)(n̂) =
∑

lm

a±2,lmY
±2
lm (n̂). (6.20)

Here, the term Y 0
lm represents the usual spherical harmonic functions, the term Y ±2

lm

represents the spin-2 spherical harmonics and n̂ is the line of sight unit vector.

The expansion coefficients, alm, are the amplitude of each harmonic and are de-

termined by multiplying the temperature or polarization distribution by the appropriate

Y s
lm

∗ (where ∗ denotes complex conjugate) and integrating over the celestial sphere. They

are given by,

aT,lm =
∫
dΩY 0

lm
∗
T (n̂) (6.21)

a±2,lm =
∫
dΩY ±2

lm

∗
(Q± iU)(n̂). (6.22)

The polarization expansion coefficients can be represented as another linear combination,

aE,lm = −(a2,lm + a−2,lm)/2 (6.23)

aB,lm = −i(a2,lm − a−2,lm)/2. (6.24)

This formalism is convenient because it introduces what are called the E-mode (curl-free)

and B-mode (curl-like) polarization.

Assuming that CMB fluctuations are Gaussian, then the final power spectra which

completely describe the statistics of the CMB are,

CAB
l =

1

2l + 1

∑

m

< aA∗
lma

B
lm > (6.25)

where A and B are T, E or B. Of course, the measured CMB power spectra include
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instrumental effects which must be removed in order to obtain the true power spectra on

the sky. To determine the final CMB spectra a Monte Carlo approach is taken.

6.5.1 The Monte Carlo Approach

The master Code

The method of using Monte Carlo (MC) simulations for estimating the underlying angular

power spectrum on the CMB sky was first devised for the analysis of B98 data. This

method, embodied in the master code [36], allowed for the first time fast estimation

of the power spectrum which avoided time-consuming matrix inversions. The master

technique involves the direct spherical harmonic transform of the data map to what is

deemed the pseudo-Cℓ, which is written, C̃ℓ. This is the measured spectrum, which

includes instrumental effects for instance, those of incomplete sky coverage, instrument

beam and experimental noise. The instrumental effects are removed from the C̃ℓ via

Monte Carlo methods in order to obtain the true underlying angular power spectrum on

the sky. Instrumental effects are included by characterizing the power spectrum in the

following way,

C̃ℓ =
∑

ℓ′

Kℓℓ′Fℓ′B
2
ℓ′Cℓ′ + Ñℓ (6.26)

where Kℓℓ′ is the coupling kernel which describes the effect of windowing the sky, Bℓ

describes the instrument beam, Fℓ is a transfer function which accounts for any filtering

applied to the data, Cℓ′ is the true full sky angular power spectrum and Ñℓ is the noise

power spectrum. Note that, at this point, the formalism does not include polarization

details. The discussion is extended to include polarization spectra in Section 7.1.1.

The transfer function, Fℓ and noise term, Ñℓ, are both determined via MC meth-

ods. Noise-only timestreams are simulated based on the noise estimation method of

Section 6.4. These simulated noise-only timestreams are projected onto the sky with

the actual instrument scanning strategy, making a noise-only map which is subsequently
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transformed into noise-only power spectra. The Ñℓ is derived from the ensemble aver-

age of ∼ 400 noise realizations. The transfer function is derived from signal-only MC

simulations. From a known input Cℓ, ∼ 200 signal-only power spectra are derived. The

signal-only version of Equation 6.5.1 may then be used to calculate Fℓ. In practice, to

avoid inversion of the coupling kernel matrix, Kℓℓ′ , an iterative method is employed to

solve for Fℓ.

It is conventional to bin the power spectrum multipoles into a number of bands. The

binned full-sky power spectrum can be written,

Ĉb = K−1
bb′ Pb′ℓ

(
C̃ℓ − 〈Ñℓ〉

)
(6.27)

where the Pbℓ operator relates bins to multipoles through, Cb = PbℓCℓ. The term Kbb′ is

a binned version of the coupling matrix given by,

K̂bb′ = PbℓKℓℓ′Fℓ′B
2
ℓ′Qℓ′b (6.28)

where Qℓb is simply the reciprocal of the Pbℓ operator such that Cℓ = QℓbCb.

The uncertainties in the final binned power spectra estimates are also obtained using

MC simulations. In this case signal plus noise simulations are generated and Equa-

tion 6.5.1 is applied to each. The covariance matrix for the binned power spectrum is

given by,

Ĉbb′ = 〈
(
Ĉb − 〈Ĉb〉

)
−

(
Ĉb′ − 〈Ĉb′〉

)
〉. (6.29)

The diagonal elements of Cbb′ can then be used to represent the uncertainties in the final

binned spectra bandpowers. While the formalism introduced above for master has the

advantage of being relatively simple, the disadvantage of this time consuming final step

(the generation of signal plus noise Monte Carlo simulations for uncertainty estimation)

lead to the development of master’s successor, faster.
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The faster and xfaster Codes

The faster and xfaster methods are described in detail in [18]. A brief overview is

given in this section.

The faster technique is rooted in Bayesian statistics. The assumption is made that

the true signal on the sky is drawn from a Gaussian distribution. The CMB likelihood is

then the convolution of the true sky signal probability distribution with the probability

distribution of the map and is written,

L(a|z) =
1

|(2π)N/2C|1/2
exp(−1

2
aobs · C−1 · aobs†) (6.30)

where aobs are the observed spherical harmonic coefficients , C is the total theory signal

plus noise covariance matrix described by, C(z) = S(z) + N and z is a set of model Cℓ

parameters. The location in (ℓ,m) space where the likelihood function is a maximum or

where,

∂L
∂Cℓ

∣∣∣∣∣
Cℓ=Cmax

ℓ

= 0 (6.31)

is the desired quantity. The solution, derived in [9], is

Cmax
ℓ =

1

2

∑

ℓ′

F−1
ℓℓ′ Tr

[
C−1 · ∂S

∂Cℓ′
· C−1 · (Cobs −N)

]
(6.32)

where the elements of the matrix Cobs are given by Cobs
ℓm,ℓ′m′ = aobs

ℓm a
obs
ℓ′m′ . The term F−1

ℓℓ′ is

the inverse Fisher information matrix which essentially gives a measure of how fast the

likelihood distribution falls away from the maximum. It is determined by the expression,

Fℓ,ℓ′ =
1

2
Tr

[
∂S

∂Cℓ′
· C−1 · ∂S

∂Cℓ′
C−1

]
. (6.33)

Further simplifications can be made to avoid matrix inversion and speed up compu-
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tation. As with the master technique isotropy is assumed both in the noise term and

in the underlying sky signal and the spectra are summed into bands. The cut-sky model

power spectrum, C̃mod
ℓ , is parameterized with respect to the full-sky spectrum through,

C̃mod
ℓ =

∑

ℓ′

Kℓℓ′B
2
ℓ′Fℓ′C

(S)
ℓ′ qℓ′ (6.34)

where qℓ is the quadratic estimator and in this form represents the deviation from a

template ’shape’ full-sky spectrum C
(S)
ℓ . Kℓℓ′, Bℓ and Fℓ are the coupling kernel, beam

and transfer function as in Equation 6.5.1. In terms of bandpowers the pseudo power

spectrum expression becomes,

C̃mod
ℓ =

∑

b

qbC̃
(S)
bℓ ≡

∑

b

qb
∑

ℓ′

Kℓℓ′B
2
ℓ′Fℓ′C

(S)
ℓ′ χb(ℓ

′) (6.35)

with the binning function χb(ℓ) = 1 within a band and χb(ℓ) = 0 outside the band. The

bandpower deviation, qb, has maximum likelihood solution given by,

qmax
b =

1

2

∑

b′

F−1
bb′

∑

ℓ

(2ℓ+ 1)gℓ
C̃

(S)
b′ℓ

(C̃mod
ℓ + 〈Ñℓ〉)2

(C̃obs
ℓ − 〈Ñℓ〉). (6.36)

The gℓ term describes the number of degrees of freedom effectively available in the cut-

sky observation [36] and is given by gℓ = fskyw
2
2/w4, where fsky is the fraction of the

sky observed, and wi is the i-th moment of the weighted mask applied to the data. The

bandpower Fisher matrix is given by,

Fbb′ =
1

2

∑

ℓ

(2ℓ+ 1)gℓ
C̃

(S)
bℓ C̃

(S)
ℓb′

(C̃mod
ℓ + 〈Ñℓ〉)2

. (6.37)

An iterative approach is used to obtain the maximum likelihood qb. After starting

with an initial arbitrary guess for qb, the bandpower Fisher matrix Equation 6.5.1 and
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qb Equation 6.5.1 are iterated until the qb estimate stabilizes. Uncertainties in the final

bandpower spectrum are determined directly from the inverse of the Fisher information

matrix.

In addition to spectral bandpowers and uncertainties, the faster program also cal-

culates window functions and noise offsets. The former is an operator for obtaining

theoretical bandpowers from model power spectra. The latter can be used to account for

non-Gaussian behavior in the bandpowers caused by the effect of cosmic bias. Both are

required products for parameter estimation and are discussed further in Section 7.1.1.

