z_xcotrin manual

Page 1/71

zl4xcotrin.f
========

A set of subroutines to interpolate the OPAL opacity tables in the six input variables Z, X, exC, exO, T6, and R (where R = RHO / T6^3). Optionally, this can be extended by allowing interpolation in opacities for compositions where the C, N, O, and Ne in the metallicity Z have been interconverted by nuclear burning, and/or the OPAL opacity tables can be extended by molecular opacities (at low temperatures) and/or conductive opacities (at high densities).	
Send any questions/comments/bug-reports to boothroy@cita.utoronto.ca	
TABLE OF CONTENTS:	
Introduction	4
Update history	4
<pre>OPAL opacity tables used by these subroutines Type 2 OPAL opacity tables - including enhanced C & O Type 1 OPAL opacity tables - only as a function of Z, X, T, R Additional (OPTIONAL) non-OPAL opacity tables Conductive opacities (for high densities) Ferguson et al. (2005) low-temperature molecular opacity tables [(OLD) Alexander & Ferguson (1994) low-temperature molecular opacities []</pre>	6 7 7 9 10 10
List of all subroutines contained in the file	11
The subroutines that interpolate among the OPAL opacities OPAC and OPAL [basic 6-variable interpolation: Z, X, exC, exO, T6, R] OPAL_X_CNO_FU [metal abundance array is used to interpolate in CNO/Z too] OPAL_F_CNOU [allows the user to specify the CNO/Z interpolation factors] ASK_LAST_XCNOU [returns inputs actually used for the opacity calculation] ASK_LAST_OPAC [returns the calculated opacity, derivatives, edge factors] ASK_OPAL_Z_MIX [returns the metallicity-makeup of the specified stored mix] ASK_OPAL_MIX_WT [returns atomic weights/numbers of the metallicity-makeup]	14 14 16 17 18 18 18
The subroutines that read in the OPAL opacities READ_OPAL_DUMP [read in a binary opacity dumpfile (this is fast)] DUMP_OPAL_OPAC [create a binary opacity dumpfile for future use] SET_OPAL_DIR [specify the directory containing OPAL opacity files] SET_OPAL_LIST_LEVEL [specify if opacity-file-names printed when read in] SET_OPAL_LIST_UNIT [specify Fortran unit for opacity-file-name printout] READ_BASIC_OPAL_OPAC [read only the basic OPAL opacities (from ASCII files)] READ_EXTENDED_OPAC [also allow reading of opacity files for extensions]	19 19 20 20 20 20 21
SUBROUTINES TO CONTROL DETAILS: MOST USERS WILL NOT NEED ANYTHING BELOW	24
Other subroutines that interpolate among the OPAL or other opacitiesOPAL_K_ONLY[interpolate ONLY the OPAL opacity tables]KAPFERG[interpolate ONLY the Ferguson 2005 molecular opacities]CACHEFERG[cache a set of Z,X-interpolated Ferguson opacities]KAP_MOL[interpolate ONLY molecular opacities, of EITHER type]KAPALEX[interpolate ONLY the Alexander 1994 molecular opacities]ASK_LAST_ALEX_EDGE[returns detailed molecular-opacity edge factors]SET_ALEX_USE[sets flag to control when/how Alexander tables are used]ASK_ALEX_USE[returns the above flag, as well as other flag values]KAP_COND[interpolate ONLY the Potekhin 2006 conductive opacities]	24 24 25 25 25 26 27 28

Sep 06, 07 19:03	z_xcotrin manual	Page 2/71
SET_COND_USE [ASK_COND_USE [sets flags controlling the use of conductive opa returns the current values of the above flags]	cities] 29 29
Other subroutines that SET_ALEX_FILE SET_FERG_USER ASK_FERG_USER SET_FERG_ACC ASK_FERG_ACC READ_BEST_MOL READFERG ADDFILE_FERG READ_ADD_FERG READALEX SET_COND_FILE SET_COND_INFLAGS ASK_COND_INFLAGS READCOND SET_OFE_FILE SET_ALTMIX_OFE_FILE SET_CNO_FILES SET_CNO_FILES SET_CNO_EXT SET_METEOR_MIX_FILE ASK_OPAL_FILE_USED ASK_KHIGHZ_OFE READZEXCO READCO and READEXCO	may be used when reading in opacities [specify directory/filename for molecular opaci [specify a user-defined Ferguson 2005 molecular [returns the above user-defined Ferguson table [specify accuracy level for Ferguson 2005 opaci [returns the above Ferguson 2005 accuracy level [read in molecular opacities that best match OP [read in the default Ferguson 2005 opacity tabl [read in Ferguson 2005 opacity from specified f [read in specified type of Ferguson 2005 opacit [read in the Alexander 1994 molecular opacity t [specify directory/filename for conductive opac [set flags controlling reading of conductive opac [set flags controlling reading of conductive opac [set flags controlling reading of conductive opac [set flags a non-default OPAL file with [O/Fe] > [specify a non-default alternate [O/Fe] > 0.0 f [specify a non-default alternate [O/Fe] > 0.0 f [specify anon-default alternate OPAL opacity f [specify filename-extensions for CNO/Z files] [specify a file from which to read the meteorit [returns the name of the specified opacity file [return flag KHIGHZ and [O/Fe] value OFEBRACK u [read in the OPAL opacity tables: general case] [read in the OPAL opacity tables at a single Z	30 ties] 30 table] 30 name] 30 ties] 30] 31 AL case] 31 es] 31 iles] 31 y] 32 ables] 32 ities] 32 acities] 32 acities] 32 acities] 33
Subroutines used to con SET_LOGT_SW_FERG ASK_LOGT_SW_FERG SET_LOGT_SW_ALEX ASK_LOGT_SW_ALEX SET_ALEX_DO_RHOSW SET_LOGRHO_SW_ALEX ASK_LOGRHO_SW_ALEX ASK_LOGT_RHOSW_ALEX	trol the switchover from OPAL to molecular opaci [set logT boundaries of Ferguson 2005 switchover [returns the above Ferguson logT boundaries] [set logT boundaries of Alexander 1994 switchove [returns the above Alexander logT boundaries] [set flag to say whether Alexander has a RHO swi [set logRHO boundaries of Alexander switchover r [returns the above Alexander logRHO boundaries] [set logT boundaries of Alexander RHO switchover [returns above Alexander logT boundaries]	ties 39 region] 40 40 r] 40 40 tchover] 40 egion] 41] 41] 41 -switch] 41
The subroutines that co SET_XHI [sets a flag ASK_XHI [returns the	ntrol the X-interpolation accuracy to control the use of more-accurate X-interpola current value of the above flag]	41 tion] 41 42
The subroutines that co SET_CNO_INTERP [sets ASK_CNO_INTERP [retu	ntrol the CNO and/or user-interpolation flags to control use of CNO/Z interpolation] rns the current values of the above flags, plus	42 42 others] 42
The subroutines that co SET_ERR_CHECK [set a ASK_ERR_CHECK [retur	ntrol the level of error-checking flag to control behavior under some error condi ns the current value of the above flag]	43 tions] 43 43
The subroutines that co RESET_Z_LIMITS [chan ASK_Z_LIMITS [retu ASK_Z_USE [retu ASK_Z_ARRAY [retu	ntrol matrix Z-edge handling ge the range in Z that is considered to be O.K.] rns the extreme allowed number and range of Z-va rns the range in Z that is considered to be O.K. rns the array of stored Z-values for OPAL opacit	43 43 lues] 44] 44 ies] 44
The subroutines that co SET_LOGT6_LIMITS [ch SET_LOGR_LIMITS [ch ASK_LOGT6_LIMITS [re ASK_LOGR_LIMITS [re	ntrol matrix T,R-edge handling ange the range in logT6 that is considered to be ange the range in logR that is considered to be turns the range in logT6 that is considered to b turns the range in logR that is considered to be	

Sep 06	6, 07	19:03	
--------	-------	-------	--

z_xcotrin manual

Page 3/71

The subroutines that control how smoothing is handled SET_SMOOTH [sets flags controlling the smoothing of opacities on input] ASK_SMOOTH [returns the current values of the above flags]	46 46 46
Details of how the opacity interpolation is performed by OPAC or OPAL	46
Details of the makeup of Z (relative metal abundances), for various mixes "GN93" mix (Grevesse & Noels 1993), with corresponding [O/Fe] > 0 mixes "GS98" mix (Grevesse & Sauval 1998), with [O/Fe] > 0 mixes "AGS04" mix (Asplund, Grevesse & Sauval 2004), with [O/Fe] > 0 mixes The Meteoritic abundances of H, He, Ne, Ar (from AGS04) Some CNO-increased AGS04 mixes (motivated by helioseismology) The CNO-varied mixes, used for interpolation in CNO abundances Some Ne-increased AGS04 mixes (motivated by helioseismology) Mean OPAL atomic masses (to convert between mass and number fractions)	49 50 51 53 54 57 63
Details of the accuracy of the X-, Z-, and CO-interpolation Some tests of Z-interpolation errors Some tests of X-interpolation errors Z-interpolation errors when one uses linear Z-interpolation (Nzin = 2) Opacity shifts from initial smoothing when opacities are read in Differences in CO-rich opacities from COINTSMO vs. COINTERP	63 63 64 65 67 68 69
Details of the individual OPAL opacity tables and program storage space	70

z_xcotrin manual

Page 4/71

INTRODUCTION AND UPDATE HISTORY

-----Arnold I. Boothroyd: VERSION of SEPTEMBER 7, 2007-----z14xcotrin21.f

(Default version of this program needs 23.9 Mb of matrix storage.)

OPAL 1995: Reference: C.A. Iglesias & F.J. Rogers (1996), ApJ, 464, 943-953

Note OPAL opacities are available at http://www-phys.llnl.gov/Research/OPAL/ This program is from http://www.cita.utoronto.ca/~boothroy/kappa.html

1995 OPAL opacities for arbitrary metallicity Z (in the range 0.0 to 0.1), including C,O-rich opacities. Interpolation in Z can be performed when the opacities are read in and/or when the opacity-calculation routine is called; this choice is under user control. It is possible to obtain opacities at arbitrary values of [O/Fe] by using the non-CO-rich opacity files 'GN93hz' and (one of) 'Alrd96a2', 'C95hz', or 'W95hz' (but this can only be done at the time when the opacities are being read in, not subseqently when the opacity-calculation routine is called). Arbitrary hydrogen abundances and arbitrary amounts of excess carbon and oxygen are always allowed. Uses the 40 OPAL opacity files Gz???.x?? (also checks for earlier names Gx??z*). --ALSO: accurate opacity values can be interpolated as a function of varying relative C, N, O, and Ne abundances (and/or a user-specified element). --ALSO: molecular opacities may be read in and used (at low T). --ALSO: conductive opacities may be read in and used (at high density).

Based on the old OPAL routines xcotrin.f and xcotrinz.f, modified to use the new (1995) opacity tables Gz???x?? and GN93hz --- similar to xcotrin21.f (but with a significantly different interface, as described further below).

*** UPDATED SEPTEMBER 7, 2007: from version of AUGUST 26, 2007: --Added automatic handling of the new alpha-enhanced GS98 molecular opacities that are now available from http://webs.wichita.edu/physics/opacity/

*** UPDATED AUGUST 26, 2007: from version of APRIL 6, 2007: --Fixed a bug so that FZEDGE is now set correctly to 0.0 for Z out-of-range (previous version incorrectly set FZEDGE = 1.0 in such a case, and returned the conductive opacity [if available], rather than a value of 1.0E+35 to indicate that the opacity could not be computed; this bug is now fixed). --Smoother switch-off of non-exC,O-opacity-shifts for 0.2 < exC+exO < 0.3 (this change only affects 0.2 < exC+exO < 0.3 at X > 0.03 [such compositions should seldom actually occur], and even there has almost negligible effect).

*** UPDATED APRIL 6, 2007: from version of MARCH 29, 2007: --Minor modifications, for smoother extrapolation in temperature and density (this will also improve the switchover from OPAL to conductive opacities). --Fixed a bug that caused incorrect CNO-interpolation at X = 0.03 (actually, for 0.029999 < X < 0.030001), yielding errors (usually, small ones) there. --Fixed a bug that could yield an incorrect name for the default [0/Fe] file.

*** UPDATED MARCH 29, 2007: from version of MARCH 24, 2007: --Added updated conductive opacities: from 'Potekhin et al.' (2006).

*** UPDATED MARCH 24, 2007: from version of FEBRUARY 2, 2007: --Simplified quadratic interpolation routines to reduce call overhead. --Added option to print out the names of the opacity files that were read in. --Fixed bug in Hubbard & Lampe conductive opacity interpolation (that had

z_xcotrin manual

been introduced by quadratic-interpolation formula of FEBRUARY 2, 2007).
<pre>*** UPDATED FEBRUARY 2, 2007: from version of DECEMBER 16, 2006: Added support for Ferguson et al. 2005 molecular opacities (essentially, updated versions of the Alexander and Ferguson 1994 molecular opacities). Fixed bug in exC- and exO-interpolation at small helium abundances. Modified quadratic-interpolation formulae to reduce roundoff error.</pre>
<pre>*** UPDATED DECEMBER 16, 2006: from version of NOVEMBER 23, 2006: Allow bzip2 (de)compression of input files (suffix '.bz2') as well as gzip (suffix '.gz') and compress (suffix '.Z').</pre>
*** UPDATED NOVEMBER 23, 2006: from version of SEPTEMBER 21, 2006: Some updates in the comments below, and a minor bug-fix.
<pre>*** UPDATED SEPTEMBER 21, 2006: from versions of SEPTEMBER 6 and 13, 2006: Fixed the (allowed) extension of OPAL opacities using conductive opacities; such extension now works correctly, when specified by the user.</pre>
*** UPDATED SEPTEMBER 6, 2006: from previous version of OCTOBER 20, 2004:
* NOTE that BINARY OPACITY DUMPS of previous versions are INCOMPATIBLE with * * this new version, due to changes in the arrays: any such binary dumps * * MUST BE RECOMPUTED using DUMP_OPAL_OPAC with this new program version. *
 New, simpler subroutines have been added for reading in the opacities. Alexander & Ferguson (1994) molecular opacity routines and storage added, with relevant subroutines to control its use (by default, it is NOT used). Conductive opacity routines added, allowing use of Hubbard & Lampe (1969), & Itoh et al. (1983), Mitake et al. (1984) [by default these are NOT used]. Common block /opalGS98mixes/ revised, to hold the meteoritic Z-mix as well. Minor bug fixed in computation of opacities that require the user-defined (nonCNO-interpolation) file CF_USER. Added new routines: ASK_OPAL_Z_MIX to return abundances of components of the metallicity Z, and a few others involving opacity filename control.
<pre>*** UPDATED OCTOBER 20, 2004: from version of JUNE 30, 2004: Common blocks revised, to reduce the file-size of the compiled program (by refraining from initializing any parts of very large common blocks).</pre>
*** UPDATED JUNE 30, 2004: from version of MARCH 9, 2004: Some redundant variables removed, to avoid compiler warning messages.
<pre>*** UPDATED MARCH 9, 2004: from version of FEBRUARY 1, 2004: Minor bug-fix in subroutine OPAL_X_CNO_FU, to handle more correctly the previously-ignored possibility that N+Ne may have decreased relative to Z (the bug-fix does its best to prevent exC and exO from becoming negative).</pre>
<pre>*** UPDATED FEBRUARY 1, 2004: from version of JANUARY 9, 2004: Added subroutines DUMP_OPAL_OPAC and READ_OPAL_DUMP which allow one to store a set of opacities in unformatted binary form for future re-use (gives a large speed advantage when later one wishes to read opacities with the same inputs, at the cost of some disk space for the opacity dumpfile). Added subroutines ASK_KHIGHZ_OFE and ASK_MAIN_OPAL_FILE. Moved all initializations of common block variables into a BLOCK DATA, as required by some compilers; fixed a few other minor bugs.</pre>
*** UPDATED JANUARY 9, 2004: from version of AUGUST 2, 2003: minor changes: Added subroutines ASK_LAST_OPAC and ASK_LAST_XCNOU (which just return values contained in common blocks /E_OPAL_Z/ and /X_OPAL_Z/, respectively). Fixed subroutine OPAL_X_CNO_FU so that it no longer yields an error if one calls this subroutine OPAL_X_CNO_FU before calling the subroutine READZEXCO. Fixed the places where some compilers objected to the use of the string

z xcotrin manual

Page 6/71

concatenation operator.

_____ _____ *** UPDATED AUGUST 2, 2003: from version of APRL 27, 2001: Add the option of using an alternate set of OPAL files (e.g., 'GS98hz' rather than 'GN93hz') to get opacities appropriate to an updated solar composition (e.g., Grevesse and Sauval 1998) --- note that the files Gz???.x?? need not be updated, as their opacities are shifted to agree with those from the file 'GS98hz' . ALSO, add the option of interpolating the opacities as a function of varying relative C, N, O, and Ne abundances (as well as in the "excess" C and O). ALSO, increase the allowed file-plus-directory name length to 255 characters (rather than 80); this affects common /opdir/ and the alternate OPAL file set, but not common /opalmixes/ (default OPAL files, 8 characters long). Also, maximum allowed T6, R extrapolation is now just over one grid spacing (instead of just under); this latter change should have negligible effect. Also, an approximation used previously when computing the abundances for mixes that are interpolated in [O/Fe] has been replaced by the exact formula (this change should also have little effect: none at all for [O/Fe]=0.0). _____ *** UPDATED APRIL 27, 2001: from version of MARCH 4, 2001: for more accurate X-interpolation at X > 0.1 (with a LARGE improvement in the accuracy as X approaches 1-Z), using the added X-values available in the file GN93hz . Also fixed a minor bug in the CO-interpolation (that could have caused small errors in the interpolated opacity, but only in the seldom-encountered situation of near-maximal CO-enrichment combined with a non-zero hydrogen abundance: X > 0.0 with C+O just less than 1-X-Z). _____ *** UPDATED MARCH 4, 2001: from version of MAY 28, 1999: add the metallicity Z to the list { X, C, O, T6, R } of variables in which the OPAL opacities can be interpolated (rather than being restricted to only a single metallicity, defined when the opacities were read in). This is required if gravitational settling of metals takes place. Also, newly added subroutines allow easier opacity-directory specification, and easier user control of how Z, T, and R edges and extrapolation are handled. Also, the opacity files Gz???x?? and GN93hz are allowed to be in compressed form (they must have suffix .gz if they were compressed using 'gzip', or suffix .Z if they were compressed using 'compress'); any compressed opacity files will be decompressed, read in, and compressed again. _____ _____ _____ Updated MAY 28, 1999: from version of JUNE 26, 1997: to look for the CO-rich opacity file names in the newer format Gz???.x?? before trying the old format Gx??z* . Note that some opacity values in Gz001.x35 Gz004.x70 Gz050.x35 Gz100.x70 differ by roundoff amounts (+/- 0.001 in log10[kappa]) from corresponding older files Gx35z001 Gx70z004 Gx35z05 Gx70z10 ; also, Gz050.x35 and Gz100.x70 each omit a redundant duplicate composition table present in Gx35z05 and Gx70z10 . In all other cases, the newer OPAL files Gz???.x?? are identical to the corresponding older files Gx??z* . ****** ALSO: the name of the common block that returns the opacity values has been changed from common/e/ to common/e_opal_z/ in order to avoid compilation errors when compiling using f2c (Fortran to C conversion). TEMPERATURES AND DENSITIES CONTAINED IN OPAL OPACITY TABLES: The OPAL opacities are tabulated in terms of logT and logR, where $\log R$ = $\log RHO$ – 3 * ($\log T$ – 6) , i.e., R = RHO / T6^3 (with T being temperature in Kelvins and RHO being density in g/cm^3) The "density" and temperature ranges contained in the tables are: logR : -8.0 to 1.0 [at logR = -8.0 (0.5) 1.0, i.e., delta_logRHO = 0.5] logT : 3.75 to 8.70 [at logT = 3.75 (0.05) 6.00 (0.10) 8.10 (0.20) 8.70]

z xcotrin manual

Page 7/71

COMPOSITIONS FOR WHICH OPACITY TABLES ARE AVAILABLE:

Type 2 OPAL Tables - including enhanced C & O (40 files):

These are 40 files of the form Gz???.x?? , where the "z???" part may be any of { "z000", "z001", "z004", "z010", "z020", "z030", "z050", "z100" } and the "x??" part may be any of { "x00", "x03", "x10", "x35", "x70" }. These have 8 metallicities $Z = \{ 0.0, .001, .004, .01, .02, .03, .05, .1 \}$ and 5 hydrogen abundances $X = \{ 0.0, 0.03, 0.1, 0.35, 0.7 \}$; each pair of { X, Z } has up to 60 different compositions with varying amounts of "excess" carbon and oxygen (above that contained in Z), i.e., mixes having exC, exO = { 0.0, .01, .03, .1, .2, .4, .6, 1-X-Z } (such that no mix has X+Z+exC+exO > 1.0). These files allow fairly good interpolated opacities for X < 0.75 and Z < 0.12, with any amount of excess carbon and oxygen. This may suffice if there is not much diffusion (to yield high X values), but these opacities are NOT AT ALL ACCURATE for X > 0.75 (very high hydrogen abundances); opacities at X = 1-Z may be off by up to an order of magnitude (unless corrected by including the Type 1 tables below).

The above files are ALWAYS read in, for one or more Z-values (as determined by your call to one of the opacity-reading subroutines).

Type 1 OPAL Tables - fixed metal distribution (by default, 4 files):

file 'GN93hz' [O/Fe]=0.0: solar composition, Grevesse and Noels (1993) file 'Alrd96a2' [O/Fe]=0.3: alpha enhanced elements, Allard (1996) file 'C95hz' [O/Fe]=0.4: alpha enhanced elements, Chaboyer (1995) file 'W95hz' [O/Fe]=0.5: alpha enhanced elements, Weiss (1995) Each of these 4 files contains 126 compositions: opacities at 13 Z-values $Z = \{0.0, 0.0001, 0.0003, 0.001, 0.002, 0.004, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1\}$ and at 10 X-values $X = \{0.0, 0.1, 0.2, 0.35, 0.5, 0.7, 0.8, 0.9, 0.95, 1-Z\}$; they do NOT have enhanced-C0 ("excess-C,O") compositions.

One or two of these Type 1 files will typically be read in (as determined by your call to one of the opacity-reading subroutines). For non-CO-rich cases this allows slightly improved Z-interpolation (for Z < 0.12) and slightly improved X-interpolation (for 0.03 < X < 0.75); for high hydrogen abundances (X > 0.75), such as may result from diffusion (e.g., helium settling), the accuracy is GREATLY IMPROVED.

NOTE THAT additional Type 1 tables can be computed at the OPAL website, or may be available elsewhere. By default, this program alows for counterparts of the above 4 files with a different composition (e.g., for the Grevesse & Sauval 1998 mix: 'GS98hz', 'GS98hz_OFe.3_Alrd96a2', 'GS98hz_OFe.4_C95', and 'GS98hz_OFe.5_W95', or the more recent Asplund, Grevesse, & Sauval 2004 mix: 'AGS04hz', etc.). This program also allows for the existence of files where C, N, O, and Ne abundances are interconverted (as by nuclear burning: e.g., 'GN93hz.CtoN', 'GN93hz.COtoN', 'GN93hz.CNOtoNe'); such files can be used to enable the program to return accurate opacity values as a function of varying relative C, N, O, and Ne abundances. Some other user-specified element (or set of elements) can also be interpolated (e.g., 'GN93hz.user').

The program can also be set to use 'AGS04hz' etc., instead of the above.

-- They are available for the sake of convenience (to allow extension of the OPAL opacities to lower T and higher R), and some testing has been done to check that the switchover between tables works reasonably, but the USER MUST CHOOSE whether to read in (and use) these extensions or not.

Page 8/71

'Potekhin et al.' (2006) CONDUCTIVE OPACITIES: opacity file 'condall06.d' _____ -- Conductive opacities available: http://www.ioffe.rssi.ru/astro/conduct/ NOTE: as of March 9, 2007: the revised/updated file condall06.d **** * * * * * * * * * * containing conductive opacities is available on the website. * * * * * This should be an improvement over the Hubbard & Lampe (1969) * * * * * plus Itoh (1984) conductive opacities described further below. * * * * * ***** These 'condall06.d' electron conductivities are available in the ranges: -6 < logRHO < 9.75in density RHO, with spacing delta logRHO = 0.25 3 < logT < 9 in temperature T, with spacing delta $\log T = 1/3$ $Zion = \{1, 2, 3, 4, 6, 8, 12, 16, 20, 26, 30, 36, 42, 48, 60\}$ mean nuclear charge ----FROM THE ABOVE WEBPAGE: "The plasma is assumed fully ionized (electron collisions with neutrals are neglected, the ions are assumed pointlike). This model may be still useful for evaluation of conductivities of partially ionized plasmas, if one uses a mean-ion model. Then the ion charge Zion should be replaced by an effective (or average) ion charge Zeff. For nondegenerate plasmas, the results are based on a continuation from the degenerate domain (using Fermi-Dirac averaging) and can be considered as order-of-magnitude estimates. For degenerate plasmas, on the contrary, the results come from the exact theory and should be much more accurate." "Non-magnetic conductivities have been updated 18 July 2006. The updated codes and table have been put at this site 9 September 2007. There are two modifications. 1. The electron-electron (ee) scattering contribution is now included in such a way that both the cases of strongly degenerate and nondegenerate plasmas are recovered accurately. Now the high-T limit of our data matches the numerical tables of Hubbard & Lampe, 1968, ApJS 18, 297 (which remain the most accurate calculations of conductive opacities for astrophysical use in nonmagnetic, nondegenerate, weakly coupled plasma). 2. The ee contribution is updated according to the results by Shternin and Yakovlev (2006)." ----References for the above (non-magnetic) electron thermal conductivities: A. Y. Potekhin, D. A. Baiko, P. Haensel, D. G. Yakovlev (1999), "Transport properties of degenerate electrons in neutron star envelopes and white dwarf cores", Astron. Astrophys. 346, 345 O. Y. Gnedin, D. G. Yakovlev, A. Y. Potekhin (2001), "Thermal relaxation of young neutron stars", Mon. Not. R. Astron. Soc. 324, 725 P. S. Shternin, D. G. Yakovlev (2006), "Electron thermal conductivity owing to collisions between degenerate electrons", Phys. Rev. D 74, 043004 S. Cassisi, A. Y. Potekhin, A. Pietrinferni, M. Catelan, M. Salaris (2007) "Updated electron-conduction opacities: the impact on low-mass stellar models", Astrophys. J., in press [astro-ph/0703011] ----NOTE: the last reference above suggests that the rms ionic charge is the appropriate one for use in plasmas not so dense as to be crystalline, i.e., Zion = (<z^2>)^0.5 = sqrt(SUM_i{ z_i * z_i * n_i } / SUM_i{ n_i }) = sqrt(SUM_i{ z_i * z_i * X_i / A_i } / SUM_i{ X_i / A_i }) where z_i is the ionic charge of element i and n_i is its number density; n_i is proportional to X_i / A_i, the mass fraction over the atomic mass.

[Correctly summing the contributions of different ions in a multicomponent plasma would be "much more complicated", according to the references.] Also: the log of the electron thermal conductivity logCHI (stored in the file condall06.d) converts to the log of the conductive opacity logKAPPA_c via:

```
logKAPPA_c = log( 16 * sigma / 3 ) + 3 * logT - logRHO - logCHI
where
    sigma = the Stefan-Boltzmann constant.
```

z xcotrin manual

- By default, if conductive opacities are read in, then the (OPAL) opacitycalculating subroutines will actually return the overall effective opacity Kappa = 1 / (1 / Kappa_radiative + 1 / Kappa_conductive) This will be allowed to extend the opacities to the highest densities for which valid conductive opacities are available (significantly higher than the upper density limit of the OPAL opacity table, at most temperatures). The above are preferable to the older available conductive opacities: W.B. Hubbard & M. Lampe (1969) ApJS, 163, 297: H&L opacity file 'Condopac' _____ -- In a form usable by these opacity subroutines, this file is available only from http://www.cita.utoronto.ca/~boothroy/kappa.html (the same website as for this file containing the opacity subroutines). This file includes 'H&L' conductive opacities for H, He, and C, for somewhat irregular temperature ranges in the density range $-6 < \log RHO < 6$. When this file is read in, approximate tables for O and Ne are also stored (by adding a constant to the table for C). 'Itoh' (1984) conductive opacities (to supplement the above input file) ______ - By default, the 'H&L' tables are superseded by the later 'Itoh' conductive opacities at high density (where the latter are valid), using formulae from N. Itoh, S. Mitake, H. Iyetomi, & S. Ichimaru (1983), ApJ 273, 774, plus S. Mitake, S. Ichimaru, & N. Itoh (1984), ApJ 277, 375. [The formulae are used to get the combined effects of conductive opacities for H, He, C, O, and Ne, where Ne represents all elements heavier than oxygen.] - "Reasonable" interpolated (and extrapolated) conductive opacity values are computed in regions where neither of the above are valid. J.W. Ferguson et al. (2005) ApJ, 623, 585: (updated) MOLECULAR OPACITY files _____ -- Opacity files available from http://webs.wichita.edu/physics/opacity/ * * * * * * * * * * NOTE that these 2005 molecular opacities should supersede and ***** * * * * * replace those of Alexander & Ferguson (1994) below; the authors ***** * * * * * state that the accuracy should be significantly better. The Ferguson et al. (2005) molecular opacity table ranges are: 2.7 < logT < 4.5 in temperature T [one table may be missing logT < 2.8] at logT = 4.5 (-0.05) 3.5 (-0.01) 2.9 (-0.05) 2.7 $-8.0 < \log R < 1.0$ in R = RHO / T6³ [this is same range as OPAL tables] at $\log R = -8.0 (0.5) 1.0$ $Z = \{ 0.0 \ 0.00001 \ 0.00003 \ 0.0001 \ 0.0003 \ 0.001 \ 0.002 \ 0.004 \ 0.01 \ 0.02 \ 0.03 \}$ $0.04 \ 0.05 \ 0.06 \ 0.08 \ 0.1 \}$ $X = \{ 0.0 \ 0.1 \ 0.2 \ 0.35 \ 0.5 \ 0.7 \ 0.8 \ 0.9 \ 0.95 \ 1-Z \}$ Each of the 155 (X,Z) cases has its own ASCII file of opacity values, with the file name reflecting the values of X and Z (as per examples below). Several different mixes are available, each with its set of 155 (X,Z) cases (contained in a gzip-compressed tar archive on the above web page); for most of these, compositions are also specified: --- GN93 mix (Grevesse & Noels 1993): tar archive f05.g93.tar.gz contains g0.0.tron g0.00001.tron ... g99999.00001.tron g10.0.tron --- GS98 mix (Grevesse & Sauval 1998): f05.gs98.tar.gz contains g98.0.0.tron g98.0.00001.tron ... g98.99999.00001.tron g98.10.0.tron --- L03 mix (Lodders 2003): f05.103.tar.gz contains 103.0.0.tron 103.0.00001.tron ... 103.99999.00001.tron 103.10.0.tron --- AGS04 mix (Asplund, Grevesse & Sauval 2004): f05.ags04.tar.gz contains ags04.0.0.tron ags04.0.00001.tron ... ags04.99999.00001.tron ags04.one.tron Compositions are listed on the website for these mixes. There are also two