The discussion of the pseudo-C̃ℓ has been fairly general so far. There are in fact six

spectra to be calculated. In the faster formalism they are,

C̃TT
ℓ =

∑
b q

TT
b

∑
ℓ′ Kℓℓ′B

2
ℓ′F

TT
ℓ′ C

(S)TT
ℓ′ χb(ℓ) + ÑTT

ℓ

C̃EE
ℓ =

∑
b

(
qEE
b

∑
ℓ′ +Kℓℓ′B

2
ℓ′F

EE
ℓ′ C

(S)EE
ℓ′ χb(ℓ) + qBB

b

∑
ℓ′ −Kℓℓ′B

2
ℓ′F

BB
ℓ′ C

(S)BB
ℓ′ χb(ℓ)

)
+ ÑEE

ℓ

C̃BB
ℓ =

∑
b

(
qBB
b

∑
ℓ′ +Kℓℓ′B

2
ℓ′F

BB
ℓ′ C

(S)BB
ℓ′ χb(ℓ) + qEE

b

∑
ℓ′ −Kℓℓ′B

2
ℓ′F

EE
ℓ′ C

(S)EE
ℓ′ χb(ℓ)

)
+ ÑBB

ℓ

C̃TE
ℓ =

∑
b q

TE
b

∑
ℓ′ ×Kℓℓ′B

2
ℓ′F

TE
ℓ′ C

(S)TE
ℓ′ χb(ℓ) + ÑTE

ℓ

C̃TB
ℓ =

∑
b q

TB
b

∑
ℓ′ ×Kℓℓ′B

2
ℓ′F

TB
ℓ′ C

(S)TB
ℓ′ χb(ℓ) + ÑTB

ℓ

C̃EB
ℓ =

∑
b q

B
b

∑
ℓ′ ×Kℓℓ′B

2
ℓ′F

EB
ℓ′ C

(S)EB
ℓ′ χb(ℓ) + ÑEB

ℓ

(6.38)

Note that distinct transfer functions and noise terms are calculated for each polarization

type. The ±,×Kℓℓ′ terms are the polarization mask coupling kernels. The full polarized

version of each multipole’s covariance can be written,

D̃ℓ =




C̃TT
ℓ C̃TE

ℓ C̃TB
ℓ

C̃TE
ℓ C̃EE

ℓ C̃EB
ℓ

C̃TB
ℓ C̃EB

ℓ C̃BB
ℓ



. (6.39)
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Thus, the polarized version of the quadratic estimator takes the form,

qmax
b =

1

2

∑

b′

F−1
bb′

∑

ℓ

(2ℓ+ 1)gℓTr

[
D̃−1

ℓ · S̃ℓ

∂qb′
· D̃−1

ℓ (D̃obs
ℓ − Ñℓ)

]
. (6.40)

where the noise matrix, Nℓ is defined similarly to D̃ℓ. The polarized version of the

Fisher matrix is,

Fbb′ =
1

2

∑

ℓ

(2ℓ+ 1)gℓTr

[
D̃−1

ℓ · S̃ℓ

∂qb′
· D̃−1

ℓ · S̃ℓ

∂qb′

]
. (6.41)

The form of the signal matrix derivatives,
eSℓ

∂q
b′
, depend on the polarization type of a

particular band. For example for a TE band this term becomes,

S̃ℓ

∂qTE
b

=




0
∑

ℓ′ ×Kℓℓ′B
2
ℓ′F

TE
ℓ′ C

(S)TE
ℓ′ χb(ℓ) 0

∑
ℓ′ ×Kℓℓ′B

2
ℓ′F

TE
ℓ′ C

(S)TE
ℓ′ χb(ℓ) 0 0

0 0 0



. (6.42)

The fact that B03 dataset produces a distinct set of shallow and deep maps, neces-

sitates the evolution of faster to xfaster; a program which includes all of the auto

and cross-spectrum components from a set of maps in order to consistently estimate the

spectral bandpowers. The full set of auto and cross spectra for the multi-map treatment

can be summarized as,

CAB,IJ
l =

1

2l + 1

∑

m

< aA∗,I
lm aB,J

lm > (6.43)

where again A and B are T, E or B, and now I and J correspond to the deep or shallow

region maps. The full covariance matrix for each multipole which includes all of the auto
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and cross-spectrum components takes the form,

D̃ℓ =




D̃deep×deep
ℓ D̃deep×shall

ℓ

D̃shall×deep
ℓ D̃shall×shall

ℓ


 . (6.44)

For xfaster distinct transfer functions are determined for each polarization type and

map-to-map correlation. More explicitly the transfer function term FAB
ℓ extends to

FAB,IJ
ℓ . In addition separate mask coupling kernels are calculated for each map-to -map

correlation such that Kℓ → KIJ
ℓ . The form of the xfaster estimator is identical to

Equation 6.5.1 for faster. For xfaster however, all quantities include a map-to-map

correlation index.

6.6 The B03 CMB Spectra

The six B03 CMB angular spectra are shown in Figures 6.7-6.9. The model plotted is a

best fit to WMAP(first-year)+CBI+ACBAR data [79]. The agreement of the data with

this model is apparent. The bandpowers for the spectra are also given in Table 6.1.

6.6.1 Instrumental Systematics Tests

Jackknifes

Two sets of jackknife tests are performed, whereby the timestream is divided into two

subsets from each of which I, Q and U maps are made. These subset maps are then

differenced and the power spectra of the differenced maps are computed. If the difference

spectrum is consistent with zero the jackknife test is considered a pass. The first jackknife

test splits the data in time, comparing the first half of the shallow and first half of the deep

with the second half of the shallow and second half of the deep. This temporal jackknife

gives a good gauge of time-varying systematic effects such as pointing accuracy, effects
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ℓTT
b CTT

b ∆CTT
b ℓTE

b CTE
b ∆CTE

b ℓTB
b CTB

b ∆CTB
b

75 2265 386 150 -51 27 150 -18 27
125 4075 445 250 40 32 250 -8.7 31
175 5220 453 350 58 28 350 -16 27
225 5477 428 450 -90 29 450 6.5 28
275 5194 367 550 40 39 550 -2.5 35
325 3157 223 650 -18 45 650 -1.9 42
375 1827 139 750 -86 60 750 -88 58
425 1834 132 850 62 74 850 74 72
475 2127 145 950 -61 90 950 -70 88
525 2315 155 - - - - - -
575 2370 159 - - - - - -
625 1805 142 - - - - - -
675 1660 145 - - - - - -
725 2053 173 - - - - - -
775 2388 203 - - - - - -
825 1888 207 - - - - - -
875 1902 227 - - - - - -
925 1468 235 - - - - - -
975 8558 234 - - - - - -
1025 1004 273 - - - - - -
1075 9948 324 - - - - - -
1125 1229 382 - - - - - -
1225 7707 238 - - - - - -
1400 1245 465 - - - - - -

ℓEE
b CEE

b ∆CEE
b ℓBB

b CBB
b ∆CBB

b ℓEB
b CEB

b ∆CEB
b

150 3.3 3.2 150 1.2 2.4 150 -1.8 2.1
250 4.3 4.2 250 1.6 3.2 250 -1.5 2.7
350 15.3 7.4 350 5.3 5.8 350 -7.6 4.8
450 6.3 9.3 450 -1.5 8.1 450 -6.6 6.3
600 29.5 12.1 600 -4.0 9.3 600 -1.1 7.6
800 57.0 28.6 800 19.7 25.2 800 -9.1 19.1
1000 30.2 72.1 1000 16.3 69.4 1000 122 50.4

Table 6.1: Bandpowers for the B03 TT, TE, TB, EE, BB and EB angular power spectra.
For each spectrum there are three columns; the first is the central multipole value for
each band, the second and third columns are the bandpowers and errors in units of µK2.
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of altitude changes and atmospheric contamination. The second jackknife test splits the

data into subsets from each half of the focal plane. One subset consists of data from the

channels 145W1, 145W2, 145X1 and 145X2 and the other subset from 145Y1, 145Y2,

145Z1 and 145Z2.

The jackknife results are presented in Table 6.2, where the number of degrees of

freedom (DOF) and χ2 (of jackknife to zero) value for each spectrum jackknife are given.

The “probability to exceed” values are given for a more quantitative result and are

calculated from the integral

PTE =
2

2(DOF/2)Γ(DOF/2)

∫ ∞

χ

xDOF−1e−x2/2dx. (6.45)

If the PTE value is large then the observed jackknife and expected distribution (zero)

are consistent. The convention is followed that if the PTE value is less than 5% then the

disagreement is said to be significant. All but the TT temporal jackknifes are remarkably

consistent with zero. The TT temporal jackknife failure is significant but with very

small amplitude which is evident in Figure 6.7 where the amplitude of the jackknife

spectrum is small compared to the bandpower uncertainties. Given that the channel

TT jackknife is a pass, the failure of the TT temporal jackknife is believed to be caused

by unpolarized atmospheric contamination which would be more prominent at lower

altitudes (pre-ballast drop).

Propagation of Instrumental Uncertainties

In addition to the jackknife tests the effect of mis-estimation of several instrumental

uncertainties on the final spectra is examined. The instrumental parameters and cor-

responding uncertainties that are investigated include the beam size (±2%), relative

calibration (±0.8%), PSB orientation or polarization angle (±2◦), the bolometer time

constants (±10%), and PSB polarization efficiency (±3%). A full description of the de-
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termination of instrumental uncertainties is given in [57]. The effect of mis-estimation

is determined from 145 simulated signal-only timestreams which are generated vary-

ing an instrumental uncertainty parameter around its nominal value. The simulated

timestreams are then analyzed with the measured parameter value and a systematic er-

ror bar is deduced from the standard deviation of the simulated results. The errors from

the mis-estimation instrumental uncertainties are determined to be insignificant for B03.

Further details can be found in [43, 67, 60].

Spectrum DOF χ2 PTE (%)

TT 24 20.6 66
TE 9 10.6 30

Channel TB 9 12.3 20
Jackknife EE 7 5.7 58

BB 7 6.3 51
EB 7 5.3 62
TT 24 58.9 < 1
TE 9 12.2 20

Temporal TB 9 13.1 16
Jackknife EE 7 7.2 41

BB 7 3.0 89
EB 7 2.9 89

Table 6.2: Temporal and channel jackknife results for each power spectrum. First column
is the number of degrees of freedom and second column is χ2 (of jackknife to zero) value
for each spectrum jackknife. The “probability to exceed” values are given for a more
quantitative result. The TT temporal jackknife failure is significant but with very small
amplitude as is evident in Figure 6.7.

6.6.2 Foregrounds

While microwave observations of the Interstellar Medium (ISM) and Intergalactic Medium

(IGM) can be interesting science in themselves, for CMB measurement they represent

undesirable foregrounds. Bright foreground point sources, which have the effect of adding

power to the final CMB spectra, are easily identifiable and simply cut from the maps.
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Accounting for diffuse galactic dust is more complicated. The full details and further

discussion of foreground analysis can be found in [57, 43, 60, 67]. An overview of the

method and results is given here.