z xcotrin manual

Page 10/71

mixes for which opacities are available but the composition is not listed: --- S92 mix (Seaton 1992) -- composition unspecified, but mix is presumably very similar to GN93 (opacities are very similar): f05.s92.tar.gz contains s92.0.0.tron s92.0.00001.tron ... s92.99999.00001.tron s92.one.tron --- S92AE mix (alpha-element-enhanced version of S92) -- composition not specified, except for [alpha/Fe] = [O/Fe] = 0.3: f05.s92ae.tar.gz contains s92ae.0.0.tron s92ae.0.00001.tron ... s92ae.99999.00001.tron s92ae.one.tron --- alpha-enhanced mixes for Grevesse & Sauval 1998 (the compositions for these are listed on the website): --- GS98-.2 with [alpha/Fe] = [0/Fe] = -0.2: f05.gs98-.2.tar.gz contains gs98-.2.0.0.tron ... gs98-.2.99999.00001.tron gs98-.2.one.tron --- GS98+.2 with [alpha/Fe] = [O/Fe] = 0.2: f05.gs98+.2.tar.gz contains gs98+.2.0.0.tron ... gs98+.2.99999.00001.tron gs98+.2.one.tron --- GS98+.4 with [alpha/Fe] = [0/Fe] = 0.4: f05.gs98+.4.tar.gz contains gs98+.4.0.0.tron ... gs98+.4.99999.00001.tron gs98+.4.one.tron - GS98+.6 with [alpha/Fe] = [0/Fe] = 0.6: f05.gs98+.6.tar.gz contains gs98+.6.0.0.tron ... gs98+.6.99999.00001.tron gs98+.6.one.tron --- GS98+.8 with [alpha/Fe] = [O/Fe] = 0.8: f05.gs98+.8.tar.gz contains gs98+.8.0.0.tron ... gs98+.8.99999.00001.tron gs98+.8.one.tron ***Any excess C or O is simply added to Z, yielding LESS ACCURATE OPACITIES. - Opacities are considered to be O.K. for Ztotal < 0.10, and Ztotal > 0.12 is considered to be "unavailable" (where Z total = Z + exC + exO). - By default, the switchover from OPAL to Ferguson et al. 2005 opacities will occur smoothly as logT is reduced from 4.4 to 4.2 (this is the temperature range in the overlap region where the two opacity tables seem to be the closest to being equal). D.R. Alexander & J.W. Ferguson (1994) ApJ, 437, 879: opacity file 'Alexopac' _____ -- In a form usable by these opacity subroutines, this file is available http://www.cita.utoronto.ca/~boothroy/kappa.html only from (the same website as for this file containing the opacity subroutines). **** * * * * * NOTE that these 1994 molecular opacities are SUPERSEDED by the * * * * * 2005 opacities from http://webs.wichita.edu/physics/opacity/ * * * * * ***** (see Ferguson et al. 2005, ApJ, 623, 585), as DESCRIBED ABOVE. * * * * * This file includes molecular opacities and dust opacity; table ranges are: 3.0 < logT < 4.1 in temperature T, -12.0 < logRHO < -6.0 in density RHO (not R, unlike OPAL), for $Z = \{ 0.0001, 0.0003, 0.001, 0.002, 0.004, 0.01, 0.02, 0.03, 1.0 \}$ and $X = \{ 0.0001, 0.03, 0.10, 0.35, 0.70, 0.80 \}$ [note that the Z = 1.0 table is of course only available for X = 0.0]. Extensions of this table: - The X = 0.0001 tables are treated as having X = 0.0 (the difference is negligible for the above metallicity range 0.0001 < Z < 0.03). - Unlike the OPAL 'GN93hz' opacities, these must be extrapolated for X > 0.8 but this yields errors no larger than the difference between Alexander and OPAL opacities even up to X = 1 - Z. - To match the available OPAL tables, tables at Z = 0.05 and Z = 0.10 were extrapolated from the Z = 0.02 and 0.03 cases, taking the average of the result of extrapolating Kappa in Z and of logKappa in logZ (this yielded the best results in the temperature region of overlap between Alxander and OPAL opacities). - A set of { Z = 0.0, X = 0.7 } opacities have been obtained using Fig. 1 of Alexander & Ferguson 1994, and the OPAL opacities at logT = 3.75 or higher. - A rough approximation of opacities for $\{ Z = 0.0, X = 0.0 \}$ was obtained by using the OPAL opacities at high-T, and extrapolating logKappa downwards in logT by fitting a least-squares quadratic.

z xcotrin manual

- For other X-values at Z=0.0 these two opacity sets were interpolated in X.

***This extends the tables of low-temparature opacities from 0.0001 < Z < 0.03
to the full available metalliticy range 0.0 < Z < 0.1 of the OPAL tables;
but THE ACCURACY OF THE EXTENSIONS MAY BE POOR (especially for Z < 0.0001);
it is better to use the Ferguson et al. (2005) molecular opacities instead.</pre>

***Also, any excess carbon or oxygen is simply added to Z: for significant
 "excess-C,O" (exC,exO comparable to Z) this yields LESS ACCURATE OPACITIES,
 and for large "excess-C,O" (0.1 < Z + exC + exO < 1.0) one must interpolate
 between the Z = 0.1 and Z = 1.0 mixes, yielding VERY INACCURATE OPACITES.</pre>

- By default, if 'Alexopac' is read in, then the switchover from OPAL to Alexander opacities will occur smoothly as logT is reduced from 3.97 to 3.87 (this is the temperature range in the overlap region where the two opacity tables seem to be the closest to being equal).

- By default, Alexander opacities are considered to be O.K. for Z < 0.10 at all X, and for all Z at X = 0.0; they are considered to be "unavailable" in the region where Z > 0.15 at X > 0.03 (this constraint be tightened by the user at the time when the opacities are read in).

List of subroutines contained in this file

This file contains the following subroutines; the nine subroutines marked with ** are those the user is most likely to wish to use (and are the first subroutines described below), while those marked with * can be called by the user (and are described in the comments further below):

BLOCK DATA OPAL_OPAC_DATA SUBROUTINE OPALINIT(KHIGHZ, OFEBRACK, Z, KZ, KMET) SUBROUTINE GET_ZAVAIL SUBROUTINE GET TRVALS ** SUBROUTINE OPAC(Z, XH, EXC, EXO, T6, R) ** SUBROUTINE OPAL(Z, XH, EXC, EXO, SLT, SLR) ** SUBROUTINE OPAL_X_CNO_FU(XH, SLT, SLR, XMET, NMET, FU) * SUBROUTINE OPAL_F_CNOU(Z, XH, EXC, EXO, SLT, SLR, FCN, FCON, FCNONE, FU) SUBROUTINE OPAL_F_XCON_CNOU(Z, XH, EXC, EXO, Y, XCN, XON, XNEHEAVY, FMUAINV, FMUEINV, ZSQBAR, SLT, SLR, FCN, FCON, FCNONE, FU) SUBROUTINE Z_FCNO(XH, XMET, NMET, FU, Z, EXC, EXO, Y, XCN, XON, XNEHEAVY, FMUAINV,FMUEINV,ZSQBAR, FCN,FCON,FCNONE,FUSE) * SUBROUTINE KAPFERG(SLT,SLR,XH,Z,EXC,EXO,FLKA,DLKATR,DLKARO,DLKAT,FKAEDGE) * SUBROUTINE CACHEFERG(KSTO, XH, XZCO) * SUBROUTINE KAP_MOL(SLT,SLR,XH,Z,EXC,EXO,FLKA,DLKATR,DLKARO,DLKAT,FKAEDGE) * SUBROUTINE KAPALEX(FLT, FLRO, X, XZCO, FLKA, DLKAT, DLKARO, FKAEDGE) * SUBROUTINE ASK_LAST_ALEX_EDGE(FKAEDGE, FTRA, FTRA_LO, FTRA_HI, FZKAEDGE) * SUBROUTINE KAPCOND(FLRO, FLT, X, Y, XCN, XON, XNEHEAVY, FMUAINV, FMUEINV, ZSQBAR, IDER, FLKC, FLKCT, FLKCRO, FKCEDGE, FKCOK) * SUBROUTINE KAP_COND_POT(FLRO, FLT, ZION, IDER, FLKC, FLKCT, FLKCRO, FKCEDGE, FKCOK) * SUBROUTINE OPAL_K_ONLY(Z, XH, EXC, EXO, SLT, SLR, FCN, FCON, FCNONE, FU) ** SUBROUTINE ASK_LAST_OPAC(OP, DOPT, DOPR, DOPTD, FEDGE, FTREDGE, FZEDGE) * SUBROUTINE ASK_LAST_XCNOU(Z, X, XC, XO, SLT, SLR, FCN, FCON, FCNONE, FU) * SUBROUTINE ASK_OPAL_Z_MIX(IMIX, XIZ, N_X, FNINZ, N_N) * SUBROUTINE ASK_OPAL_MIX_WT(ATWT, NWT, ATWTHHE, NHHE, ATZ, NZ) ** SUBROUTINE SET_OPAL_DIR(CDIRIN) ** SUBROUTINE SET_MOL_DIR(CDIR_MOL)

Sep 06, 07 19:03 z xcotrin manual Page 12/71 * * SUBROUTINE SET_COND_DIR(CDIR_COND) * * SUBROUTINE SET OPAL LIST LEVEL(LIST LEVEL) SUBROUTINE SET_OPAL_LIST_UNIT(LIST_IU) * ** SUBROUTINE READ_BASIC_OPAL_OPAC(IU, Z, CF_HZ, OFEBRACK, CF_OFE) ** SUBROUTINE READ_EXTENDED_OPAC(IU, Z, CF_HZ, OFEBRACK, CF_OFE, I_MOL, I_COND, I_CNO, CF_USER) SUBROUTINE SET OFE FILE(CFILEOFE) SUBROUTINE SET_ALTMIX_OFE_FILE(CFILEOFE) SUBROUTINE SET_METEOR_MIX_FILE(CFILEMET * SUBROUTINE SET_ALTMIX_MAIN_FILE(CFILE_HZ) * SUBROUTINE SET_CNO_FILES(CF_HZ, CF_C, CF_O, CF_N, CF_U) SUBROUTINE SET_CNO_EXT(IE, CE_HZ, CE_C, CE_O, CE_N, CE_U) * SUBROUTINE SET_COND_FILE(CFILECOND, I_FULL_PATH) * SUBROUTINE SET COND USE (KCOND, KREPLACE ITOH) * SUBROUTINE SET COND INFLAGS (KCOND FIX, KCOND GAP, KCOND HAVE) * SUBROUTINE ASK_COND_USE(KCOND, KCOND_AVAIL, KREPLACE_ITOH) SUBROUTINE ASK_COND_INFLAGS(KC_FIX, KC_GAP, KC_FIX_N, KC_GAP_N) * SUBROUTINE SET_FERG_USER(CBEG_FERG) * * SUBROUTINE ASK_FERG_USER(CBEG_FERG) * SUBROUTINE SET FERG ACC(IACC) SUBROUTINE ASK FERG ACC(IACC) * SUBROUTINE SET_ALEX_FILE(CFILEALEX, I_FULL_PATH) SUBROUTINE SET_ALEX_USE(KALEX) * SUBROUTINE SET_ALEX_DO_RHOSW(IRHOSW) SUBROUTINE ASK_ALEX_USE(KALEX, KALEX_AVAIL, ITYPE) * SUBROUTINE ASK_KHIGHZ_OFE(KHIGHZ_USED, OFEBRACK_USED) SUBROUTINE ASK_OPAL_FILE_USED(ITYPE, CF_USED) * SUBROUTINE SET_XHI(KXHI) * SUBROUTINE ASK_XHI(KXHI, KAVAIL) * SUBROUTINE SET_CNO_INTERP(KCNO, KUSER) * SUBROUTINE ASK_CNO_INTERP(KCNO, KUSER, KCNO_AVAIL, KUSER_AVAIL) SUBROUTINE SET_ERR_CHECK(LEVEL) SUBROUTINE ASK_ERR_CHECK(LEVEL) * SUBROUTINE SET_LOGT6_LIMITS(VLO, DVLO, VHI, DVHI) * SUBROUTINE SET_LOGR_LIMITS(VLO, DVLO, VHI, DVHI) * SUBROUTINE RESET_Z_LIMITS(VLO, DVLO, VHI, DVHI) * SUBROUTINE ASK_LOGT6_LIMITS(VLO, DVLO, VHI, DVHI) * SUBROUTINE ASK_LOGR_LIMITS(VLO, DVLO, VHI, DVHI) * SUBROUTINE ASK_Z_LIMITS(NZMAX, ZMIN, ZMAX) * SUBROUTINE ASK_Z_USE(NZUSE, ZLO, ZMID, ZHI, ZLOEX, ZHIEX) * SUBROUTINE ASK_Z_ARRAY(KZSTART, KARRAYSTART, ZARRAY, NARRAY) SUBROUTINE SET_SMOOTH(INITSMOOTH, LOWCOSMOOTH, INTERPCOSMOOTH) SUBROUTINE ASK_SMOOTH(INITSMOOTH, LOWCOSMOOTH, INTERPCOSMOOTH) * * * SUBROUTINE SET_LOGT_SW_FERG(FLTSW_LO, FLTSW_HI) SUBROUTINE ASK_LOGT_SW_FERG(FLTSW_LO, FLTSW_HI) SUBROUTINE SET_LOGT_SW_ALEX(FLTSW_LO, FLTSW_HI) * SUBROUTINE SET_LOGRHO_SW_ALEX(FLRHOSW_LO, FLRHOSW_HI) * SUBROUTINE SET LOGT RHOSW ALEX(FLTSW R LO, FLTSW R HI) SUBROUTINE ASK_LOGT_SW_ALEX(FLTSW_LO, FLTSW_HI) * SUBROUTINE ASK_LOGRHO_SW_ALEX(FLRHOSW_LO, FLRHOSW_HI) SUBROUTINE ASK_LOGT_RHOSW_ALEX(FLTSW_R_LO, FLTSW_R_HI) SUBROUTINE READCO(Z, KALLRD, KHIGHZ, IULOW) SUBROUTINE READEXCO(Z, KALLRD, KHIGHZ, IULOW, OFEBRACK) SUBROUTINE READZEXCO(NZIN, ZLO, Z, ZHI, KHIGHZ, IULOW, OFEBRACK) SUBROUTINE READ_BEST_MOL(IU, I_MOL, CF_HZ, OFEBRACK) * * SUBROUTINE READFERG(IU) * SUBROUTINE ADDFILE_FERG(IU, F_STO, F_READ, CFILEFERG, I_FULL_PATH) SUBROUTINE READ_ADD_FERG(IU, F_STO, F_READ, KTYPE_FERG) SUBROUTINE FIND_FERG(KTYPE_FERG, LEN_BEG, CFILE_USE) SUBROUTINE INIT_FERG_INDICES * SUBROUTINE READALEX(IU) SUBROUTINE READ_COND_POT(IU) * SUBROUTINE READCOND(IU)

```
Sep 06, 07 19:03
                                    z xcotrin manual
                                                                               Page 13/71
   SUBROUTINE FIND_RJUMP_HL_COND
** SUBROUTINE DUMP OPAL OPAC( IU, CF D )
** SUBROUTINE READ_OPAL_DUMP( IU, CF_D )
   SUBROUTINE READ_KZ( KZ, Z, KALLRD, KHIGHZ, IULOW, OFEBRACK )
   SUBROUTINE REVISE_HITR_FOR_INITSMOOTH
   SUBROUTINE COINTSMO( XXC, XXO, KZ )
   SUBROUTINE COINTERP( XXC, XXO, KZ
   SUBROUTINE TORINTERP( SLR, SLT )
   SUBROUTINE SNGL_CINTERP3(ZM,Z0,Z1,ZP,Z,N0,MXNV,VM,V0,V1,VP,VF,DF,D2,XH)
   SUBROUTINE QZLOG4INT( ZLOGD )
   FUNCTION QUADSL( IC, I, X, Y1, Y2, Y3, X1, X2, X3 )
   FUNCTION QDERSL( IC, I, X, Y1, Y2, Y3, X1, X2, X3
                                                          )
   FUNCTION QCHKSL( IC, I, X, Y1, Y2, Y3, X1, X2, X3
   FUNCTION QUAD( IC, I, X, Y1, Y2, Y3, X1, X2, X3
   FUNCTION QDER( IC, I, X, Y1, Y2, Y3, X1, X2, X3)
FUNCTION QCHK( IC, I, X, Y1, Y2, Y3, X1, X2, X3)
FUNCTION QZINTER( IC, I, X, Y1, Y2, Y3, X1, X2, X3)
FUNCTION QZINTER( IC, I, Z, NMOREZ, F1, F2, F3, F4, Z1, Z2, Z3, Z4, ZDEL )
   FUNCTION MIXFIND( IU, IOFE, IGETZXI, IREW, ITAB, LINE, Z, X, C, O )
   SUBROUTINE CHK_DIR_NAME( CDIRIN, COPDIR, KOPE )
   SUBROUTINE CHK OFE ALT FILE( K OFE )
   SUBROUTINE INDEX CO DELTAS ( ISET, KXHZ, JX, JC, JO )
   SUBROUTINE FINISH_CNO
   SUBROUTINE SPLINE( X, Y, N, Y2 )
   SUBROUTINE SPLINT( XA, YA, N, Y2A, X, Y, YP )
   SUBROUTINE FITY
   SUBROUTINE FITX
   SUBROUTINE GETD( F, N, D, FP1, FPN )
   SUBROUTINE INTERP( FLT, FLRHO, G, DGDT, DGDRHO, IERR )
   SUBROUTINE SMOOTH
   SUBROUTINE OPALTAB
   SUBROUTINE OPEN_CHK_ZIP( IU, FNAME, IGZIP, CMSG )
   SUBROUTINE CLOSE_CHK_ZIP( IU, FNAME, IGZIP )
   SUBROUTINE QUADSLSTO( I, X, X1, X2, X3 )
   FUNCTION QUADSLGET( I, Y1, Y2, Y3 )
   SUBROUTINE QDERSLSTO( I, X, X1, X2, X3 )
   SUBROUTINE QDERSLGET( I, Y1, Y2, Y3, Y, DYDX )
   SUBROUTINE QCHKSLSTO( I, X, X1, X2, X3 )
   FUNCTION QCHKSLGET( I, Y1, Y2, Y3 )
   SUBROUTINE QCHKSTO( I, X, X1, X2, X3 )
   FUNCTION QCHKGET( I, Y1, Y2, Y3 )
   SUBROUTINE QDERNSTO( I, NMORE, X, X1, X2, X3, X4 )
   SUBROUTINE QDERNGET( I, NMORE, Y1, Y2, Y3, Y4, Y, DYDX )
SUBROUTINE QUADNSTO( I, NMORE, X, X1, X2, X3, X4 )
   FUNCTION QUADNGET( I, NMORE, Y1, Y2, Y3, Y4 )
   SUBROUTINE QDER4STO( I, X, X1, X2, X3, X3 )
   SUBROUTINE QDER4GET( I, Y1, Y2, Y3, Y4, Y, DYDX )
   SUBROUTINE QUAD4STO( I, X, X1, X2, X3, X3 )
   FUNCTION QUAD4GET( I, Y1, Y2, Y3, Y4 )
   SUBROUTINE QDERSTO( I, X, X1, X2, X3 )
   SUBROUTINE QDERGET( I, Y1, Y2, Y3, Y, DYDX )
   SUBROUTINE QUADSTO( I, X, X1, X2, X3 )
   FUNCTION QUADGET( I, Y1, Y2, Y3 )
   FUNCTION NUM_BLANKS_CONTAINED( FNAME )
   FUNCTION NON_BLANK_BEGIN( FNAME )
   SUBROUTINE OPOLDR( IU, FNAME )
   SUBROUTINE OPOLUF( IU, FNAME )
   SUBROUTINE OPNEUF( IU, FNAME )
   SUBROUTINE INQFIL ( FNAME, LXST )
   SUBROUTINE LINUX_GET_HOME_DIR( FNAME, FNALT, IALT )
   FUNCTION LNBLNK ( FNAME )
The last 6 of the above subroutines contain file-handling routines; if one
 is using VMS rather than some flavor of Unix or Linux, then one may have to
```

Sep 06	6, 07 19:	03 z_xcotrin manual	Page	14/7
comme well (The Linuz	ent out as in last 2 x, but	some statements in these subroutines and uncomment others, the "data cb" statement at the end of BLOCK DATA OPAL_OPAC_ routines should be needed only if you are using fort77 und should still work correctly on any flavor of Unix/Linux sys	as DATA. er tem.)	
Note Unix	that t , for s	he above routines have been tested on several Linux systems ome earlier versions), but have NOT been tested on a VMS sy	(and stem.	
***** NOTE ****	* * * * * * * THAT A * * * * * * *	**************************************		
* * * * * NOTE * * * * *	* * * * * * * THAT N * * * * * * *	**************************************		
	==== The ====	subroutines that interpolate among the OPAL opacities:		_
N(the (to hi (or h the s	OTE tha OPAL op igher d ooth) o subrout	t the following four opacity-calculating subroutines CAN ex acities to lower temperatures (by using molecular opacities ensities (using conductive opacities); whether they do eith f these extensions DEPENDS ON HOW YOU READ IN THE OPACITIES ines described further below.	tend) or er via	
*** OPA and c value furth in vi or OP range actua (see	AC(z, AL(z, density es (the her bel ia subr PAL is e of Z- ally ca descri	xh, exC, exO, T6, R) The purpose of the subroutines OP OPAL is to perform up to 6-variab xh, exC, exO, slt, slr) interpolation on log10(kappa), to the opacity (and also its tempera derivatives) at the given composition, temperature, and de details of how this interpolation is performed are discuss ow). The user can control how the opacities are initially outines discussed further below; otherwise, the first time called, opacities will be read in for an estimated "optimum values (that encompass the input value z). These subroutin ll OPAL_F_CNOU(z, xh, exC, exO, slt, slr, 0.0, 0.0, 0.0, 0 ption below) to perform the opacity interpolation.	AC or le yield ture nsity ed read OPAC " es .0)	1
The S	SINGLE-	PRECISION REAL interpolation variables are:		
	z xh exC ex0	The metallicity, Z (excluding any "excess" C and O) The hydrogen mass fraction, X The enhanced ("excess") carbon mass fraction, exC. The total carbon mass fraction, Xc, is the sum of exC an the initial amount included in the metal mass fraction Z The enhanced ("excess") oxygen mass fraction, exO.	d	
OPAC:	T6 R	The temperature in millions of degrees Kelvin, T6 = { rho(gm/cc) / T6**3 }, the temperature-shifted density	value	
	slt slr	log10(T6) = log10(T) - 6 log10(R) = log10(rho) - 3 * slt = log10(rho) - 3 * [log10(T)-6]	
(by c Note exC a	definit that, and/or	ion, the helium mass fraction is $Y = 1.0 - z - xh - exC - e$ while z and xh must be non-negative, small NEGATIVE values exO are allowed, provided that the sums { z + exC , z + exO	xO). for ,	

z + exC + exO in log(z+exC+O MAY 28, 1999 (} are non-negative; this leads to (linear) extrapolation .001) and/or log(z+exO+0.001), unlike the earlier version of where negative exC or exO values were treated as being zero).
Your routine t	hat calls to OPAC or OPAL should either include the statement:
common/e_c	<pre>opal_z/ opact,dopact,dopact,dopactd,fedge,ftredge,fzedge</pre>
OR ELSE, after	calling the opacity-calculation routine (e.g., OPAC or OPAL):
call AS 	K_LAST_OPAC(OPACT, DOPACT, DOPACR, DOPACTD, FEDGE, FTREDGE, FZEDGE)
(this subrouti /e_opal_z/ in	ne ASK_LAST_OPAC just returns the values from the common block its user-supplied arguments).
These SINGLE-P	RECISION REAL variables have the following meanings:
OPACT DODACT	returns the Log of the Rosseland mean opacity: Log10(kappa)
DOPACI	returns dLog(kappa)/dLog(16) at constant R (NOI rho!) returns dLog(kappa)/dLog(R) at constant T6, which is
DOPACTD	returns dLog(kappa)/dLog(T6) at constant density, which is = dLog(kappa)/dLog(T) at constant density = DOPACT - 3.0 * DOPACR
FEDGE	 returns the degree-of-extrapolation product FTREDGE * FZEDGE or, in some cases, A SMALLER VALUE (even zero): If you have read in conductive opacities, then FEDGE is reduced in switchover regions (radiative to conductive or one conductive table to another) where one or both of the opacities requires some extrapolation (FTREDGE, described below, is NOT reduced, to indicate that the opacities should still be quite accurate there). If the 'GN93hz' opacities are NOT available, then FEDGE reduces to zero as X increases from 0.76 to 0.8 (but the opacity is still calculated out to X = 1 - Z); you should ALWAYS SUPPLY the file 'GN93hz', since errors can be quite large in some cases if you do not (up to an order of magnitude for Z < 0.001 at X = 1 - Z).
FTREDGE	returns 1.0 for T6,R inside table boundaries, reduces to 0.0 as T6,R moves more than one grid spacing outside table (except, in general, in switchover regions).
FZEDGE	returns 1.0 for 2 inside the available range [zlow,zhigh], reduces to 0.0 as Z moves out to the boundaries of the extreme-Z-extrapolation range [zlo_ex,zhi_ex].
BY DEFAULT, th return withou (1) FZEDGE (2) FTREDGE Otherwise, ev (linearly) wi opacity may b opacity suffi	We OPAL-opacity calculating routines set OPACT = $1.0E+35$ and actually calculating the opacity IF: = 0.0 , or C = 0.0 and ($\log R < -6$ or $\log T < 3.97$). There if FTREDGE = 0.0 , the radiative opacity is extrapolated thout limit to high T or R, since an estimate of the radiative be needed in such regions to determine whether the conductive acces there or not.
IF YOU HAVE RE where they ar valid there: opacities, as Kappa = 1 / Also: FTREDGE over from ful	AD IN CONDUCTIVE OPACITIES, then FTREDGE will be non-zero re valid and dominate, even if the radiative opacities are not i.e., conductive opacities can be used to EXTEND the radiative well as being combined with them via the relevant formula (1 / Kappa_rad + 1 / Kappa_cond) . will be unity in the density region where opacities switch ly-valid radiative to fully-valid conductive ones, even if

z_xcotrin manual

Sep 06, 07 19:03

Page 15/71

z xcotrin manual

part of this switchover region requires some extrapolation of one or both of these. However, FEDGE will be less than unity (possibly even zero) in switchover regions where such such extrapolation is required, and also in density gaps where different conductive opacity tables do not quite meet. (Also, at high T and R, an extrapolated conductive opacity value is returned even in regions where FTREDGE is zero.)

NOTE THAT, if you have set the error-checking level to 2 (see SET_ERR_CHECK below), then ANY "out-of-range" case (where the final value of FEDGE = 0.0) is considered a fatal error and the program halts.

If FZEDGE = 0.0, then the given Z-value lay too far ouside the available
Z-range to be extrapolated (this is checked first, before T6 and R).
If FTREDGE = 0.0 (and FZEDGE > 0.0), then the given T6 and/or R values lay
too far outside the available table for reasonable extrapolation.

Details of the extrapolation, and of subroutines allowing user control over the boundaries, are discussed further below.

---WARNING--- This subroutine estimates Z from the mass fraction of elements heavier than Ne. UNLESS (1) you keep track of the mass fractions at least of C, N, O, Ne, and "heavies", and (2) your initial Z-composition, namely {C, N, O, Ne, "heavies"}, is THE SAME as that in the "solar" opacity table (e.g., 'GN93hz', 'GS98hz', or 'AGS04hz'), this subroutine will obtain an ERRONEOUS Z value and thus an INCORRECT OPACITY.

---WARNING--- If nmet = 19 in your array, then you must have initialized ALL of {C,N,O,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca,Ti,Cr,Mn,Fe,Ni} to a "solar" opacity table mix (e.g., from 'GN93hz' or 'GS98hz'), OTHERWSE you will get ERRONEOUS Z and CNO-interpolation factors (since the program uses stored atomic weight values to convert xmet into number fractions in this case), and thus an INCORRECT OPACITY. If you include either fewer or more heavy elements, e.g., if you combine some of these elements into a collective "Xheavy", then you MUST use a value of nmet NOT EQUAL TO 19.

---WARNING--- OPAL_X_CNO_FU implicitly assumes that elements heavier than Ne are negligibly affected by nuclear burning. IF ANY ELEMENTS HEAVIER THAN Ne ARE PRODUCED VIA NUCLEAR BURNING, this will cause the Z-value estimated by OPAL_X_CNO_FU to increase by roughly 5 to 6 times as much as the increase in heavy element abundance. This may give LESS GOOD OPACITY values, or even yield estimated Z-values so large as to be OUT OF RANGE (this will occur for Xheavy > 0.02, roughly; in the worst case, Xheavy > 0.015 may give estimated Z > 0.1, i.e., beginning to be out of range). If any elements heavier than Ne are produced via nuclear burning, you may wish to assign all or most of the newly-nucleosynthesized "heavies" to the Ne abundance, for purposes of opacity calculation (or else use some other subroutine).

The input variables are:

xh The hydrogen mass fraction, X (as for OPAL or OPAC above)
slt log10(T6) = log10(T) - 6 (as for OPAL above)
slr log10(R) = log10(rho) - 3 * slt (as for OPAL above)
xmet SINGLE-PRECISION REAL ARRAY of size nmet, giving the mass
fractions of the "metals", i.e., of C, N, O, Ne, ...
NOTE that these are the actual mass fractions (NOT the mass
fractions relative to Z), and any "excess" C or O should be

z_xcotrin manual

Page 17/71

nmet

fu

included in the values of xmet(1) or xmet(3), respectively. By definition, the mass fraction Y of helium is given by Y = 1 - xh - SUM{xmet(i)} , where i=1,...,nmet in the SUM. INTEGER size of the array xmet: ideally it should be the case that nmet = nel_zmix = 19 , in which case xmet is assumed to hold the mass fractions of the elements of the OPAL mix, namely, {C,N,O,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca,Ti,Cr,Mn,Fe,Ni}. If the array size nmet is not 19, then the sum of xmet(5) through xmet(nmet) is used as the total mass fraction of all elements heavier than Ne, i.e., the array xmet must contain at least {C,N,O,Ne,Xheavy}.

NOTE that if Xheavy contains any part of the abundances from C, N, O, or Ne, then the calculated Z value will be in error! (Also, if you have set the error level to 3 or higher [see the subroutine SET ERR CHECK] and CNO-interpolation is available,

then it is a fatal error if nmet is not equal to 19.)