Figure 6.10 taken from [83] summarizes the foreground emission in terms of frequency

versus scale. Coloured regions indicate parts of frequency-multipole space where the fore-

ground fluctuations exceed the CMB fluctuations. The most threatening foreground at

B03 frequency and scale is the vibrational dust emission. Fortunately, the dust spectrum

is expected to have considerable emission on the infrared, and hence spatial correlation

of maps from infrared surveys with B03 CMB maps should allow for differentiation be-

tween dust contamination and the CMB signal. Cross-correlation of the B03 145 GHz

maps with the Schlegel-Finkbeiner-Davis (SFD) [28] 100 µm dust map was performed.

The analysis finds no statistically significant correlation between the B03 Stokes I maps

(deep and shallow) and the dust maps. The B03 245 GHz and 345 GHz maps however,

do exhibit spatial correlations with the dust map, as one might expect given Figure 6.10.

Polarized foregrounds are predicted to equally contaminate the E and B components

of the CMB [83]. A good test of the contamination to the TE CMB spectrum is the lack

of power in the TB spectrum. Figure 6.9 clearly indicates this to be the case, with the

TB data giving a χ2 to zero of 4.9/(9 DOF). Further evidence that the E and B signal

are not contaminated comes from the cross-correlation of the B03 145 GHz data with

IRAS dust intensity maps. The products < TIRASBB03 > and < TIRASEB03 > are found

to be statistically consistent with zero, providing further evidence that the B03 E and B

polarization signal are indeed coming from the CMB. See [57] for further details.
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Figure 6.7: B03 TT and TE angular power spectra and jackknife data. The TT temporal
jackknife failure is significant but with very small amplitude. All other jackknifes are consistent
with zero. Model plotted (solid curve) is a best fit to WMAP(first-year)+CBI+ACBAR data
from http://lambda.gsfc.nasa.gov/product/map/ and is in very good agreement with the
data.

http://lambda.gsfc.nasa.gov/product/map/
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Figure 6.8: B03 EE and BB angular power spectra and jackknife data. Jackknifes are consistent
with zero. Model plotted (solid curve) is a best fit to WMAP(first-year)+CBI+ACBAR data
from http://lambda.gsfc.nasa.gov/product/map/ and is in very good agreement with the
EE data. The BB spectrum is consistent with zero. B-mode polarization is predicted to be at
least one order of magnitude lower than E-mode polarization.

http://lambda.gsfc.nasa.gov/product/map/
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Figure 6.9: B03 TB and EB angular power spectra and jackknife data. Jackknifes are consistent
with zero. Polarized foregrounds are predicted to equally contaminate the E and B. A good
test of the foreground contamination to the TE and EE CMB spectrum is the lack of power in
the TB and EB spectra.
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Figure 6.10: Realistic predicted CMB foregrounds, in frequency-multipole space, derived
from [83]. Coloured regions indicate parts of frequency-multipole space where the foreground
fluctuations exceed the CMB fluctuations. Box labeled B03 indicates the observing frequency
and scale of BOOMERANG 2003 from which the final B03 power spectra are derived. The
larger boxes are the parameter space for Planck observation (thin black lines) and WAMP ob-
servation (dashed lines). The most threatening foreground, fluctuating at the CMB fluctuation
level, at B03 frequency and scale is the vibrational dust emission (red). Other foregrounds
include synchrotron (magenta), free-free (cyan) and rotational dust emission (blue).
See [83] for details.



Chapter 7

Cosmological Parameters B03

This chapter is based largely on [54]1 and examines in detail the cosmological implications

of the B03 data set. The required data products and methodology for parameter extrac-

tion are outlined in Section 7.1. Section 7.2 describes the various data combinations

that are used in this analysis. Section 7.3.1 focuses on the standard ΛCDM model and,

applying only weakly restrictive priors it is found that the simple parameter fits to B03

data alone are fully consistent with those derived from other existing CMB data. To this

CMB data, including the B03 data, the recent Large Scale Structure (LSS) redshift sur-

vey data, consisting of matter power spectra from the Sloan Digital Sky Survey (SDSS)

[84] and the 2 Degree Field Galaxy Redshift Survey (2dFGRS) [65] is added, and the

marginalized parameter constraints from this combined cosmological data set are deter-

mined. In Section 7.3.2 the analysis is extended to include tests of several modifications

of the standard model with the combined data sets. All of the models in Section 7.3 share

the assumption that the initial perturbations of the primordial plasma are adiabatic. In

Section 7.4 the constraints of the B03 and other data on a model with a mixture of a

dominant adiabatic mode and a sub-dominant isocurvature mode are explored.

1AAS has been notified and all obligations for release of copyright have been fulfilled.

101
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7.1 Data Products and Methodology

7.1.1 Summary of B03 Results

The parameter constraints presented in this analysis are based on the data outputs of

the xfaster hybrid Monte Carlo–maximum likelihood estimator [18]2. The estimator

uses a close to optimal, quadratic, Fisher matrix-based estimator which is calibrated

using signal-only and noise-only simulations of the entire data set, from time stream to

final maps. The xfaster formalism is reviewed in Section 7.1.1. It determines true

polarization and total temperature angular power spectra (averaged over pre-determined

ℓ bands) on the sky. After an arbitrary initial guess, the quadratic estimator iterates

onto the maximum likelihood solution [9], Cdat
B , with errors determined by an estimate

of the Fisher matrix for all band powers self-consistently.

The calculation of the full Fisher matrix also allows us to exclude band powers self

consistently by cutting rows and columns from the inverse Fisher matrix. The effect of

reduced sky coverage and/or pixel weighting is accounted for by computing all coupling

kernels following [36] and [16]. The analysis typically includes a simultaneous determi-

nation of a complete set of TT, EE, BB, TE, TB, and EB band powers. The EB and

TB spectra are consistent with zero (as expected) and are excluded from the parame-

ter determination by cutting out the bands in the inverse Fisher matrix (equivalent to

marginalizing over their contribution).

The spectra used in this analysis are shown in Figure 7.1. The data have been divided

into bands which are generally ∆ℓ = 50 wide for TT and ∆ℓ = 100 wide for the three

remaining spectra. The multipole ranges for the B03 spectra which are used in this

analysis are presented in Table 7.1. All band-to-band correlations are included in the

Fisher information matrix and are at most ∼20%. The band spacing was chosen in part

2http://cmb.phys.cwru.edu/boomerang

http://oberon.roma1.infn.it/boomerang/b2k

http://cmb.phys.cwru.edu/boomerang
http://oberon.roma1.infn.it/boomerang/b2k
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B03 Spectrum Multipole Range Number of Bands Reference
TT 75 (375) ≤ ℓ ≤ 1400 24 (18) [43]
TE 150 ≤ ℓ ≤ 950 9 [67]

EE & BB 150 ≤ ℓ ≤ 1000 7 [60]

Table 7.1: B03 bandpowers. The lowest bandpowers of the TT spectrum (ℓ < 375) are
excluded when combining the B03 data with the WMAP results since the two spectra
are signal dominated and therefore correlated.

to ensure that these correlations were not large.

The xfaster code also calculates the required band window functions, WB
ℓ , which

are used to convert the model power spectra, Cmod
ℓ , into theoretical bandpowers via

〈Cmod
B 〉 =

I[WB
ℓ Cmod

ℓ ]

I[WB
ℓ ]

(7.1)

Here Cmod
ℓ = ℓ(ℓ+1)Cmod

ℓ /2π and the notation for the “logarithmic integral” of a spectrum

[9] is given by I[fℓ] ≡
∑

ℓ

ℓ+ 1
2

ℓ(ℓ+1)
fℓ. The above operation permits direct comparison of

theory Cmod
B with data Cdat

B .

A final issue is the potential bias introduced by the non-Gaussian distribution of the

bandpowers in the signal-dominated regime. It has been shown [9] that the variable

ZB = ln(Cdat
B + CN

B ) is more normally distributed than the bandpowers CB. The noise

offsets, CN
B , are a measure of the deconvolved noise spectrum on the sky and are calculated

with the same quadratic estimator using xfaster on the average of simulated noise-only

observations.

The distribution of the bandpowers tends to a Gaussian in the noise-dominated regime

and log-normal in the sample-variance-dominated regime. Both limits are significant for

the TT bandpowers, hence all the TT bands are transformed to offset log-normal variables

and the likelihood function is treated in the new variables as Gaussian for parameter

estimation. For the polarization spectra EE and BB, which are noise-dominated, ZB =

Cdat
B is used, with no non-Gaussian correction. For TE ZB = Cdat

B is also used since

negative values of Cdat
B occur. The Fisher matrix of the bandpowers is transformed as
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Figure 7.1: The B03 bandpowers used in this analysis. The total intensity TT,
polarization EE and BB, and cross correlation TE spectra are included. The EB
and TB spectra are excluded from this parameter analysis. The solid/black curve
is the previous concordance model, a best fit to WMAP(first-year)+CBI+ACBAR
data from http://lambda.gsfc.nasa.gov/product/map/, with (Ωbh

2,Ωch
2, ns(k =

0.05), exp(−2τ), A(k = 0.05), h) = (0.0224, 0.111, 0.958, 0.802, 0.739, 0.720). The yellow/dotted
curve is the CMBall (Table 7.3)+B03 maximum likelihood ΛCDM model from this analysis
with (slightly different parameterization–see text), (Ωbh

2,Ωch
2, ns(k = 0.05), τ, ln(1010As(k =

0.05)), θ) = (0.0228, 0.108, 0.959, 0.138, 3.12, 1.04).

http://lambda.gsfc.nasa.gov/product/map/
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F̃BB′ = Z ′
BFBB′Z ′

B′ with Z ′
B ≡ dZB/dC

dat
B = (Cdat

B +CN
B )−1 if B is a TT bandpower and

Z ′
B = 1 otherwise.

In summary the xfaster data products include the bandpowers, Fisher matrix, win-

dow functions and noise offsets.