SINGLE-PRECISION REAL variable, giving the fraction of the opacity shifts to be applied from any user-specified file: fu multiplies opacity differences between the files CF_USER and CF_HZ (as specified by the subroutine READ_EXTENDED_OPAC: see below).

If NO user-specified opacity file CF_USER has been read in, then the value of fu is ignored (a value of 0.0 is used).

This subroutine uses the array xmet(nmet) to calculate the metallicity Z, the excess carbon and oxygen EXC and EXO, and the fractions FCN, FCON, and FCNONE (to apply the C --> N, O --> N, and N --> Ne opacity shifts --- the CNO-interpolation of logKappa is linear in the CNO number fractions). In general, it sets FUSE = fu (except that the value of FUSE is restricted so that it does not correspond to a reduction by more than a factor of 2 in the total number density of elements heavier than Ne). This subroutine then does the equivalent of calling

OPAL_F_CNOU(Z, xh, EXC, EXO, slt, slr, FCN, FCON, FCNONE, FUSE)

NOTE that there would usually be little point in using OPAL_X_CNO_FU unless you have called READ_EXTENDED_OPAC with a non-zero value of I_CNO (to allow CNO-interpolation in the opacities) and/or a non-blank CF_USER value (the user-specified opacity correction filename).

If the CNO-interpolation opacity files have not been read in, then this subroutine approximates the opacity effects of C,N,O,Ne interconversion by applying small negative and/or positive values of exC and exO ("excess-C,O") which may or may not be better than nothing.

NOTE that interconversion of C,N,O,Ne via CNO-cycle burning changes slightly the value of Z that this subroutine will compute, for a given set of mass fractions of elements heavier than Ne: the total number density in C,N,O,Ne is constant, but the total mass in these elements changes. Thus this subroutine OPAL_X_CNO_FU should only be used if one has read in a RANGE of Z-values (see opacity-reading subroutines below): if one has read in only a single Z-value, then OPAL_X_CNO_FU is likely to yield out-of-range Z values.

Note that the subroutine SET_CNO_FILES(cf_hz, cf_c, cf_o, cf_n, cf_user) (discussed below) can be used to set the names of the opacity files that are used to get the opacity shifts for CNO-interconversion (files cf_hz through cf_n) and any user-specified opacity shifts (cf_user, relative to cf_hz). NOTE that the first four of these files (cf_hz, cf_c, cf_o, cf_n) are those used for CNO-interpolation, and should all have the SAME number fractions for the elements heavier than Ne in their compositions (only C,N,O,Ne should be interconverted in these CNO-interpolation files).

*** OPAL_F_CNOU(z, xh, exC, exO, slt, slr, fcn, fcon, fcnone, fu) For users ______ who want

z xcotrin manual

to use their own methods to compute the metallicity Z, the "excess" carbon and oxygen mass fractions EXC and EXO, and CNO-interpolation factors FCN, FCON, and FCNONE (as well as any user-factor FU) from their composition.

This interface is similar to OPAL(z, xh, exC, exO, slt, slr) except for the added CNO/user-interpolation factors:

fcn Multiplies opacity differences between files cf_c and cf_hz fcon Multiplies opacity differences between files cf_o and cf_hz fcnone Multiplies opacity differences between files cf_n and cf_hz fu Multiplies opacity differences between files cf_user and cf_hz

Note that the inputs supplied to the opacity-reading subroutines (described below) control whether CNO-interpolation and/or user-interpolation opacity files are read in. If no CNO-interpolation files were read in, then the values of fcn, fcon, fcnone are ignored; if no user-interpolation file was read in, then the value of fu is ignored.

NOTE that all the previous opacity-calculating interfaces above ultimately call the subroutine OPAL_F_XCON_CNOU (described further below); the values of Z, XH, EXC, EXO, SLT, SLR, FCN, FCON, FCNONE, FU actually used can be checked by calling the subroutine ASK_LAST_XCNOU described below.

*** ASK_LAST_XCNOU(Z, X, XC, XO, SLT, SLR, FCN, FCON, FCNONE, FU)

This subroutine just returns the last-used OPAL_F_CNOU input values: it can be used to check these values, rather than including common $/x_{opal_z}$ in the calling program.

*** ASK_LAST_OPAC(OPACT, DOPACT, DOPACR, DOPACTD, FEDGE, FTREDGE, FZEDGE) This subroutine just returns the last-computed opacity values, taken from common /e_opal_z/ (as an alternative to including this common block in the calling program), as described above (under the OPAC and OPAL routines).

*** ASK_OPAL_Z_MIX(IMIX, XIZ, N_X, FNINZ, N_N)

For the mix specified by IMIX , this subroutine returns the components of the metallicity Z, in the arrays $XIZ(N_X)$ and $FNINZ(N_N)$; note that up to 19 components are returned, the ratios by mass and by number respectively of {C,N,O,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca,Ti,Cr,Mn,Fe,Ni}. Mix specs are:

```
IMIX = 9 (actually, any IMIX > 5 or < -10) : return the actual mixture used
IMIX = 1 : return the 'GN93hz' main solar mix
IMIX = 2 : return the 'Alrd96a2' [O/Fe] = 0.3 mix
IMIX = 3 : return the 'C95hz' [O/Fe] = 0.4 mix
IMIX = 4 : return the 'W95hz' [O/Fe] = 0.5 mix
IMIX = 5 : return the user-specified [O/Fe] > 0 mix
IMIX = 0 : return the meteoritic mix
IMIX = -1 : return the alternate main solar mix (default 'GS98hz')
IMIX = -2 : return the corresponding version of 'Alrd96a2' [O/Fe] = 0.3 mix
IMIX = -3: return the corresponding version of 'C95hz' [O/Fe] = 0.4 mix
IMIX = -4: return the corresponding version of 'W95hz' [O/Fe] = 0.5 mix
IMIX = -5: return the corresponding user-specified [O/Fe] > 0 mix
IMIX = -6: return the "default-CNO" mix (for CNO-interpolation)
IMIX = -7 : return the CtoN mix (for CNO-interpolation)
IMIX = -8 : return the COtoN mix (for CNO-interpolation)
IMIX = -9 : return the CNOtoNe mix (for CNO-interpolation)
IMIX = -10: return the user-defined nonCNO-interpolation mix
```

Sep 00, 07 19	JS <u>Z_XCO</u>	i in manual	Faye is
*** ASK_OPAL_	MIX_WT(ATwt, Nwt, ATwtHHe,	NHHe, ATz, Nz)	This subroutine returns the atomic
ATwt(Nwt) ATwtHHe(N ATz(Nz) =	<pre>= real array returning up t for {C,N,O,Ne,Na,Mg,Al, if Nwt < 19 then only N if Nwt < 1 then no atom HHe) = real array returning for H and He. real array returning up to for {C,N,O,Ne,Na,Mg,Al,Si,</pre>	o 19 atomic weig Si,P,S,Cl,Ar,K,Ca wt values will be ic weight values up to 2 atomic we 19 atomic numbers P,S,Cl,Ar,K,Ca,T	<pre>ht values, as used a,Ti,Cr,Mn,Fe,Ni}; e returned, and will be returned. eight values, as used s (nuclear charges), i,Cr,Mn,Fe,Ni}.</pre>
	The subroutines that read in	the OPAL opacit:	==== ies: ====
*** READ_OPAI this subrou settings an NOTE that t dumpfile is	_DUMP(IU, CF_D) If a bina earlier t tine can read it in again; n e restored from this unforma he only advantage of this is MUCH faster than using READ	ry opacity file t ime by DUMP_OPAL ote that ALL opac tted binary file speed: reading s _BASIC_OPAL_OPAC	was created at some _OPAC below, then cities and user such an opacity (or its alternates).
IU = intermode $CF_D = ch$	ger Fortran unit number: fro negative value means "use pr Fortran unit number was ever aracter string: name of opac THE DIRECTORY, if it is not must exist, and must not be	m 1 to 99, and no evious/default va given earlier, f ity dumpfile to 1 a local file). 1 in compressed fo:	ot equal to 5 or 6; alue" (if no positive the default is 23). be read in (INCLUDING NOTE that this file rm.
[NOTE tha by program dumpfiles r	t the format of this dumpfil versions between FEBRUARY 1, ust be re-created by the pre	e is INCONSISTEN 2004 and SEPTEM sent version.]	I with those produced BER 6, 2006; any such
*** DUMP_OPAI subroutines file of the re-use by t in conducts READ_EXTEND	_OPAC(IU, CF_D) AFTER you plain-tex below, this subroutine can current opacities and user he subroutine READ_OPAL_DUMP ve and/or molecular opacitie ED_OPAC below), then these w	have read in the t OPAL opacity for be used to dump a settings (just as above. Note that s as well (e.g., ill also be store	e opacities (from the iles) via one of the an unformatted binary s read in) for future at if you have read via the subroutine ed in the dumpfile.
IU = intermode $CF_D = ch$	ger Fortran unit number: fro negative value means "use pr aracter string: name of opac THE DIRECTORY, if it is not overwritten if it already ex	m 1 to 99, and no evious/default va ity dumpfile to 1 a local file); th ists.	ot equal to 5 or 6; alue". be created (INCLUDING his file will be

The size of this opacity dumpfile will depend on the number of Z-values stored; typically, 'z14xcotrin21.f' will store the maximum number of 14, for a size of about 24 Mb (while 'z5xcotrin21.f' can store at most 5, for 9 Mb; 'z1xcotrin21.f' will always store 1, for 2.7 Mb) [if no molecular opacities were read in, these sizes will be 23 Mb, 8 Mb, and 1.7 Mb, respectively].

[But if you read opacities using READZEXCO (rather than one of the simpler subroutines READ_BASIC_OPAL_OPAC or READ_EXTENDED_OPAC described below), then the input argument NZIN determines how many Z-values are used.]

z_xcotrin manual

Page 20/71

<pre>*** SET_OPAL_DIR(cdirin) The input character variable cdirin can be used to specify the directory where the OPAL-opacity ASCII files will subsequently be looked for (default is the local directory, which can also be specified by supplying a blank argument to SET_OPAL_DIR). Note: the total length of the directory name MUST NOT exceed 246 characters.</pre>
Example: call set_opal_dir('/home/username/opal_directory/')
OR: to specify "look in local directory": call set_opal_dir(' ')
OR: for a local subdirectory: call set_opal_dir('opal_directory/')
*** SET_MOL_DIR(cdir_mol) The input character variable cdir_mol specifies the directory where the molecular-opacity ASCII files will subsequently be looked for (blank input means "use the default": i.e., try both the OPAL directory and the local directory).
*** SET_COND_DIR(cdir_cond) The input character variable cdir_cond gives the directory where conductive-opacity ASCII files will subsequently be looked for (blank input means "use the default": i.e., try both the OPAL directory and the local directory).
*** SET_OPAL_LIST_LEVEL(LIST_LEVEL) This subroutine can be used to make the opacity-reading routines print out the ASCII opacity files that are actually read in (this can be useful when one uses a subroutine such as READ_EXTENDED_OPAC to read in the "best available" Ferguson molecular opacities, for example):
<pre>LIST_LEVEL = integer flag to determine whether names of the ASCII opacity files that are read in are printed out as they are read in (note that binary opacity dump-files are NEVER printed). The input value of LIST_LEVEL has the following effect: 0 : (default) NO listing (printout) of opacity file names. 1 : print the first Type 2 OPAL opacity (Gz???.x??) file, the first of each Ferguson molecular opacity case (or Alexander file), any conductive opacity file(s), and any Type 1 OPAL opacity file(s) (e.g., 'GN93hz', 'GS98hz', 'AGS04hz', 'W95hz', 'AGS04hz_Ofe.5_W95', 'GS98hz.CtoN', 'GS98hz.CotoN', 'GS98hz.CNOtoNe'). > 1 : up to LIST_LEVEL Type 2 OPAL opacity files will be printed, and up to LIST_LEVEL of each Ferguson case read in (this is seldom useful, but for example one might use LIST_LEVEL of 9999 to print out EVERY opacity file that is read in).</pre>
*** SET_OPAL_LIST_UNIT(LIST_IU) Set the integer Fortran unit number for the above list output (default is 6, i.e., the standard output). An input value of 5, of more than 99, or less than 0, will be reset to the default of 6 (standard output). [Note that if the value of LIST_IU coincides with one of the Fortran units used to actually read in an opacity file, a warning will be printed to the standard output, and all subsequent list output will be printed to the standard output.]
*** READ_BASIC_OPAL_OPAC(IU, Z, CF_HZ, OFEBRACK, CF_OFE) Read in the basic OPAL opacities, possibly for non-solar alpha-element abundances (i.e., non-zero [O/Fe]):

Sep 06, 07 19:03	z_xcotrin manual	Page 21/71
IU = integer Fortrar be used (nega that values f 96 will be re	n unit number: from 7 to 96; note IU throu ative value means "use previous/default va From 0 to 6 will be reset to 7, and values	igh IU+3 may alue"). Note greater than
<pre>Z = (real) "typical' for as wide a default value subroutines, t metallicities metallicities for z1xcotrin CF_HZ = character va file to re one can sp blank mean will this and the 40 OFEBRACK = (real) va if this the fil the giv CF_OFE = character v OPAL opac this argu CF_HZ = d default i</pre>	<pre>' metal-mass-fraction value; opacities wil range around Z as possible (negative mear of 0.02"). For the version zl4xcotrin21 the value of Z is irrelevant, as ALL of th will be read in (from 0.0 to 0.1). For within about a factor of two of Z will be n21.f on the the single metallicity Z will ariable (or string constant) giving the "n ead in, typically 'GN93hz', 'GS98hz', or ' becify any Type-1 OPAL opacity file having is "use the default of 'GN93hz'"). NOTE the file CF_HZ be read in, but ALSO the file O Type-2 files (Gz???.x??). alue of [O/Fe] = log{ (n_O/n_Fe) / (n_O/n_fe) is non-zero, then opacities are interpol the CF_HZ and the file CF_OFE to get op ven [O/Fe] value. variable (or string constant) giving the r city file with non-zero [O/Fe]; if OFEBRAC ument is ignored (blank means "use the def 'GN93hz' the default is CF_OFE = 'W95hz', is to append '_Ofe.5_W95' to the value of constant files are disk and in a constant of the value of constant files are disk and in a constant of constant files are disk and the value of 'GN93hz' the default is CF_OFE = 'W95hz', 'the value of 'O'Fe.5_W95' to the value of constant files are disk and in a constant of the value of constant files are disk and in a constant of the value of 'O'Fe.5_W95' to the v</pre>	<pre>.1 be read in ns "use the f of these ne available z5xcotrin21.f e available; .1 be read in. nain" opacity AGS04hz' (but g a solar mix; that not only ne 'GN93hz' _Fe)_Sun } ; lated between pacities for name of the CK = 0.0, then fault": for otherwise the CF_HZ).</pre>
NOTE that if the '.gz', '.Z', or uncompress, or however, this s more than one i	opacity files on disk are in compressed f ('.bz2'), then they will be uncompressed bunzip2, respectively), read in, and comp slows down the input and MAY LEAD TO INPUT instance of this program is running.	form (suffix (by gunzip, pressed again; F ERRORS if
*** READ_EXTENDED_OPAC() This is an extended ve	U,Z,CF_HZ,OFEBRACK,CF_OFE,I_MOL,I_COND,I_ ersion of the above subroutine READ_BASIC_	_CNO,CF_USER) _OPAL_OPAC:
IU, Z, CF_HZ, OFEBRA I_MOL = flag control will be us I_MOL = 0 : I_MOL = 1 :	ACK, CF_OFE : as in READ_BASIC_OPAL_OPAC a ling whether the low-temperature molecula sed. The most useful values are as follow do not read in any molecular opacities look for molecular opacities for the same as the OPAL opacities (if no matching m of opacities can be found, look for any set of molecular opacities). If OFEBF zero, try to add opacity-shifts to get	above. ar opacities vs: e composition molecular set v available ACK is not opacities
I_MOL = -1 :	appropriate for this input [O/Fe] value read the molecular opacities, but do not extend the OPAL opacities to low T whe OPAL opacity-calculating subroutines of above [the molecular opacities can be the subroutine KAP_MOL, described furt	: use them to using the lescribed accessed by ther below].
I_MOL = 21, I_MOL = 991 pre	<pre>31, 41, 121 : read ONLY the correspon Fergson 2005 molecular opacities (21=0 41=L03, 51=AGS04, 61=S92, 71=S92AE, 81 91=GS98+.2, 101=GS98+.4, 111=GS98+.6, : read ONLY the molecular opacities specie evious call to SET_FERG_USER (described function)</pre>	ding set of N93, 31=GS98, =GS982, 121=GS98+.8). fied by a urther below).
[A more- need fol I_COND = flag contro will be r	-detailed dexcription of I_MOL than most u llows the descriptions of the other input olling whether the high-density conductive read in and/or used:	variables.] variables.] e opacities

Sep 06, 07 19:03	z_xcotrin manual	Page 22/71
Sep 06, 07 19:03 	<pre>2_XCOUIN INAMUAL 0 = do not use these high-RHO conductive opacities at 1 = read these opacities in, and use them to extend th opacities to high RHO when using opacity-calcula subroutines described above. By default, the f: 'condall06.d' (Potekhin et al. 2006) is used; i: found, 'condall06' is tried; if not found, then file 'Condopac' (Hubbard & Lampe 1969) is used; of these are found, it is a fatal error. 2 = same as 1, except that only the Potekhin et al. (1 file ('condall06.d' or 'condall06') is looked for the OPAL opacities when using the opacity-calcular subroutines described above (they can be accessed the subroutine KAPCOND, described further below 2 = same as -1, except that only the Potekhin et al. file ('condall06.d' or 'condall06') is looked for controlling whether the varied-CNO opacities will be to these varied-CNO opacities will neither be read in from files names given by appending '.CtoN', '.COtoN', and '.C to the name given by the input CF_HZ , and will 1 available to use with the opacity-calculating subro OPAL_X_CNO_FU (or OPAL_F_CNOU) described above. tracter variable (or string constant) giving the name of the opaL_X_CNO_FU (or OPAL_F_CNOU); a blank input strip peans that no such file will be read in or used the subro opacities will be read in for pith OPAL_X_CNO_FU (or OPAL_F_CNOU); a blank input strip peans that no such file will be read in or used </pre>	Page 22/71 all. ne OPAL ating ile inot the OLD if none 2006) or. extend lating ed by). (2006) or. used: or used. s with CNOtoNe' oe outine of a r use ing
A more det I_MOL = flag wil al. wil pos one (se cal cas if opa thi If rea is to [O/ are Th For t 0 1	<pre>ailed description of I_MOL and its allowed values</pre>	<pre>H THIS): zities son et file en all e first ed case a prior or the 0.1 mass H THIS): zities son et first exemption ases was FEBRACK es so as zified these 0.1 mass H THIS): set the net first exemption ases was FEBRACK es so as zified these hereform ases was FEBRACK es the first ases was first ases was</pre>
4	<pre>= similar to I_MOL = 1, but set edge factor FKAEDGE f for too much "excess-CO": abs(exC) + abs(exO) > where CO_lim = 0.2 * max(Z , 0.0001 , Z + exC +</pre>	co zero CO_lim exO)

_

z xcotrin manual

Page 23/71

Sep 00, 07	19.05		5/1
	For t 0 1	<pre>[this will not be done if you just call the subroutine KAPFERG (which does not know what Z, exC, and exO are), but it WILL be done for any other subroutine, including KAP_MOL, KAPFERG, and any calls to molecular opacity routines from OPAL-opacity calculating subroutines]. he (OLD) Alexander & Ferguson 1994 case: = do not use low-T molecular opacities at all. = the molecular opacities are read in; arbitrary values of XZCO will be allowed at X = 0, and XZCO < 0.1 will be allowed at all X (the edge factor FKAEDGE will go to zero for XZCO > 0.15 at X > 0.03).</pre>	
	2	<pre>FKAEDGE to zero as XZCO increases from 0.1 to 0.15, even for X = 0.</pre>	
	4	Alexander tables were available (0.0001 < XZCO < 0.03, the original table range), and set the edge factor FKAEDGE to zero for XZCO < 0.00005 or XZCO > 0.05. = similar to I_MOL = 3, but set edge factor FKAEDGE to zero	
	Ton b	the set of	
	For be -1	<pre>>th types of molecular opacities: = read in the molecular opacities, but do not use them to extend the OPAL opacities to low T when using the OPAL opacity-calculating subroutines described above [the molecular opacities can be accessed by the subroutine KAP_MOL (or KAPFERG or KAPALEX), described further balant Otherwise care of L MOL = 1</pre>	
	-2 -3 -4	= same as I_MOL = -1, with Z-constraints as for I_MOL = 3 = same as I_MOL = -1, with Z-constraints as for I_MOL = 3 = same as I_MOL = -1, with Z-constraints as for I_MOL = 4	
	Other	input values of I_MOL allow one to specify precisely which	
	Fergu	son et al. 2005 case to read in (note that for the following	
	cases	, NO [O/Fe]-molecular-opacity-shifts will be done):	
		EXCEPT: only the Ferguson et al. 2005 case specified by a previous call to SET ALEX FILE is looked for.	
	21	thru 24, or -21 thru -24 : same as 1 thru 4 or -1 thru -4,	
	31	EXCEPT: only the Ferguson GN93 case is looked for thru 34, or -31 thru -34 : same as 1 thru 4 or -1 thru -4, EXCEPT: only the Ferguson GS98 case is looked for	
	41	thru 44, or -41 thru -44 : same as 1 thru 4 or -1 thru -4,	
	51	EXCEPT: only the Ferguson L03 case is looked for thru 54, or -51 thru -54 : same as 1 thru 4 or -1 thru -4,	
	61	thru 64, or -61 thru -64 : same as 1 thru 4 or -1 thru -4,	
	71	EXCEPT: only the Ferguson S92 case is looked for thru 74, or -71 thru -74 : same as 1 thru 4 or -1 thru -4,	
	81	EXCEPT: only the Ferguson S92AE case is looked for thru 84, or -81 thru -84 : same as 1 thru 4 or -1 thru -4, EXCEPT: only the Ferguson GS98- 2 case is looked for	
	91	thru 94, or -91 thru -94 : same as 1 thru 4 or -1 thru -4,	
	101	EXCEPT: only the Ferguson GS98+.2 case is looked for thru 104 or -101 thru -104 : same as 1 thru 4 or -1 thru -4,	
	111	thru 114 or -111 thru -114 : same as 1 thru 4 or -1 thru -4,	
	121	thru 124 or -121 thru -124 : same as 1 thru 4 or -1 thru -4,	
	991	EXCEPT: only the Ferguson GS98+.8 case is looked for thru 994 or -991 thru -994 : same as 1 thru 4 or -1 thru -4, EXCEPT: only a user-specified Ferguson case is looked for (as previously set by calling SET_FERG_USER).	

z xcotrin manual

SUBROUTINES TO CONTROL THE DETAILS: MOST USERS WILL NOT NEED TO USE THESE: ******* NOTE that the opacity-reading subroutines described above call various versions of the subroutines described below; for example, calling READ_BASIC_OPAL_OPAC(IU, Z, CF_HZ, OFEBRACK, CF_OFE) does the equivalent of: CALL SET_ALTMIX_MAIN_FILE(CF_HZ) CALL SET_OFE_FILE(CF_OFE) CALL SET_ALTMIX_OFE_FILE(CF_OFE) CALL READZEXCO(-9, -1.0, z, -1.0, khighz, IU, OFEBRACK) with a value of khighz determined by the inputs CF_HZ and OFEBRACK; likewise, calling READ EXTENDED OPAC(IU,Z,CF HZ,OFEBRACK,CF OFE,I MOL,I COND,I CNO,CF USER) does the equivalent of: CALL SET ALTMIX MAIN FILE(CF HZ) CALL SET_OFE_FILE(CF_OFE) CALL SET_ALTMIX_OFE_FILE(CF_OFE) CALL SET_CNO_FILES('','','','', CF_USER) CALL READZEXCO(-9, -1.0, Z, -1.0, khighz, IU, OFEBRACK) CALL READ_BEST_MOL(IU, I_MOL, CF_HZ, OFEBRACK) IF (IABS(I_COND) .GT. 1) THEN CALL READ_COND_POT(IU) ELSE IF (I_COND .NE. 0) THEN CALL READCOND(IU) ENDIF CALL SET_COND_USE(MIN(1,MAX(0,I_COND)), 99) where the value of khighz is determined by the various inputs. Likewise, the opacity-calculating subroutines OPAC, OPAL, OPAL_X_CNO_FU, and OPAL_F_CNOU will call OPAL_F_XCON_CNOU, which then calls one or more of the subroutines OPAL_K_ONLY, KAPCOND, KAPFERG, KAPALEX described below. _____ Other subroutines that interpolate among the OPAL or other opacities: *** OPAL_K_ONLY(Z, XH, EXC, EXO, SLT, SLR, FCN, FCON, FCNONE, FU) This is _____ almost the same as OPAL_F_CNOU, with the same meaning for the inputs, EXCEPT that it will only return the OPAL opacities (i.e., it ignores molecular opacities and conductive opacities, whether or not these have been read in). *** KAPFERG(slt, slr, xh, z, exC, exO, FLKA, DLKATR, DLKARO, DLKAT, FKAEDGE) _____ This routine interpolates and returns the Ferguson et al. 2005 molecular opacity (provided that a set of these opacities has been read in) [NOTE that if these Ferguson et al. 2005 molecular opacities are available, then the Alexander & Ferguson 1994 molecular opacities are not, and vice versa]: slt, slr, xh, z, exC, exO = (real) input values, as in subroutine OPAL. FLKA = (real) variable returning Log(kappa), equivalent to OPACT DLKATR = (real) variable returning dLoq(kappa)/dLoq(T) at constant R, equivalent to DOPACT DLKARO = (real) variable returning dLog(kappa)/dLog(RHO) at constant T,

Sep 06, 07 19:03	z_xcotrin manual	Page 25/71
equiva DLKAT = (real) va equival FKAEDGE = (real)	<pre>lent to DOPACR riable returning dLog(kappa)/dLog(T) at c ent to DOPACTD variable returning the edge factor equiv</pre>	onstant density,
<pre>*** CACHEFERG(ksto,</pre>	<pre>xh, xzco) This subroutine caches Z- and Ferguson et al. 2005 molecula a LARGE number of low-termperature opacit same Z and X values, this can speed up th storage index, 1 or 2, of the cache stora of Z- and X-interpolated opacities can b d X2,Z2). drogen mass fraction to use. exO, (real) total metal mass fraction to</pre>	X-interpolated r opacity values ies must be e evaluation]. ge area (only e cached, at use.
*** KAP_MOL(slt, slr	, xh, z, exC, exO, FLKA, DLKATR, DLKARO,	DLKAT, FKAEDGE)
This routine just c depending on which	alls either KAPFERG (see above) or KAPALE type of molecular opacities are available	X (see below),
*** KAPALEX(FLT, FLR	O, X, XZCO, FLKA, DLKAT, DLKARO, FKAEDGE) This routine - interpolates
and returns the Ale these opacities hav these Alexander & F Ferguson et al. 200	xander & Ferguson 1994 molecular opacitie e been read in from the file 'Alexopac') erguson 1994 molecular opacities are avai 5 molecular opacities are not, and vice v	s (provided that [NOTE that if lable, then the ersa]:
<pre>FLT = log(T) = SL FLRO = log(RHO) = X = hydrogen mass XZCO = Z + exC +</pre>	T + 6.0 SLR + 3.0 * SLT fraction (the same as XH above) exO = 1 - X - Y = the total mass fraction than helium (note that the Alexander & Fe s are available only as a function of tem hydrogen abundance, and metallicity) iable returning Log(kappa), equivalent to riable returning dLog(kappa)/dLog(T) at c ent to DOPACTD ariable returning dLog(kappa)/dLog(RHO) a lent to DOPACR variable returning the edge factor, equiv	of elements rguson 1994 perature, OPACT onstant density, t constant T, alent to FEDGE
*** እርጅ ፤ እርሞ እ፤ ምን ምንሮ	ד (העארהכר היידסא היידסא נו היידעאה	DCF) To give
the detailed edge f	actors for the molecular opacities (which of FKAEDGE, as returned by KAPFERG or KA	yielded the PALEX above):
FKAEDGE = real va defin FTRA = real varia is defin FTRA_LO = real va edges FTRA_HI = real va edges FZKAEDGE = real v mann subr	riable returning the final overall edge f ed as FKAEDGE = FTRA * FZKAEDGE . ble returning the temperature-density edg ed as FTRA = min(FTRA_LO , FTRA_HI) . riable returning the edge factor for the of the molecular opacity tables. riable returning the edge factor for the of the molecular opacity tables. ariable returning the molecular Z-edge fa er determined by the value of KALEX as outine READ_EXTENDED_OPAC (or SET_ALEX_	actor; it is e factor, which low T, low RHO high T, high RHO ctor, in the set by the USE below).