7.1.2 Parameter Estimation Methodology

The Monte Carlo Markov Chain (MCMC) sampling technique used for this parameter

estimation is described in detail in [62, 17, 51] and implemented in the publicly available

CosmoMC
3 package. A brief summary of the relevant details is given here. The tech-

nique uses a Bayesian approach, generating samples of the posterior probability density

function (PDF) of the parameters y given the data z:

P (y|z) ∝ P (y)P (z|y), (7.2)

where P (z|y) is the likelihood PDF and P (y) is the prior PDF of y. The posterior

is sampled by running a number of Markov Chains. The chains are constructed via

the Metropolis-Hastings (MH) algorithm whereby a candidate parameter vector, y
′ is

determined from an arbitrary proposal density distribution q(y′|yn) where yn is the

current state of the chain. The candidate y
′ is accepted with acceptance probability given

by

α(y|yn) = min

{
P (y′|z)q(yn|y′)

P (yn|z)q(y′|yn)
, 1

}
. (7.3)

At each point in the chain the acceptance probability for a candidate point is compared

to a random number u drawn uniformly in the 0 to 1 range. If u ≤ α(y′|yn) then the

proposed vector is accepted and the next point in the chain is yn+1 = y
′. If u > α(y′|yn)

3http://cosmologist.info/cosmomc

http://cosmologist.info/cosmomc
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then the proposed vector is rejected and yn+1 = yn.

For the B03 CMB data the likelihood evaluation at each point in the chain requires

the calculation of

χ2 =
∑

BB′

(Zmod
B (y) − Zdat

B )F̃BB′(Zmod
B′ (y) − Zdat

B′ ). (7.4)

The WMAP data likelihood is computed using the likelihood code supplied by the WMAP

team [87, 44], but with two modifications. The first modification is a change to the

TE likelihood function to account for the correlation between the temperature and TE

power spectrum estimators (the small correlations between the Cl estimators at different

l are neglected) [23]. After the chains have been run importance sampling is used (e.g.

see [51]) to correct the WMAP likelihood on large scales using the more computationally

intensive likelihood code from [78]. This Slosar-Seljak modification uses a more accurate

calculation of the WMAP likelihood at low multipoles (ℓ ≤ 11) and considers in more

detail the errors associated with foreground removal.

The theoretical CMB spectra (as well as the matter power spectra) are computed

using camb [52], a fast parallel Boltzmann code based on cmbfast [74]. The statistics

of interest, such as the marginalized posterior distribution of individual parameters, are

calculated from the MCMC samples after removing burn in. Six chains are run for each

combination of data and parameters that cannot be importance sampled. Numerical

marginalization is performed over each data point’s calibration and beam uncertainties

at each sample in the chain. The calibration errors are assumed to be independent

between data sets. Convergence is checked by ensuring that the standard deviation

between chains of the 95%-percentile estimated from each chain is less than 0.2 in units

of the all-chain parameter standard deviation. This should ensure that sampling errors

on quoted limits are minimal.

Parameter estimates from MCMC have been shown to be in very good agreement
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with those derived using an adaptive Cℓ-grid [12] that was previously applied to the B98

analysis [73]. MCMC results for CMBall+B98 [11] are also in good agreement with those

obtained for CMBall+B03 for the baseline model defined below with the same priors

applied4.

7.2 Data Combinations

7.2.1 The CMB Data

A number of combinations of data are considered. The B03 data set is broken into one

subset consisting of the TT spectrum alone (B03TT), and another subset consisting of

the EE, BB and TE spectra (B03pol) alone. Fits to the entire B03 data set, WMAP data

alone and a combined B03 + WMAP data set are also considered. Next B03 is combined

with available data from a collection of CMB experiments. Outlined in Table 7.3 are the

experiments and multipole ranges which make up that collection, which is called CMBall.

Note that because of the overlap in ℓ range (and sky coverage) of the ARCHEOPS [86]

data with the WMAP data, the former cannot be included in the CMBall data set,

unless a joint analysis is done. The B03 multipole range is given in Table 7.1. The

cosmic variance of the WMAP and B03 data sets is correlated in the low multipole range

(essentially over the first peak of the TT power spectrum). To account for this, the lower

multipoles of the B03 TT spectrum (ℓ < 375) are cut when combining B03 data with

WMAP data.

7.2.2 The Large Scale Structure Data

For the final data combination the LSS observations from 2dFGRS and the SDSS are

included. Some results of this analysis are sensitive to an overall galaxy bias factor, bg,

4B03 and B98, with overlapping sky coverage, are correlated data sets. B98 is therefore excluded
from this analysis and the combined B98 and B03 maps will be considered in a future analysis.
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which is defined as the ratio of the square root of the galaxy-galaxy power spectrum for

L∗ galaxies to that of the mass density power spectrum today. Although the indications

are that this is a number near unity [65, 84], here bg is allow to take on arbitrary values by

marginalizing it over a very broad distribution. Thus, the LSS information is only con-

straining models through the shape of the power spectrum, but not the overall amplitude.

Constraining the overall amplitude is akin to imposing a prior on σ8. To test sensitivity

to this, varied Gaussian errors on b2g about a mean are adopted. The mean is taken to be

unity with errors on δb2g appropriate for δbg = 0, 0.1, 0.5 and 10, then marginalized over

b2g. A uniform prior in b2g leads to the same results as for δbg = 10 5. Most parameter

averages obtained are relatively insensitive to δbg. The effect is commented on below: it

has impact on the massive neutrino and dark energy equation of state constraints. SDSS

data is used only for wavenumbers k < 0.1hMpc−1 to avoid nonlinear corrections and to

avoid possible non-uniform bg complications. (See [84] for a discussion of these and other

issues.)

An estimate using galaxy-galaxy lensing from SDSS [76] is bg = 0.99 ± 0.07. (These

authors also used WMAP data to obtain this value, so it is not a completely independent

determination of the bias.) An estimate using the 3-point function and redshift space

clustering distortions for 2dFGRS gives bg = 1.04±0.04 [88]. Based on these two analyses,

adopting bg = 1.0±0.10 to illustrate the effect of knowing the bias better, which translates

into a σ8 prior, seems reasonable.

7.2.3 Other Data Sets

The supernova data (SNIa) is applied in Section 7.3.2 to the determine the dark energy

equation of state. For this the gold set, as described in [72] is used. Also, for a few cases

the H0 prior value from the HST Key Project [29] is included.

5Note that allowing b2
g to be negative has no effect and yields the same results as a (uniform) positive

b2
g constraint.
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7.3 Adiabatic Models

7.3.1 Baseline Model

Parameterization and Priors

For the baseline model a flat universe with photons, baryons, massless neutrinos, cold

dark matter and a cosmological constant is considered. Initial conditions will be taken to

be purely adiabatic (no isocurvature modes). A power law form for the power spectrum

of the primordial comoving curvature perturbation, described by Ps = As(k/k⋆)
(ns−1),

where the ns is the scalar spectral spectral index and As is the scalar amplitude (a pivot

point k⋆ = 0.05Mpc−1 is chosen) is assumed. The physical baryon density and dark

matter density are parameterized by Ωbh
2 and Ωch

2, where h = H0/100km s−1Mpc−1

is the Hubble parameter. The parameter θ is used to characterize the positions of the

peaks in the angular power spectra, defined as one hundred times the ratio of the sound

horizon to the angular diameter distance at last scattering [45]. Finally, the parameter

τ is used to describe the Thomson scattering optical depth to decoupling. Thus the

baseline model is a function of six cosmological parameters to which the following flat

weak priors are imposed: 0.5 ≤ ns ≤ 1.5; 2.7 ≤ ln(1010As) ≤ 4.0; 0.005 ≤ Ωbh
2 ≤ 0.1;

0.01 ≤ Ωch
2 ≤ 0.99; 0.5 ≤ θ ≤ 10.0; and 0.01 ≤ τ ≤ 0.8. Additional weak priors

restrict the age of the universe to 10Gyr ≤ age ≤ 20Gyr and the expansion rate to

0.45 ≤ h ≤ 0.9. All priors are summarized in Table 7.2. Besides being generally agreed

upon by cosmologists, the weak priors are consistent with those used in much of the

CMB literature, e.g., [50], [12] and [71]. Note that some of the results are sensitive to the

choice of prior on H0 and the effect of strengthening the H0 prior is explored in Sections

7.3.2 and 7.3.2.

In addition to the base parameter values, the results also include marginalized con-

straints for several derived parameters including: ΩΛ, the relative dark energy density;

the age of the Universe; Ωm, the relative total matter density; σ8, the root mean square
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Parameter Limits Parameter Limits
Ωbh

2 0.005 - 0.1 ns 0.5 - 1.5
Ωch

2 0.01 - 0.99 ln[1010As] 2.7 - 4.0
θ 0.5 - 10.0 Age(Gyr) 10 - 20
τ 0.01 - 0.8 H0 45 - 90

Table 7.2: List of weak priors imposed on baseline parameter set. Priors are uniform in
the variable shown.

linear mass perturbation in 8h−1 Mpc spheres; zre, the redshift of reionization assuming

it is a sharp transition; and the Hubble constant, H0.

Consistency of B03 Data Set

The resulting marginalized parameter constraints for the baseline model for each of the

data combinations are given in Table 7.4 and presented graphically in Figure 7.2. In

both Table 7.4 (and in the ones that follow) and Figure 7.2 the Bayesian 50% probability

value (the median) obtained from the marginalized probability for each parameter is

given. The quoted errors represent the 68% confidence interval obtained by integrating

the marginalized distributions. In the case of upper or lower bounds, the 95% confidence

limits are quoted. Note that the baseline CMBall+B03+LSS result is fairly insensitive

to δbg and that the less restrictive flat, uniform prior in b2g has been chosen.

The comparison of B03pol and B03TT provides a robust internal consistency check.