Sep 06, 07 19:03	z_xcotrin manual	Page 26/71
*** SET_ALEX_USE(and how; it may	KALEX) This allows the user to control whe opacities that were read in will ac be called at any time to change this behavio	ther molecular tually be used, r:
KALEX = integ if	er input flag controlling handling of molecul KALEX > 0, then the OPAL-opacity-calculating use the molecular opacities (if	ar opacities: subroutines will they have been
if	read in) as an extension to low KALEX < 0 or KALEX = 0, then the OPAL opacity subroutines will ignore the mol whether or not they have been r subroutine KAPFERG or KAPALEX w	er T; -calculating ecular opacities ead in (but the vill still work).
Spe fac or	cific values for KALEX control the molecular- tor, whether called from OPAL-opacity-calcula from the subroutines KAPFERG or KAPALEX:	opacity Z-edge ting subroutines
1	<pre>: (DEFAULT) For Ferguson et al. 2005 opacitie factor FZKAEDGE is unity for XZCO < 0.10 a goes to zero for XZCO > 0.12; but for the opacities, FZKAEDGE is unity for X = 0 at XZCO < 0.10 at all X, and it goes to zero and X > 0.03 (note that XZCO = 1 - X - Y =</pre>	s, the Z-edge t all X, and Alexander 1994 all XZCO and for at XZCO > 0.15 Z + exC + exO).
2	: For Ferguson et al. 2005, same meaning as K for Alexander 1994, FZKAEDGE goes to zero at all X.	ALEX = 1; but for XZCO > 0.15
3	: For Ferguson et al. 2005, same meaning as K for Alexander 1994, restrict to the region were available (not extrapolated or otherw FZKAEDGE = 1.0 for 0.0001 < XZCO < 0.03, FZKAEDGE = 0.0 for XZCO < 0.00005 or XZC	ALEX = 1; but s where tables vise created): and goes to 0 > 0.05.
4	<pre>: FOR THE OPAL-OPACITY-CALCULATING SUBROUTINE for BOTH the Ferguson et al. 2005 and the cases: multiply the FZKAEDGE value from ca factor that is unity if exC and exO ar and which goes to zero if abs(exC) + abs(for CO_lim = 0.2 * max(Z , 0.0001 , Z + [Note that this constraint cannot be appli which does not know the separate values of (but only their sum XZCO); thus, for calls itself, KALEX = 4 has the same effect as K</pre>	S and KAPFERG: Alexander 1994 se 3 above by a e both zero, exO) > CO_lim exC + exO) . ed in KAPALEX, Z, exC, exO to KAPALEX ALEX = 3.]
-1	: Same as KALEX = -1. thru -4 : molecular opacities should NOT be u opacity-calculating routines, even if they same as 1 thru 4 when KAPFERG is called ex same as 1 thru 3 when KAPALEX is called ex	sed by the OPAL are read in; plicitly; plicitly.
-9 -99	: Set KALEX to its default value of 1. : Leave the current value of KALEX unchanged.	1 1
*** ASK_ALEX_USE(flags that cont	KALEX, KALEX_AVAIL, ITYPE) This subroutine current value o rol the use of molecular opacities (see SET_A	returns the f these integer LEX_USE above):
KALEX = integ KALEX_AVAIL =	er variable returning the value of KALEX as i integer variable returning a flag value tell which) molecular opacities are actually av 0 : not available (molecular opacities n 1 : Alexander & Ferguson 1994 molecular available (the file 'Alexopac' has subroutine KAPALEX can be used to opacities, and if KALEX > 0 then t used to extend the OPAL opacities 2 : some set of Ferguson et al. 2005 mol is available; subroutine KAPFERG c	n SET_ALEX_USE. ing whether (and ailable: ever read in). opacities are been read in): return Alexander hese will be to low T. ecular opacities an be used to

z xcotrin manual Sep 06, 07 19:03 Page 27/71 return these, and if KALEX > 0 then these will be used to extend the OPAL opacities to low T. ITYPE = integer variable returning a flag value, whose meaning depends on which type of molecular opacities are available: ITYPE = ITYPE_FERG for Ferguson et al. 2005 molecular opacities: the index of the (last) type of Ferguson opacities that were read in (note that if several types of Ferguson opacities were combined using READ_ADD_FERG or ADDFILE_FERG, the index refers to the last type to be read in and combined): 1 = case specified by CFILE_ALEX (see SET_ALEX_FILE below), 3 = GS98 case, 4 = L03 case,2 = GN93 case, 6 = S92 case, 7 = S92AE case, 5 = AGS04 case,8 = GS98-.2 case, 9 = GS98+.2 case, 10 = GS98+.4 case, 11 = GS98+.4 case, 12 = GS98+.8 case, 99 = user-specified case (see SET FERG USER above). ITYPE = IRHOSW for Alexander & Ferguson 1994 molecular opacities: integer variable returning a flag value telling whether there is a density switchover between OPAL and Alexander opacity tables (as well as the temperature switchover which must be present) [see subroutine SET ALEX DO RHOSW described further below; note Ferguson et al. 2005 opacities NEVER have a density switchover]. *** KAPCOND(FLRO, FLT, X, Y, XCN, XON, XNEHEAVY, FMUAINV, FMUEINV, ZSQBAR, IDER, FLKC, FLKCT, FLKCRO, FKCEDGE, FKCOK) This subroutine calculates and returns the conductive opacities. If the file 'condall06.d' was read in, use the Potekhin et al. 2006 tables; whether RMS or linear mean ionic charge is used depends on IDER (see below), where $Zion(rms) = (\langle z^2 \rangle)^0.5 = sqrt(ZSQBAR / FMUAINV)$ $Zion(linear) = \langle z \rangle$ = FMUEINV / FMUAINV Alternatively, if the file 'Condopac' was read in instead, use the Hubbard & Lampe 1969 tables, possibly extended and modified by formulae of Itoh et al. 1983 and Mitake et al. 1984, depending on the value of IDER (see below). FLRO = log(RHO) = SLR + 3.0 * SLTFLT = loq(T) = SLT + 6.0X = hydrogen mass fraction (the same as XH above). Y = helium mass fraction. XCN = Xc + Xn / 2 = effective total carbon mass fraction. XON = Xo + Xn / 2 = effective total oxygen mass fraction.XNEHEAVY = Xne + Xheavy = mass fraction of elements heavier than oxygen [by definition, X + Y + XCN + XON + XNEHEAVY = 1]. FMUAINV = 1 / mu_A = SUM_i { X_i / A_i } (for all elements i in the mix -note that X_i is the mass fraction and A_i the atomic weight); if FMUAINV < 0.0, then an approximate value is calculated from the input values of X, Y, XCN, XON, and XNEHEAVY. FMUEINV = 1 / mu_e = SUM_i { X_i * z_i / A_i } (for all elements i in the mix -- note that z_i is the atomic number of element i); if FMUEINV < 0.0, then an approximate value is calculated. ZSQBAR = <z^2> / mu_A = SUM_i{ X_i * (z_i)^2 / A_i } (for all elements i in the mix); this is the mean square ionic charge <z^2> divided by mu_A (i.e., multiplied by FMUAINV) for the mixture; if ZSQBAR < 0.0, then an approximate value is calculated. IDER = flag controlling which conductive opacities are returned. For the (DEFAULT) Potekhin 2006 ('condall06.d') case: 1 : bi-quadratic interp, Zion = (<z^2)^0.5, with derivatives; NOTE: $Zion(rms) = (\langle z^2 \rangle)^0.5 = sqrt(ZSQBAR / FMUAINV);$ if it is necessary to extrapolate in log(Zion), do linear extrapolation using the (quadratic) slope at the edge of the matrix; if it is necessary to extrapolate in logT or

Sep 06, 07 19:03	z_xcotrin manual	Page 28/71
	logRHO, do linear extrapolation using the slope of points at the edge of the matrix (this linear formu mixed with a quadratic if one moves inside the edge the matrix; full bi-quadratic occurs one grid-space inside the edge).	the 2 la is of Ing
0 -1	<pre>: bi-quadratic interp, Zion = (<z^2)^0.5, derivative<br="" no="">: use the Potekhin-website formulae, Zion = (<z^2)^0.5, derivatives [uses linear interpolation in log(Zion) extrapolate linearly using slope at edge of matrix. (This cubic interpolation from the Potekhin-website 'condint.f' is slower than bi-quadratic interpolation and may be slightly noisier when using single preci- real variables, but yields similar results).</z^2)^0.5, </z^2)^0.5,></pre>	<pre>with]; file fon, lsion</pre>
-2 -3 -4	<pre>: bi-quadratic interp, Zion = <z>, with derivatives; NOTE: Zion(linear) = <z> = FMUEINV / FMUAINV . : bi-quadratic interp, Zion = <z>, no derivatives. : Potekhin-website formulae, Zion = <z>, with derivatives.</z></z></z></z></pre>	<i>r</i> es.
	<pre>: combine as necessary, with derivatives: use "H&L" at</pre>	lower region
-1 -2 -3 -4 NOTE: " is N. I plus S. FLKC = (real) FLKCT = (real den ret FLKCRO = (rea te FKCEDGE = (rea	: get "Itoh" conductive opacities only (no derivatives) : get possibly-modified "H&L" opacities only (no derivatives) : get "Itoh" conductive opacities only (with derivatives) : get possibly-modified "H&L" only (with derivatives) !H&L" is W. B. Hubbard & M. Lampe 1969, ApJS 163, 297; ' toh, S. Mitake, H. Iyetomi, & S. Ichimaru 1983, ApJ 273 Mitake, S. Ichimaru, & N. Itoh 1984, ApJ 277, 375. variable returning Log(Kappa_cond), equivalent to OPAC) variable returning dLog(kappa_cond)/dLog(T) at constant sity, equivalent to DOPACTD (note that a value of 0.0 we curned if IDER indicates derivatives should not be calculated al) variable returning dLog(kappa_cond)/dLog(RHO) at constant emperature, equivalent to DOPACR eal) variable returning the edge factor, equivalent to H or FTREDGE (note that conductive opacities have no metal restrictions); but a negative value is returned for regional	atives) es) 'Itoh" 3, 774 CT ant vill be alated) astant FEDGE Llicity ions
n V FKCOK = (real whi OPA OPA	nore than one grid-spacing off the edge of the matrix, a value of -99999.0 is returned if conductive opacities an available. () variable returning a somewhat less restrictive edge f () ch is a better indicator of whether the returned conduct acity is good enough to combine with (or extend) the race () acity.	und a re not factor, stive liative
*** KAP_COND_POT(FLRO, FLT, ZION, IDER, FLKC, FLKCT, FLKCRO, FKCEDGE, H	KCOK)
This subroutine opacities (if t	e calculates and returns the Potekhin et al. (2006) cond they were not read in, it returns, indicating out-of-rar	luctive
FLRO = log(RH FLT = log(T) ZION = Zion, mixt It i IDER = flag c 1 :	<pre>HO) = SLR + 3.0 * SLT (density, logarithm to the base = SLT + 6.0 (temperature, logarithm to the base the mean ionic charge (the user must calculate this for sure, e.g. the rms nuclear charge weighted by number der a fatal error if Zion < 0.1 or Zion > 130. controlling which conductive opacities are returned: bi-guadratic interpolation, with derivatives; switched</pre>	<pre>ise 10) ise 10) their isity).</pre>
0 : _1 :	to linear extrapolation at matrix edge. bi-quadratic interpolation, no derivatives. use the Potekhin-website formulae, with derivatives [] interpolation in log(Zion), cubic interpolation in l logRHO]; linear extrapolation via slope at matrix ed	linear LogT, lge.

Sep 06, 07 19:03	z_xcotrin manual	Page 29/71
FLKC, FLKCT,	FLKCRO, FKCEDGE, FKCOK : (real) variables returning in KAPCOND above.	values as
*** SET_COND_USE will be handled	(KCOND, KREPLACE_ITOH) This subroutine allows the control the way conductive d; it may be called at any time to change this behavi	user to opacities or:
KCOND = inter KCOND = inter 0 -9 -9 -99 KREPLACE_ITO	<pre>ger input flag controlling handling of conductive opa : (DEFAULT): if a conductive-opacity file has been re then the conductive opacity will be combined with OPAL opacity to yield the overall opacity value w opacity routines are called (and also used to ext OPAL opacity to higher density). : even if a conductive-opacity file has been read in, conductive opacities will be ignored when computi opacities (i.e., the conductive opacities can onl accessed by the subroutine KAPCOND described abov : reset to the default value of 1. : leave the present stored value of this flag unchang H = integer input flag controlling how conductive opa are calculated: 99 : (DEFAULT) use the most recent/best conduc</pre>	cities: ad in, the hen OPAL end the the ng OPAL y be e). ed. cities tive logT, (rms). cubic lation in ogT,
	<pre>where Zion = (<z^2>)^0.5 (rms). 0 : use bi-quadratic interpolation in logRHO,</z^2></pre>	<pre>logT, mean). cubic lation in ogT,).</pre>
	 0: use the 1983/1984 'Itoh' conductive opaci modify and extend the 'H&L' ones. -1: use only these 'H&L' conductive opacities 1983/1984 'Itoh' ones. 	ties to , not the
*** ASK_COND_USE 	(KCOND, KCOND_AVAIL, KREPLACE_ITOH) This returns t of these integ he use of conductive opacities (see SET_COND_USE abov	he values er flags e):
KCOND = inte KCOND_AVAIL	<pre>ger variable returning the value of KCOND as in SET_C = integer variable returning returning a flag value t whether the conductive opacities are actually ava 0 : not available (NO conductive opacities have been read in).</pre>	OND_USE. elling ilable: ever
KREPLACE_ITO	1 : H&L 1969 conductive opacities have been read 2 : Potekhin 2006 conductive opacities have been H = integer variable returning the value of KREPLACE_ in SET_COND_USE above.	ın. read in. ITOH as
[NOTE: if KCON	D_AVAIL > 0, then the subroutine KAPCOND can be used	to get

Sep 06, 07	19:03	z_xcotrin manual	Page 30/71
conductiv be used t	ve opacities, to extend the	and if KCOND > 0 then these conductive op OPAL opacities to high RHO.]	acities will
=== 01 ==	her subroutin	es that may be used when reading in opaci	===== ties: =====
*** SET_ALI file whos NOTE: A	X_FILE(CFILE 	ALEX, I_FULL_PATH) This subroutine allo to specify a molecul en changed, or which is in a different di that you specified via SET_MOL_DIR will b	ws the user ar opacity rectory. e DISCARDED.
CFILEAD	LEX = characte name inpu then spec For (opt file PATH = intege 0 : 1 :	r variable or string constant giving a not for the molecular opacity file(s); NOTE t string CFILEALEX ends with a slash (' it will be treated as a directory (or su ification and the default filename will b Ferguson et al. (2005) molecular opacitie ional) directory specification may be fol name beginning-part (as in SET_FERG_USER r flag indicating how this should be inter (DEFAULT): look for molecular opacity file same directory as the OPAL opacity file subdirectory thereof, if CFILEALEX cont subdirectory specification). just look for file(s) called (or whose name with) CFILEALEX (i.e., either the file(the local directory, or else the string includes any required directory pathname	n-default that if the /'), bdirectory) e appended. s, the lowed by a just below). rpreted: e(s) in the s (or a ains a mes start s) are in CFILEALEX e).
*** SET_FEN	RG_USER(CBEG_ ne Ferguson et	FERG) This subroutine allows the user to beginning-part of the names for a al. (2005) molecular opacities:	o set the non-default
CBEG_F1	CRG = characte the fi separa (for t '103.' 'gs98+ AGS04, GS98+. the on '.' at [Note th by a s	r variable or string constant giving the le names, including at the end any dot (' tes beginning part from the X-value in the he default mixes, CBEG_FERG would be 'ags04.' 's92.' 's92ae.' 'gs982.' .4.' 'gs98+.6.' or 'gs98+.8.' for GN9 S92, S92AE, GS982, GS98+.2, GS98+.4, G 8 mixes, respectively note that the G ly one of these that would not have the s the end of the CBEG_FERG value). at this mix-specification may optionally is ubdirectory-specification, e.g., 'f05_gs9	Deginning of .') that e filename 'g' 'g98.' 'gs98+.2.' 3, GS98, L03, S98+.6, or N93 mix is eparating dot be preceded 8/g98.']
*** ASK_FEN	RG_USER(CBEG_	FERG) This subroutine returns the value calling SET_FERG_USER as describe	stored by d just above.
CBEG_FI	RG = characte	r variable, to return the file-name begin:	ning.
*** SET_FEN	G_ACC(IACC) are interpol	This subroutine allows one to change the with which the Ferguson et al. (2005) m ated (YOU SHOULD NOT DO SO):	e accuracy olecular
IACC =	(integer) fla	g value controlling the accuracy:	