Note that the B03pol constraints to Ωbh
2 and Ωch

2 are quite good with uncertainties

which are only slightly larger than those of the B03TT result. However, the B03pol

constraints on ns, τ and As are weak and results for these cases are prior driven. Presented

in Figure 7.3 is a 2D likelihood plot of θ versus the combined parameter Ase
−2τ . The

latter determines the overall power in the observed CMB anisotropy (except at low ℓ),

and is therefore better constrained than the primordial power As. CosmoMC uses a

covariance matrix for the parameters and is therefore able to ascertain linear combination

degeneracies. Although lnAs and τ are used as base parameters, the proposal density

knows that the combination ln(Ase
−2τ ) is well constrained and can explore the poorly
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Figure 7.2: Median values obtained from the marginalized probability for each parameter
for the baseline, standard model. The errors bars represent the 68% confidence interval.
The 95% upper limit is given for the case of τ for B03 data alone. The flat weak priors
imposed are as outlined in Table 7.2. The baseline CMBall+B03+LSS result is fairly
insensitive to δbg and that the less restrictive flat, uniform prior in b2g has been chosen
for this case.
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constrained orthogonal direction efficiently. The B03 data alone does particularly well

at constraining Ase
−2τ . The angular-diameter distance variable θ defines the shift with

ℓ of the overall Cℓ pattern, in particular of the pattern of peaks and troughs. With all

of the CMB data it is the best determined parameter in cosmology, 1.045 ± 0.004; with

B03pol it is an important test which demonstrates the consistency of the positions of the

polarization spectra peaks and troughs relative to those forecasted from the TT data,

although the errors are larger with θ = 1.08± 0.03. For the CBI TT, TE and EE data in

combination with WMAP TT and TE, [71] found θ = 1.044± 0.005. With just the CBI

EE polarization data they determined θ = 1.06 ± 0.04, again showing the consistency of

the data with the TT forecast of the polarization peaks and trough.

The B03 median parameter values are remarkably consistent with the parameter

constraints from WMAP data alone. Note that in general the Slosar-Seljak modification

to WMAP tends to broaden WMAP parameter likelihood curves and that the most

significant impact on the median values is in τ (∼ 0.3σ increase) and in Ωm (∼ 0.6σ

decrease). Adding B03 to the WMAP data decreases the parameter uncertainties by an

average of ∼15%. The most significant effect is a ∼30% decrease in the σ8 uncertainty.

Figure 7.4 shows the likelihood curves for the 6 base parameters and 6 derived parameters

for a variety of data combinations. Overall the various data combinations are generally

in good agreement at better than the 1σ level. The largest outlier is Ωch
2 which increases

by 1.5σ with the addition of the LSS data set. Also, similar to what is found in [79], the

addition of small scale CMB data lowers both the value for the amplitude of fluctuations

at k = 0.05Mpc−1 and the value of the scalar spectral index. The effect of adding the

LSS data follows this trend.

7.3.2 Modified Standard Model

In this section five extensions of the standard model are explored by adding, in turn, one

parameter to the baseline parameter set. In all cases the same weak priors on the base
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Experiment Multipole Range Reference
WMAP TT 2 ≤ ℓ ≤ 899 [35]
WMAP TE 2 ≤ ℓ ≤ 450 [44]
DASI TT 380 ≤ ℓ ≤ 800 [32]
VSA TT 400 ≤ ℓ ≤ 1400 [21]

ACBAR TT 400 ≤ ℓ ≤ 1950 [48]
MAXIMA TT 450 ≤ ℓ ≤ 1150 [34]

CBI TT 750 ≤ ℓ ≤ 1670 [70]

Table 7.3: The CMBall data set.

Figure 7.3: Constraints on Ase
−2τ versus θ. Inner contours represent 68% likelihood regions

and outer contours 95% likelihood regions. The peak position characterization parameter θ is
best the determined parameter in cosmology, 1.045 ± 0.004, from the CMBall+B03 data set.
The B03TT data does particularly well at constraining both the peak pattern and the combined
Ase

−2τ amplitude parameter. The constraint from WMAP alone on As is better than that from
B03. The agreement between the B03pol and B03TT data is consistent with the basic inflation
picture.
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Figure 7.4: Marginalized one-dimensional distributions for the baseline model parameters
for the data combinations WMAP only (black/dotted), WMAP + B03 (green/solid),
CMBall + B03 (blue/dashed), and CMBall + B03 + LSS (red/dash-dotted). The curves
are each normalized by their peak values. All distributions are derived from chains run
with the weak set of external, uniform priors shown in Table 7.2. The LSS data consists
of the 2dFGRS and SDSS redshift surveys (with a flat b2g prior imposed). The most
significant impact of the B03 data is on σ8. Moreover, the σ8 constraint from CMB data
alone is quite strong, with the addition of LSS data having little effect.
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B03pol B03TT B03 WMAP WMAP CMBall CMBall
+B03 +B03 +B03+LSS

Ωbh2 0.0184+0.0061
−0.0055 0.0219+0.0031

−0.0030 0.0217+0.0030
−0.0029 0.0242+0.0023

−0.0016 0.0239+0.0020
−0.0014 0.0231+0.0014

−0.0010 0.0226+0.0009
−0.0008

Ωch2 0.149+0.053
−0.039 0.125+0.034

−0.024 0.123+0.034
−0.021 0.109+0.017

−0.014 0.109+0.014
−0.012 0.106+0.010

−0.010 0.120+0.005
−0.005

θ 1.080+0.028
−0.028 1.052+0.009

−0.011 1.055+0.010
−0.010 1.048+0.008

−0.007 1.049+0.006
−0.005 1.045+0.004

−0.004 1.045+0.004
−0.004

τ < 0.66 < 0.50 < 0.49 0.21+0.15
−0.10 0.21+0.12

−0.09 0.157+0.103
−0.068 0.101+0.051

−0.044

ns 0.89+0.61
−0.39 0.86+0.10

−0.11 0.86+0.10
−0.11 1.01+0.07

−0.05 1.00+0.07
−0.04 0.97+0.05

−0.03 0.95+0.02
−0.02

ln[1010As] 3.4+0.6
−0.7 3.4+0.6

−0.2 3.3+0.7
−0.2 3.3+0.2

−0.2 3.3+0.2
−0.2 3.2+0.2

−0.1 3.1+0.1
−0.1

ΩΛ 0.66+0.14
−0.31 0.70+0.12

−0.28 0.71+0.11
−0.25 0.77+0.06

−0.08 0.77+0.06
−0.07 0.77+0.05

−0.05 0.71+0.03
−0.03

Age(Gyr) 13.0+1.0
−0.9 13.5+0.6

−0.6 13.4+0.6
−0.5 13.3+0.3

−0.4 13.3+0.3
−0.4 13.5+0.2

−0.3 13.6+0.2
−0.2

Ωm 0.34+0.31
−0.14 0.30+0.28

−0.12 0.29+0.25
−0.11 0.23+0.08

−0.06 0.23+0.07
−0.06 0.23+0.05

−0.05 0.29+0.03
−0.03

σ8 1.1+0.3
−0.3 0.96+0.19

−0.16 0.95+0.20
−0.15 0.93+0.13

−0.11 0.91+0.09
−0.08 0.83+0.06

−0.06 0.84+0.05
−0.05

zre 33.2+18.6
−15.7 23.2+10.6

−12.2 22.1+11.2
−12.0 19.7+6.6

−6.7 19.7+5.3
−6.0 16.4+5.4

−5.0 12.6+3.9
−4.0

H0 70.4+19.6
−25.4 69.5+20.5

−24.5 71.3+18.7
−26.3 75.6+14.4

−3.5 75.8+14.2
−3.1 75.0+6.4

−4.2 69.5+2.5
−2.3

Table 7.4: Marginalized parameter constraints for the baseline, 6 parameter, ΛCDM
model. Parameter uncertainties represent the 68% confidence interval obtained by in-
tegrating the marginalized distributions. 95% confidence limits are quoted for the case
of upper bounds. The following flat weak priors are imposed (as outlined in Table 7.2):
0.5 ≤ ns ≤ 1.5; 2.7 ≤ ln(1010As) ≤ 4.0; 0.005 ≤ Ωbh

2 ≤ 0.1; 0.01 ≤ Ωch
2 ≤ 0.99;

0.5 ≤ θ ≤ 10.0; and 0.01 ≤ τ ≤ 0.8. Additional weak priors restrict the age of the
universe to 10Gyr ≤ age ≤ 20Gyr and the expansion rate to 45 ≤ H0 ≤ 90. The CMBall
data set is as given in Table 7.3. The LSS data consists of the galaxy power spectra
from the 2dFGRS and SDSS redshift surveys. The baseline CMBall+B03+LSS result
is fairly insensitive to δbg and for this case the less restrictive flat, uniform prior in b2g
has been chosen. The constraints from the B03pol data are in good agreement with the
B03TT data, although some parameters constraints for the B03pol case are prior driven,
eg. ns, As and H0. B03 does not constrain τ , but upper limits are given. The constraints
from the various data set are consistent.
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parameters as outlined in Table 7.2 are maintained. Some of the results are sensitive to

the chosen prior range for H0. For example, in certain cases the impact of strengthening

the H0 prior to the value from the HST Key Project [29], h = 0.72 ± 0.08, with the

errors treated as Gaussian is noted.

Running Index

The power law form for the power spectrum of the density perturbations is modified

to allow the spectral index, ns, to vary with scale. Following [46] this variation can be

parameterized by the term nrun = dns/d ln k, such that ns = ns(k⋆) + nrun(k⋆) ln(k/k⋆),

where again k⋆ = 0.05Mpc−1. The parameter nrun is restricted to lie between -0.3 and

0.3. Results from the combined data sets, CMBall+B03 and CMBall+B03+LSS, are

given in Table 7.5.

The WMAP team report in [79] a detection of the running index of nrun = −0.031+0.016
−0.017

from their combined WMAPext+2dFGRS+Lyman α data set. [78] present a reduction

in significance of the detection of nrun when their full likelihood analysis and detailed

foreground removal is applied to the WMAP data. The Slosar-Seljak modification to

WMAP decreases the significance of nrun, but that inclusion of the data from the small

scale CMB experiments has the opposite effect (as was the case found by [79]). From CMB

data alone a median value for nrun = −0.071+0.035 is determined. This result is somewhat

sensitive to the choice of prior. [79] apply a strong τ < 0.3 prior which effectively reduces

the median value of nrun for their CMB data only case. A Gaussian HST prior on H0

is applied which lowers the significance of the running index to nrun = −0.065 ± 0.035

for the CMBall + B03 data set. Inclusion of the LSS data (with uniform prior in b2g)

further reduces the significance and the median value from the larger combined data set is

nrun = −0.050+0.026
−0.027. Note that the application of a Gaussian prior to b2g has no impact on

the running index parameter. Application of the HST prior on H0 yields a final median

value nrun = −0.048 ± 0.026 for the CMBall + B03 + LSS (+HST) data set. Figure 7.5
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Figure 7.5: Marginalized one-dimensional
distributions for the nrun parameter for the
baseline + running index model. Weak pri-
ors imposed are those outlined in Table 7.2.
The running index parameter is restricted to
lie between -0.3 and 0.3. Application of the
HST prior on H0 slightly reduces the signifi-
cance of a running index.

Figure 7.6: Marginalized one-dimensional
distributions for Ωk for the baseline model
which allows non-zero curvature. Weak pri-
ors imposed are those outlined in Table 7.2.
Ωk is restricted to the range -0.3 and 0.3.
The relatively wide scope for positive curva-
ture is associated with the angular-diameter-
distance degeneracy which is only partly bro-
ken by the CMB data. Application of the
HST prior on H0 to the larger combined data
set somewhat reduces the possibility of signif-
icant curvature.

shows the likelihood curves for the nrun parameter for various data combinations. It is

interesting to compare this result with that of [75], who argue that if the state-of-the-

art modeling of Lyman α forest measurements is dominated by statistical rather than

systematic errors, then |nrun| < 0.01

Curvature

In this section a modification to the standard model which allows the possibility of

non-flat geometry is considered. The curvature density is parameterized by Ωk and is

allowed to vary between -0.3 to 0.3. Table 7.5 shows the results for the CMBall+B03 and

CMBall+B03+LSS data sets. The CMB data alone places a constraint on the curvature

which is Ωk = −0.030+0.026
−0.046. Shown in Figure 7.6 are the likelihood profiles for WMAP,



Chapter 7. Cosmological Parameters B03 118

WMAP+B03, CMBall+B03 and CMBall+B03+LSS. While the addition of B03 data to

the WMAP data tends to lower the significance of curvature, adding more small scale

CMB data increases the width of the low end tail. Addition of the LSS data, with

uniform prior in b2g, yields a median value of Ωk = −0.024+0.014
−0.019. Application of the

Gaussian prior in b2g (with 10% uncertainty in bg) has a slight effect with a resulting

median value of Ωk = −0.021+0.014
−0.016. If the H0 value is restricted by the application

of a Gaussian HST prior, the curvature density determined from the CMBall + B03

data set is Ωk = −0.013+0.014
−0.018. Moreover, application of the more stringent H0 prior

reduces the median value of the curvature from the combined CMBall + B03 + LSS

data set (flat b2g prior) to Ωk = −0.017+0.011
−0.014. The result agrees well with the constraint

Ωk = −0.010 ± 0.009 obtained by combining CMB data with the red luminous galaxy

clustering data, which has its own signature of baryon acoustic oscillations [26].

Tensor Modes

So far in this chapter only scalar perturbations have been assumed. However inflationary

models can produce tensor perturbations from gravitational waves that are predicted to

evolve independently of the scalar perturbations, with an uncorrelated power spectrum

Pt. The amplitude of a tensor mode falls off rapidly after horizon crossing and the effect

is therefore predominantly on the largest scales: tensor modes entering the horizon along

the line of site to last scattering distort the photon propagation and generate an additional

anisotropy pattern. The tensor component is parameterized by the ratio At/As, where At

is the primordial power in the transverse traceless part of the metric tensor on 0.05Mpc−1

scales. A very weak prior on the amplitude ratio, restricting it to lie between 0 to 20, is

imposed.

A tensor spectral index, defined by Pt ∝ knt, must also be set. In inflation models it

is related to the amplitude ratio by At/As ≈ −8nt/(1− nt/2), so one parameter suffices.

Rather than let nt float as a second added parameter, it is chosen to make Pt flat in k
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(and thus set nt to zero) for the computations of the tensor-induced component of Cℓ.

Results are presented in Table 7.5, and Figure 7.7 illustrates the likelihood curves

for the amplitude ratio for a number of data combinations. The influence of the high

precision of the WMAP data on the largest scales is evident. Adding the small scale CMB

data only slightly reduces the limit. An upper limit on the tensor ratio from CMB data

(CMBall+B03 data set) alone of At/As < 0.71 (95% confidence limit) is determined. The

CMB data appear to select models with relatively large tensor-to-scalar ratios. However,

these models which have large values for the Hubble parameter (H0 ∼ 85) are allowed due

to the poor constraint on H0 when including tensor modes. In this case, the constraints

on H0 are driven mainly by the choice of weak priors and the data only provides a

lower limit (see Table 7.5). With the application of the HST prior (which excludes these

models with large H0 values) the tensor limit from the CMBall+B03 data set is reduced

to At/As < 0.635. A similar effect is obtained with the addition of the LSS data which

further reduces the limit to At/As < 0.36. When bg is constrained in the LSS data, the

limits are very similar. The application of the more restrictive prior discussed above,

with only ns ≤ 1 allowed to have a tensor contribution, lowers the CMBall+B03 limit to

At/As < 0.45 and the CMBall+B03+LSS limit to At/As < 0.31.

Massive Neutrinos

Measurements from solar and atmospheric neutrino experiments, such as the Sudbury

Neutrino Observatory [1] and Super-Kamiokande [85], indicate that neutrinos change

flavour: different generations of neutrinos oscillate into each other. The implication of

flavour changing is that neutrinos have mass. Given that neutrinos are the second most

abundant particles in the Universe, massive neutrinos could have considerable impact

on the energy density of the early Universe. This analysis considers the case of three

neutrinos of degenerate mass, such that Ωνh
2 = 3mν/94.0 eV. This assumption is well

justified given the small square mass difference measured by oscillation experiments (at
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Figure 7.7: Marginalized one-dimensional
distributions for the amplitude ratio At/As

for the baseline model modification which al-
lows tensor modes. Weak priors imposed are
those outlined in Table 7.2. the weak prior
0 < At/As < 20 is imposed to the tensor
contribution. From CMB data alone (CM-
Ball+B03) an upper limit (95% confidence)
on the amplitude ratio of At/As < 0.71. For
these models however, H0 is only poorly con-
strained (see text). Addition of the LSS data
reduces this limit to At/As < 0.36.

Figure 7.8: Marginalized one-dimensional
distributions for mν for the baseline model
which allows massive neutrinos (3 species of
degenerate mass). Weak priors imposed are
those outlined in Table 7.2. The massive
neutrino contribution is parameterized as a
fraction of the dark matter energy density,
fν = Ωνh

2/ΩDMh2. From CMB data alone
(CMBall+B03) an upper limit (95% confi-
dence) on the neutrino mass of mν < 1.0 eV.
Adding the LSS data reduces this limit to
mν < 0.40 eV, without any bg constraint, and
to mν < 0.16 eV, when bg = 1.0±0.10 is used.
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most δm2
ν ∼ 10−3 eV, [2]). The massive neutrino contribution is parameterized as a

fraction of the dark matter energy density, fν = Ωνh
2/ΩDMh

2 = 1 − ΩCDMh
2/ΩDMh

2.

Results for the combined data sets are given in Table 7.5. From CMB data alone the

upper limit on the neutrino fraction is fν < 0.21 (95% confidence limit). This translates

to an upper limit on the neutrino mass of mν < 1.0 eV or Ωνh
2 < 0.033. This limit is

more stringent than the 3 eV upper limit on the electron neutrino mass determined from

tritium beta decay experiments and recommended in the Review of Particle Physics [25].

Including the LSS data (flat b2g prior) pushes this limit down considerably to fν < 0.093

(95% confidence) and limits the neutrino mass to mν < 0.40 eV. This result is somewhat

larger than that found in [79]. The addition of more and more small scale CMB data

drives the limit up as is evident in Figure 7.8. When bg = 1.0 ± 0.10 is used, the

neutrino fraction upper limit is reduced to fν < 0.041 (95% confidence), corresponding

to a neutrino mass limit of mν < 0.16 eV. This neutrino mass limit is in good agreement

with the strong limit (mν < 0.18 eV) obtained by [76], who included the bias constraint

and the SDSS and WMAP data. In their analysis of bg they found σ8 = 0.85+0.07
−0.06, with

bg = 1.02+0.08
−0.08. This compares with the values we obtain: σ8 = 0.85±0.04 with δbg = 0.10

and σ8 = 0.73+0.08
−0.07 with δbg = ∞.

Dark Energy

The standard model predicts (and CMB observations strongly support) a universe which

is nearly flat, implying a total energy density approaching critical. The total matter

density however, comprises only one third of the total energy density. The prevailing

energy density component comes from some form of dark energy which up to now has

been assumed to take the form of a vacuum density or cosmological constant, Λ, with

equation of state described by w = p/ρ = −1, where p and ρ are the dark energy pressure

and density respectively. In this section the possibility that the dark energy component

is a rolling scalar field or quintessence (see for example [69] or [40]) is considered, allowing
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the effective constant equation of state parameter w to differ from −1. The parameter

w is treated as a redshift-independent phenomenological factor and it is allowed to vary

with a uniform prior over the range −4 to 0. The cases with w restricted to lie in the

range −1 to 0 was also considered and similar limits were found. To be self-consistent,

perturbations in the dark energy should be allowed for when w is not −1, although

these have a small impact and only at low multipoles. The effective sound speed for the

perturbations is set to unity in camb, the value for a scalar field.

The marginalized one-dimensional distributions for various data combinations are

presented in Figure 7.9. From CMB data alone w = −0.86+0.35
−0.36. The addition of the LSS

data, applying the conservative uniform flat prior on b2g to the galaxy bias factor, yields a

median value of w = −0.64+0.15
−0.18. This result is highly sensitive to the choice of prior on b2g.

The uniform flat prior on b2g gives a relatively high best fit bias value of bg = 1.3. Applying

a more restrictive Gaussian prior to b2g gives: w = −0.94+0.13
−0.16 with bg = 1.0 ± 0.10; and

w = −0.74+0.13
−0.17 with bg = 1.0 ± 0.50. The effect of adding the SNIa data is explored

which significantly improves the constraint on w yielding w = −0.94+0.093
−0.097 with the flat

prior on b2g. Results for the CMBall+B03 data set and the CMBall+B03+LSS+SNIa

data set are given in Table 7.5.

Figure 7.10 illustrates the degeneracy in the Ωm − w plane that cannot be broken

by CMB data alone and is only weakly broken with the addition of the LSS data (flat

prior on b2g). Application of a more restrictive Gaussian prior to b2g for the LSS data or

addition of the SNIa data breaks the degeneracy.

7.4 Sub-dominant Isocurvature Model

So far, it has been assumed that in the early radiation dominated era the matter and

radiation densities are all identically perturbed, giving an overall total density and hence

curvature perturbation. This is not, however, the only possibility. Isocurvature modes
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Figure 7.9: Marginalized one-dimensional
distributions for the dark matter equation of
state parameter w. Weak priors imposed on
the base parameters are those outlined in Ta-
ble 7.2. The prior −4 < w < 0 is imposed.
The † denotes the application of a Gaussian
prior to b2

g (with bg = 1 ± 10%). The nomi-
nal flat uniform prior on b2

g yields a slightly
higher median value for w, driven by higher
values of bg. Adding the SNIa data however,
reduced the median value to −0.94+0.093

−0.097.

Figure 7.10: Constraints on w versus Ωm for
a flat ΛCDM model that allows the dark en-
ergy equation of state parameter, w, to differ
from -1. Inner contours represent 68% like-
lihood regions and outer contours 95% like-
lihood regions. A more stringent Gaussian
b2
g prior (with bg = 1 ± 10%) or the addition

of SNIa data is required to break the strong
geometric degeneracy.
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Base+Running Index Base+Curvature

CMBall CMBall CMBall CMBall
+B03 +LSS+B03 +B03 +LSS+B03

Ωbh
2 0.0237+0.0020

−0.0019 0.0218+0.0010
−0.0009 0.0227+0.0014

−0.0009 0.0226+0.0010
−0.0009

Ωch2 0.102+0.017
−0.011 0.125+0.007

−0.007 0.108+0.009
−0.013 0.111+0.008

−0.008

θ 1.048+0.005
−0.005 1.044+0.004

−0.004 1.044+0.005
−0.004 1.044+0.004

−0.004

τ 0.33+0.11
−0.16 0.145+0.031

−0.030 0.149+0.115
−0.064 0.128+0.032

−0.118

ns 0.96+0.05
−0.06 0.90+0.04

−0.04 0.96+0.05
−0.02 0.95+0.03

−0.02

ln[1010As] 3.5+0.2
−0.3 3.2+0.1

−0.1 3.2+0.2
−0.1 3.1+0.1

−0.1

ΩΛ 0.80+0.05
−0.09 0.67+0.04

−0.04 0.68+0.11
−0.15 0.67+0.04

−0.05

Age(Gyr) 13.3+0.4
−0.4 13.7+0.2

−0.2 14.9+1.3
−1.3 14.7+0.7

−0.6

Ωm 0.20+0.09
−0.05 0.33+0.04

−0.04 0.35+0.19
−0.13 0.35+0.06

−0.05

σ8 0.91+0.07
−0.07 0.88+0.07

−0.05 0.81+0.06
−0.05 0.81+0.06

−0.05

zre 26.2+4.1
−8.0 16.8+5.0

−5.0 16.0+6.3
−4.9 14.5+4.9

−4.5

H0 78.7+11.3
−9.3 66.7+1.5

−1.4 61.3+14.3
−16.3 61.8+2.3

−2.3

nrun −0.071+0.035
−0.037 −0.050+0.026

−0.027 - -

Ωk - - −0.030+0.026
−0.046 −0.024+0.014

−0.019

Base+Tensor Modes Base+Massive Neutrinos

CMBall CMBall CMBall CMBall
+B03 +LSS+B03 +B03 +LSS+B03

Ωbh
2 0.0246+0.0013

−0.0013 0.0232+0.0010
−0.0009 0.0224+0.0016

−0.0011 0.0224+0.0009
−0.0008

Ωch2 0.0945+0.0102
−0.0074 0.117+0.006

−0.006 0.121+0.013
−0.015 0.125+0.008

−0.007

θ 1.048+0.004
−0.005 1.046+0.004

−0.004 1.046+0.005
−0.005 1.045+0.004

−0.004

τ 0.158+0.076
−0.066 0.0991+0.0542

−0.0438 0.145+0.114
−0.069 0.103+0.054

−0.042

ns 1.02+0.03
−0.04 0.97+0.03

−0.02 0.94+0.05
−0.03 0.94+0.02

−0.02

ln[1010As] 3.1+0.1
−0.1 3.1+0.1

−0.1 3.1+0.2
−0.1 3.1+0.1

−0.1

ΩΛ 0.83+0.03
−0.04 0.72+0.03

−0.03 0.64+0.12
−0.11 0.65+0.05

−0.06

Age(Gyr) 13.2+0.3
−0.2 13.5+0.2

−0.2 14.2+0.3
−0.5 13.9+0.2

−0.2

Ωm 0.173+0.044
−0.026 0.28+0.03

−0.03 0.36+0.11
−0.12 0.35+0.06

−0.05

σ8 0.77+0.07
−0.07 0.84+0.05

−0.05 0.58+0.15
−0.11 0.73+0.08

−0.07

zre 15.4+4.3
−4.6 12.2+4.0

−4.0 16.3+6.4
−5.6 13.0+4.1

−3.9

H0 > 73.2 71.2+3.1
−2.7

63.1+9.9
−5.6

64.9+3.8
−3.9

At/As < 0.71 < 0.36 - -
fν - - < 0.21 < 0.09

Base+w Baseline

CMBall CMBall CMBall CMBall
+B03 +LSS+B03+SNIa +B03 +LSS+B03

Ωbh
2 0.0232+0.0015

−0.0011 0.0228+0.0009
−0.0009 0.0231+0.0014

−0.0010 0.0226+0.0009
−0.0008

Ωch2 0.106+0.010
−0.011 0.117+0.007

−0.008 0.106+0.010
−0.010 0.120+0.005

−0.005

θ 1.046+0.005
−0.004 1.045+0.004

−0.004 1.045+0.004
−0.004 1.045+0.004

−0.004

τ 0.150+0.089
−0.066 0.110+0.061

−0.047 0.157+0.103
−0.068 0.101+0.051

−0.044

ns 0.97+0.05
−0.03 0.96+0.03

−0.02 0.97+0.05
−0.03 0.95+0.02

−0.02

ln[1010As] 3.1+0.2
−0.1 3.1+0.1

−0.1 3.2+0.2
−0.1 3.1+0.1

−0.1

ΩΛ 0.74+0.08
−0.13 0.70+0.02

−0.02 0.77+0.05
−0.05 0.71+0.03

−0.03

Age(Gyr) 13.6+0.4
−0.3 13.6+0.2

−0.2 13.5+0.2
−0.3 13.6+0.2

−0.2

Ωm 0.26+0.13
−0.08 0.30+0.02

−0.02 0.23+0.05
−0.05 0.29+0.03

−0.03

σ8 0.77+0.14
−0.15 0.82+0.06

−0.06 0.83+0.06
−0.06 0.84+0.05

−0.05

zre 16.0+5.0
−5.0 13.3+4.3

−4.2 16.4+5.4
−5.0 12.6+3.9

−4.0

H0 69.9+13.2
−12.8 68.5+2.1

−2.0 75.0+6.4
−4.2 69.5+2.5

−2.3

w −0.86+0.35
−0.36 −0.94+0.093

−0.097 - -

Table 7.5: Marginalized parameter constraints for five modifications of the baseline
model. Parameter uncertainties represent the 68% confidence interval. For the case of
upper or lower bounds 95% confidence limits are quoted. The flat weak priors imposed on
the base 6 parameters are as outlined in Table 7.2. One parameter is added in turn to the
base set and the following priors are imposed on each: running index, −0.3 < nrun < 0.3;
curvature, −0.3 < Ωk < 0.3 ; amplitude ratio, 0 < At/As < 20; neutrino fraction of dark
matter, 0 < fν < 1; and dark energy equation of state, −4 < w < 0. The CMBall data
set is as given in Table 7.3. The LSS data consists of the matter power spectra from the
2dFGRS and SDSS redshift surveys. The galaxy bias factor bg is marginalized assuming
a uniform flat prior in b2g. For the Base + w case only both the LSS and SNIa data are
added.
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describe the other linear combinations of matter and radiation perturbations that do not

initially contribute a curvature perturbation. Almost any measured TT power spectrum

can be fit well by using combinations of initial perturbations, for example by adding

structure to the primordial power spectrum, and/or by adding isocurvature modes. De-

termination of the basic cosmic parameters suffers with addition of these highly correlated

extra degrees of freedom. Degeneracies may be broken by the addition of polarization

data. In particular the temperature and polarization power spectra for isocurvature

modes have the peaks out of phase with those from adiabatic modes (see e.g., [7], [38]).

A mix of isocurvature and adiabatic modes can give acceptable fits to the CMB tempera-

ture power spectra (e.g., [15, 49]), and the polarization data may be added to distinguish

among these more complex models.

To illustrate the constraints that can be determined from the current CMB data, a

simple hybrid case is considered here consisting of the basic adiabatic mode model with

constant spectral index, a single cold dark matter (CDM) isocurvature mode with its own

constant primordial spectral index niso, with no correlation between the two. This adds

another two parameters to the basic six, niso and an amplitude ratio R2 ≡ (Aiso/As).

The isocurvature perturbations are assumed to be Gaussian-distributed as was done for

the adiabatic modes.

Rather than using niso as a basic parameter, two amplitude ratios are used for the

two parameters that characterize the CDM isocurvature mode, following a suggestion of

[49]:

R2 ≡ Piso(k2)/Ps(k2) , k2 = 0.05Mpc−1, (7.5)

R1 ≡ Piso(k1)/Ps(k1), k1 = 0.005Mpc−1 .

Here Ps(k) is the power in the primordial curvature perturbation and Piso(k) is the power

in the primordial CDM-photon entropy perturbation. The k2 scale corresponds to ℓ ∼ 700
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and k1 to ℓ ∼ 70. A uniform prior probability is adopted over the range 0 to 20 for R1,

and over 0 to 100 for R2. The isocurvature spectral index niso, defined by Piso(k) ∝ kniso ,

is now a derived parameter, expressible in terms of R1, R2 and the adiabatic spectral

index ns, defined by Ps(k) ∝ kns−1,

niso = ns − 1 + ln(R2/R1)/ ln(k2/k1) . (7.6)

Two cases are explored. In the first both amplitude ratios are allowed to vary. In the

second case, the isocurvature spectral index is fixed to niso = 3. This is the deemed the

“isocurvature seed” white noise spectrum with no spatial correlation.

Results are shown in Table 7.6 for the CMBall+B03+HST data combination. Aside

from the more stringent HST data prior on H0, all priors on the 6 base parameters are as

outlined in Table 7.2. Although results indicate that there is no evidence for the presence

of an isocurvature mode, the upper limits still allow for a sub-dominant component.

The limits shown in Table 7.6 demonstrate that the large scale R1, dominated by the

WMAP data, is much better constrained at < 0.3 than the small scale R2 < 2.3, which

B03 probes. This translates into a preference for steeper niso than the scale invariant

value. Since for neither is there an indication of a non-zero value, just upper limits, the

results are sensitive to the prior probabilities assign to them. The choice of uniform prior

for R1 and R2 is conservative in that the upper limits decrease with other choices, e.g.,

one uniform in ln(Ri) (a non-informative prior), or one uniform in niso and R2. The

conservative choice actually downgrades the probability of steep niso. (The B03pol data

by itself only limits R1 < 17 and R2 < 22; the full B03 data gives R1 < 1.8 and R2 < 5.3.)

The strongest constraints come from the low ℓ part of the spectrum. However, spectra

that are significantly steeper than inflation-motivated nearly-scale-invariant ones are still

allowed by the data. To focus attention on the role played by the new, high ℓ B03 results,

niso is now fixed at 3, the white noise ‘seed’ spectrum, the limiting case in which the
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isocurvature perturbations when created were uncorrelated spatially. The large angular

scales are highly suppressed and the isocurvature peaks and troughs emerge looking

somewhat like an ℓ-shifted version of the adiabatic spectrum. The two spectra then test

at what level interleaved isocurvature peaks are allowed by the CMB data. Results are

shown in Table 7.6. To relate the R2 < 3.0 limit to a more intuitive expression of what

the CMBall+B03+HST data set data allows, note that over a bandpower in ℓ from 75

to 1400, CTT (iso)
B /CTT (s)

B ∼ (0.005)R2, hence the upper limit corresponds to an allowed

CMB contamination of this sub-dominant component of TT of only a few percent. Over

a bandpower in ℓ from 150 to 1000 the ratio CEE(iso)
B /CEE(s)

B ∼ (0.008)R2, for the allowed

EE isocurvature bandpower contamination. B03pol gives R2 < 58. The full B03 data set

including TT gives R2 < 9.56.

The niso = 3, 2 illustration allows one to conclude that even with the errors on the

EE and TE data, there is evidence against the isocurvature shifted pattern over the

adiabatic pattern and only restricted room for an interleaved peak pattern, at a level

below 50%. This test differs from the adiabatic-only peak/trough pattern shift using

B03pol Fig.7.3 since there are no interleaved peaks and troughs in that case. Examination

of the camb models obtained from the marginalized constraints in Table 7.6 reveals

that the parameters chosen by CosmoMC adjust to make the adiabatic Cs
ℓ pattern

compensate for the isocurvature Ciso
ℓ contamination.

6The niso = 2 case mimics even more the peak/trough patterns in Cℓ except for the shift, so that
case was tested as well. CMBall+B03+HST gives R2 < 2.7, B03 alone, but with TT, gives R2 < 6.8
and B03pol gives R2 < 41. Translation to the allowed contamination is done with the bandpower ratios

CTT (iso)
B /CTT (s)

B ∼ (0.007)R2, CEE(iso)
B /CEE(s)

B ∼ (0.009)R2.
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Baseline Adiabatic + Iso Adiabatic + White Iso
CMBall CMBall CMBall

+B03+HST +B03+HST +B03+HST

Ωbh
2 0.0229+0.0011

−0.0009 0.0246+0.0016
−0.0013 0.0234+0.0013

−0.0010

Ωch2 0.108+0.008
−0.009 0.103+0.009

−0.009 0.107+0.008
−0.009

θ 1.045+0.004
−0.004 1.051+0.006

−0.005 1.046+0.005
−0.004

τ 0.142+0.077
−0.058 0.156+0.078

−0.062 0.149+0.079
−0.063

ns 0.96+0.03
−0.02 1.00+0.05

−0.04 0.96+0.03
−0.02

R1 − < 0.28 −
R2 − < 2.3 < 3.0

niso − 0.99+0.63
−0.46 3.0(fixed)

ln[1010As] 3.1+0.2
−0.1 3.1+0.1

−0.1 3.1+0.2
−0.1

ΩΛ 0.76+0.04
−0.04 0.80+0.04

−0.04 0.77+0.04
−0.04

Age(Gyr) 13.5+0.2
−0.2 13.2+0.3

−0.3 13.4+0.2
−0.2

Ωm 0.24+0.04
−0.04 0.20+0.04

−0.04 0.23+0.04
−0.04

zre 15.4+4.7
−4.5 15.5+4.4

−4.4 15.7+4.7
−4.8

H0 73.9+4.5
−3.5 79.8+6.1

−5.0 75.5+4.8
−3.8

Table 7.6: Marginalized parameter constraints for a model which includes both (domi-
nant) adiabatic and (sub-dominant) isocurvature modes. Parameter uncertainties repre-
sent the 68% confidence interval. Upper bounds are 95% confidence limits. The flat weak
priors are imposed on the base 6 parameters are as outlined in Table 7.2. The CMBall
data set is defined in Table 7.3. The baseline model result is included (with the more
stringent HST prior) for comparison. Two parameterizations for the isocurvature model
are considered. For the first (column two) two parameters are added to the basic six:
R2 ≡ Piso(k2)/Ps(k2), with pivot scale k2 = 0.05Mpc−1; and R1 ≡ Piso(k1)/Ps(k1) with
k1 = 0.005Mpc−1. The priors 0 < R1 < 20 and 0 < R2 < 100 are imposed. For this
case the isocurvature spectral index, niso, is a derived parameter. Also considered is the
“white isocurvature” case (column three) where niso = 3 is fixed and the amplitude ratio
R2 ≡ (Aiso/As) is allowed to lie anywhere between 0 and 100.
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Conclusions

The B03 temperature angular power spectrum is the most precise intermediate scale

measurement of CMB temperature anisotropy to date. The polarization power spectrum

represents a ∼ 5σ detection in the ℓ = 100 to ℓ = 1000 multipole range. The success

of the new PSB technology used in B03 to measure the CMB polarization signal is a

crucial step toward ensuring the success of the High Frequency Instrument on the Planck

satellite.

While the polarization data is not yet at the level of accuracy of the intensity data,

cross checks of best fit parameters from the B03pol data and B03TT data indicate con-

sistent results. The consistency of the shape parameter θ determined from B03pol and

from B03TT demonstrates that the peak and trough positions forecast by the spectra

are in robust agreement. The B03 data set does well at constraining the cosmological

parameters of the standard ΛCDM model. The results are in good agreement with those

derived from other CMB experiments, as is evident in Table 7.4. The parameter con-

straints derived from the B03 data set in combination with the WMAP data are highly

competitive with those from the CMBall data set.

In Chapter 2 the following questions were posed: does the current data prefer the

spectral index, ns to vary with scale?; to what degree is a non-flat geometry is allowed?;

129
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what are the upper limits on tensor modes?; is a massive neutrino dark matter component

allowed?; and finally does the data allow the dark energy to take on some form other

than a cosmological constant? These questions are addressed in Chapter 7. The resulting

constraints from the CMBall+LSS data set, representing the most up-to-date parameter

analysis, are: slight evidence (both < 2σ) for a running index and curvature; an upper

(95% confidence) limit on the tensor-to-scalar ratio of At/As < 0.36; an upper (95%

confidence) limit on the neutrino mass of mν < 0.40 eV mν < 0.4eV (mν < 1.0eV from

CMB data alone); and, after adding the supernova (SNIa) data, a constraint on the dark

energy equation of state of w = −0.94+0.093
−0.097 (68% confidence interval). In all cases, the

data prefers values for each of the non-standard parameters which are very close to the

fixed values for the baseline model case. In other words the answer to–what happens

when a new parameter is added?–is, not much. While the alternate models provide

sufficient fits, there is little motivation for adding new parameters to the baseline model.

Isocurvature modes are beginning to be constrained by the current CMB polarization

data and the upper limits and phenomenological discussion represent a good starting

point for future analysis of these more complex models. The CMB polarization data is

emerging but is not yet driving parameter determination. In the analysis of the CMBall

+ HST constraints to a model which includes a CDM isocurvature mixture, the resulting

allowed isocurvature CMB bandpower contamination is only a few percent.

In closing, obtaining the final E-mode polarization spectrum was extremely challeng-

ing. The polarization signal is buried in the experimental noise and only after very

careful treatment of noise cross-correlations was the EE spectrum realized. Of course,

in addition to noise considerations, a good understanding of telescope systematics and

solid pointing reconstruction are a necessity to obtain any of the CMB angular power

spectra. While foregrounds at B03 frequencies and angular scale have been shown to be

insignificant for this data set, foregrounds will certainly play a major role in future CMB

experiments; when the amplitude of the polarized foreground signal may compete with
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the amplitude of the CMB polarization signal. If the polarization data is to be used to

independently constrain cosmological models, then all of these factors must be carefully

considered. In addition the measurement of the B-mode polarization which is predicted

to be at least an order of magnitude lower than the E-mode signal will be extremely

sensitive to systematics, experimental beam, foregrounds and noise. At the moment, the

standard adiabatic inflationary model is a good fit to the experimental data. However

alternate models are not completely ruled out and fit the data well. The measurement

of B-mode polarization would be a direct probe of the initial conditions described by

Inflation.
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