<pre>1 : (DEFAULT): when there is a large opacity jump between two adjacent grid-points at low temperature (logT < 3.48), avoid the large overshoot that would result just outside these grid-points from the usual biquadratic interpolation. 0 : (NOT RECOMMENDED!): just use usual biquadratic interpolation, which wields genericate approximation at logT < 2.49</pre>
but which can lead to errors of order a factor of 2, or even occasionally of more than an order of magnitude.
*** ASK_FERG_ACC(IACC) This subroutine returns the value of IACC presently STATE in use, as per the subroutine SET_FERG_ACC above.
IACC = integer variable to return the value of the flag IACC.
*** READ_BEST_MOL(IU, I_MOL, CF_HZ, OFEBRACK) If I_MOL is non-zero, this subroutine tries to read the molecular opacities that best match the OPAL opacities specified by CF_HZ
and OFEBRACK (see subroutine READ_EXTENDED_OPAC further above): IU, I_MOL, CF_HZ, OFEBRACK : same as in READ_EXTENDED_OPAC further above.
*** READFERG(IU) This subroutine reads in the default set of Ferguson et al. (2005) molecular opacities. Ths subroutine just calls the subroutine READ_ADD_FERG(IU, 0.0, 1.0, 0) below:
<pre>IU = (integer) Fortran unit number to use; a value of 5 or of 6 will be reset to 7, and a negative value means "use the default of 23 or the previous specified Fortran unit".</pre>
*** ADDFILE_FERG(IU, F_STO, F_READ, CFILEFERG, I_FULL_PATH) This subroutine reads in a set of Ferguson et al. (2005) molecular opacities, as specified by the user, optionally combining them with a previously-input set (it is a fatal error if the specified Ferguson opacity files are not found):
<pre>IU = (integer) Fortran unit number (as in READFERG above). F_STO = (real) value by which to multiply already-stored logKappa values, before adding the logKappa values newly read in; use F_STO = 0.0 to just read in a new set of opacities (if no Ferguson molecular opacities have been read in previously, then the input value of F STO is ignored, and a value of 0.0 is used).</pre>
<pre>F_READ = (real) value by which to multiply the logKappa values read in from the specified files; typically, F_READ = 1.0 is combined with F_STO = 0.0 to just read in a new set of opacities (a value of F_READ = 0.0 returns without reading anything).</pre>
CFILEFERG = character variable or string constant giving the beginning of the Ferguson et al. (2005) molecular opacity filenames (as in SET_ALEX_FILE or SET_FERG_USER above); this specifies
<pre>I_FULL_PATH = integer flag indicating how this should be interpreted (as in SET_ALEX_FILE above): 0 : (DEFAULT): look for molecular opacity file(s) in the same directory as the OPAL opacity files (or a</pre>
subdirectory thereof, if CFILEFERG contains a subdirectory specification). 1 : just look for files whose names start with CFILEFERG (i.e., either the files are in the local directory, or else the string CFILEFERG includes any required directory pathname).
hursday September 06, 2007

z_xcotrin manual

Sep 06, 07 19:03

Page 31/71

31/71

Page 32/71

*** READ_ADD_FERG(IU, F_STO, F_READ, KTYPE_FERG) This subroutine reads in ----- a set of either default or non-default Ferguson et al. (2005) molecular opacities, as specified by the user, optionally combining them with a previously-input set (it is a fatal error if no Ferguson opacity files are found): IU, F_STO, F_READ = as in subroutine ADDFILE_FERG just above. KTYPE_FERG = flag indicating which molecular opacities should be read in: 0 : look for the first available set of Ferguson opacities, in the order 99,1,5,4,3,2,6,7,8,... of cases below: 1 : read the Ferguson mix that was specified previously by a call to SET ALEX FILE or ADDFILE FERG (see above). 2 : read the GN93 Ferguson mix 'g' --- if this is not found in the directory specified by SET_OPAL_DIR above (or by SET_ALEX_FILE above), look in the subdirectory 'f05_g93/' as well. 3 : read the GS98 Ferguson mix 'q98.' (also look in the subdirectory 'f05 gs98/') 4 : read the LO3 Ferguson mix '103.' (also look in the subdirectory 'f05_103/') 5 : read the AGS04 Ferguson mix 'ags04.' (also look in the subdirectory 'f05_ags04/') 6 : read the S92 Ferguson mix 's92.' (also look in the subdirectory 'f05_s92/') 7 : read the S92AE Ferguson mix 's92ae.' (also look in the subdirectory 'f05_s92ae/') 8 : read the GS98-.2 Ferguson mix 'gs98-.2.' (also look in the subdirectory 'f05_gs98-.2/') 9 : read the GS98+.2 Ferguson mix 'gs98+.2.' (also look in the subdirectory 'f05_gs98+.2/') 10 : read the GS98+.4 Ferguson mix 'gs98+.4.' (also look in the subdirectory 'f05_gs98+.4/') 11 : read the GS98+.6 Ferguson mix 'gs98+.6.' (also look in the subdirectory 'f05_gs98+.6/') 12 : read the GS98+.8 Ferguson mix 'gs98+.8.' (also look in the subdirectory 'f05_gs98+.8/') 99 : (actually, any value larger than 12): read the Ferguson mix specified previously by a call to SET_FERG_USER. -1 to -99 : first try the case abs(KTYPE_FERG) ; if it is not found, behave as if case 0 was specified. *** READALEX(IU) This subroutine just reads in the file 'Alexopac' (with _____ Alexander & Ferguson 1994 molecular opacities), using the Fortran unit IU (provided that this file has not already been read in). *** SET_COND_FILE(CFILECOND, I_FULL_PATH) This subroutine allows the user to specify a which conductive opacity file should be read in, and/or a file whose name has been changed, or which is in a different directory. ----NOTE: ANY DIRECTORY that you specified via SET_COND_DIR will be DISCARDED. ----NOTE: Calling this subroutine SET_COND_FILE causes any previously-stored conductive opacities to be DISCARDED at once. CFILECOND = character variable or string constant giving the revised name I_FULL_PATH = integer flag indicating how this should be interpreted: 0 : (DEFAULT): look in same directory as for OPAL files. 1 : just look for a file called CFILECOND.

z xcotrin manual Sep 06, 07 19:03 Page 33/71 *** SET_COND_INFLAGS(KCOND_FIX, KCOND_GAP, KCOND_HAVE) This subroutine sets ----- flags controlling how the 'H&L' conductive opacity tables are modified when they are read in (this will have an effect only if called BEFORE you read in the opacities): KCOND_FIX = integer input flag controlling an error-fix: 1 : (DEFAULT): remove an anomalously low Hydrogen conductive opacity value (at logT = 5.4, logRHO = -0.5). 0 : do not do this (NOT RECOMMENDED). -9 : reset to the default value of 1. -99 : leave the present stored value unchanged. KCOND_GAP = integer input flag controlling the "gap" in the 'H&L' tables, i.e., the density region where they do not extend to such low temperatures as they do at higher or lower densities: 1 : (DEFAULT): high-density 'Itoh' conductive opacities are used in this "gap" to improve the 'H&L' opacity there (beyond the edge of the 'H&L' tables) in order to improve the H&L-to-Itoh switchover at increasing density and low temperature (note that no input H&L values are modified, only the extrapolation region). 0 : this is not done: H&L tables are just extrapolated. -9 : reset to the default value of 1. -99 : leave the present stored value unchanged. KCOND_HAVE = integer input flag controlling whether the file 'Condopac' (or 'condall06.d') will be read in again: 1 : (DEFAULT): it will NOT be read in again (unless it has never been read in at all), even if you call the subroutine READCOND a second time, unless you change the filename by calling SET_COND_FILE. 0 : re-read the file 'Condopac' the next time you call the subroutine READCOND. -9 : if and only if you have changed the stored value(s) of KCOND_FIX or KCOND_GAP, re-read the file 'Condopac' the next time you call the subroutine READCOND. -99 : (equivalent to specifying the default value of 1). *** ASK_COND_INFLAGS(KC_FIX, KC_GAP, KC_FIX_N, KC_GAP_N) This subroutine ----- returns integer flag values (as may be set by the subroutine SET_COND_INFLAGS above): KC_FIX = integer variable returning the value of KCOND_FIX that was used the last time 'Condopac' was read in. KC_GAP = integer variable returning the value of KCOND_GAP that was used the last time 'Condopac' was read in. KC_FIX_N = integer variable returning the value of KCOND_FIX that will be used the NEXT time 'Condopac' is read in. KC_GAP_N = integer variable returning the value of KCOND_GAP that will be used the NEXT time 'Condopac' is read in. *** READ_COND_POT(IU) This subroutine just reads in the Potekhin 2006 ----- conductive opacity file 'condall06.d', using Fortran unit IU (provided that it has not already been read in). *** READCOND(IU) This subroutine just reads in either the Potekhin 2006 ----- conductive opacity file 'condall06.d' or the older H&L file 'Condopac', using Fortran unit IU (provided that conductive opacities have not already been read in). *** SET_OFE_FILE(cfileofe) The input character variable cfileofe can be

z xcotrin manual

------ used to set a user-specified filename containing non-CO-rich opacities with [O/Fe] > 0.0, similar to 'Alrd96a2', 'C95hz', or 'W95hz'. Only the filename (not the directory pathname) should be specified and the length of the filename MUST NOT exceed 8 characters. This filename is only used in the case khighz = 5, 15, 25, or 35 (see READZEXCO below).

- *** SET_ALTMIX_OFE_FILE(cfileofe) The input character variable cfileofe
 _------ can be used to set a user-specified
 filename containing non-CO-rich GS98 opacities with [O/Fe] > 0.0; the length
 of the name is only restricted by the fact that filename plus OPAL directory
 name cannot exceed 255 characters in total. This filename is only used in
 the case khighz = -5, -15, -25, or -35 (see READZEXCO below).
- *** SET_ALTMIX_MAIN_FILE(cfile_hz) The input character variable cfile_hz ______ can be used to replace the alternate main file 'GS98hz' with a user-specified filename; this new file will be assumed to have [O/Fe] = 0.0, i.e., a solar mix. The length of the name is only restricted by the fact that filename plus OPAL directory name cannot exceed 255 characters in total. This filename is used whenever khighz < 0 (see description in READZEXCO below); note that khighz = -2, -3, and -4 should NOT be used subsequently, unless this file replacing 'GS98hz' also has the Grevesse & Sauval 1998 mix.
- *** SET_CNO_FILES(cf_m, cf_c, cf_o, cf_n, cf_user) This subroutine can be ______ used to set the five alternate opacity filenames that can be used to obtain the CNO-interpolation opacity shifts (plus a user-specified case); the input character variables are only restricted by the fact that filename plus OPAL directory name can't exceed 255 characters in total (blank values mean "use default filenames"):
 - cf_m = a standard opacity file (with standard composition); the default used in READZEXCO is 'GN93hz' if khighz > 0, or else cfile_hz (e.g., 'GS98hz': see SET_ALTMIX_MAIN_FILE above) if khighz < 0 cf_c = an opacity file where most or all C (by number) has been converted to N; the default filename is cf_hz with '.CtoN' appended cf_o = an opacity file where most/all of both C and O have been converted to N; the default filename is cf_hz with '.COtoN' appended cf_n = an opacity file where all CNO has been converted to Ne; the default filename is cf_hz with '.COtoN' appended cf_user = a user-specified opacity file, with a composition that can be arbitrarily different from that in the file cf_hz; the default filename is cf_hz with '.user' appended

NOTE that the first four of these files (cf_m, cf_c, cf_o, cf_n) should all have the SAME number fractions for the elements heavier than Ne (only C,N,O, Ne should be interconverted in these CNO-interpolation files).

Note that as long as the files cf_m , cf_c , cf_o , and cf_n have compositions that are not linearly dependent (or close to it) in the 3-dimensional space of interconversion of C, N, O, and Ne, the CNO-interpolation should still work correctly. However, it has been tested only for the specific case described above.

*** SET_CNO_EXT(ie, ce_hz, ce_c, ce_o, ce_n, ce_u) This subroutine can default extensions for the CNO-interpolation files (which are used to decide on the default CNO-filenames); this can be used as an alternative to calling the subroutine SET_CNO_FILES. As noted above, these default extensions are ' ', '.CtoN', '.COtoN', '.CNOtoNe', '.user' respectively. Calling this

z xcotrin manual Sep 06, 07 19:03 Page 35/71 subroutine sets these default extensions to the values of the character variables ce_hz, ce_c, ce_o, ce_n, ce_u respectively. The integer ie controls the meaning of a blank input character value: ie = 0 : in all cases, a blank input character value means do not change the corresponding default extension (UNLESS YOU HAVE SOME VERY PECULIAR NAMING CONVENTIONS FOR CNO FILES, THIS IS THE ONLY CASE YOU ARE LIKELY TO NEED) but if any of the other input character values are blank, do not change these other corresponding default extension ie = 2 : if ce_c is blank, reset the corresponding extension to blank ie = 3 : if ce_o is blank, reset the corresponding extension to blank ie = 4 : if ce_n is blank, reset the corresponding extension to blank ie = 5 : if ce_u is blank, reset the corresponding extension to blank ie = 6 thru 10 : same as ie = 1 thru 5, respectively Note that an extension longer than 80 characters cannot be accommodated. *** SET METEOR MIX FILE(cfilemet) The input character variable cfilemet ----- can be used to set a user-specified filename containing a meteoritic mixture. This file is used ONLY to set the components of Z for a meteoritic mixture, which are available to the user but are not used in calculating any opacities. *** ASK_OPAL_FILE_USED(ITYPE, CF_USED) This subroutine returns the name of ______ the specified type of opacity file that was (or will be) used to read in the opacities: ITYPE = integer input flag controlling which file name is returned: -1 : the name of the OPAL directory CDIRIN. 0 : meteoritic-mix file CFILEMET (this file may not exist). 1 : the main mix file CF HZ. 2 : molecular opacities file CFILEALEX, including directory. 3 : conductive opacities file CFILECOND, including directory. 4 : the file 'GN93hz' (needed to correct Gz???x?? files). 5 : the non-zero-[O/Fe] file CF_OFE. 6 : the CNO-interpolation main mix file CF M. 7 : the CNO-interpolation C --> N file CF_C. 8 : the CNO-interpolation CO --> N file CF_O. 9 : the CNO-interpolation CNO --> Ne file CF N. 10 : the user-mix file CF_USER. CF_USED = character variable returning the filename specified by ITYPE. *** ASK_KHIGHZ_OFE(KHIGHZ_USED, OFEBRACK_USED) This subroutine returns the ----- values that were used when the subroutine READZEXCO was called to read in the opacities (directly or via READ_BASIC_OPAL_OPAC or READ_EXTENDED OPAC): KHIGHZ_USED = integer variable returning the value of KHIGHZ (see below). OFEBRACK USED = real variable returning the value of [O/Fe] that was used. *** READZEXCO(Nzin, Zlo, Z, Zhi, khighz, iulow, ofebrack) This subroutine ----- is used to read in the OPAL opacity files, allowing the user to control whether and how opacities will subsequently be interpolated in Z. Note that a new set of opacities (at a new Z-range or Z-value) can be read in at any time. The controlling input variables are:

Sep 06, 07 19:0)3	z_xcotrin manual	Page 36/71
Nzin	INTEGER: the nu	mber of metallicity values Z_i to be st	ored,
	for subsequen this is discu available Z-r	It Z-interpolation when OPAL or OPAC is ussed just below. Nzin = -9 means "use range around the input Z-value".	called; the widest
Zlo	SINGLE-PRECISIC be required;	N REAL: the lowest metallicity value th this is discussed just below.	at will
Z	SINGLE-PRECISIO	N REAL: the "typical" or central metall	icity
Zhi	SINGLE-PRECISIC be required;	N REAL: the highest metallicity value t this is discussed just below.	hat will
khighz	<pre>INTEGER: contro (and/or its e 'AGS04hz'), a khighz = 0:</pre>	ols the use of the C=O=0.0 opacity file equivalents with newer mixes, such as 'G and of the similar files having [O/Fe] > use of the file 'GN93hz' is prevented;	'GN93hz' S98hz' and 0.0: only for
	khighz = 1:	<pre>X < 0.75 is accurate X-interpolation a the file 'GN93hz' is used to obtain opa the C=O=0.0 mixes (i.e., opacities wit Z-interpolation), including the added X={0.2,0.5,0.8,0.9,0.95,1-Z} (i.e., al accurate X-interpolation up to X = 1-Z the mixes with C+O > 0.0, correspondin shifts are applied, for consistency.</pre>	vailable. cities for h better X-values lowing); for g opacity
	khighz = 2: khighz = 3: khighz = 4:	<pre>file 'Alrd96a2' with [O/Fe] = 0.3 \ is file 'C95hz' with [O/Fe] = 0.4 } ad file 'W95hz' with [O/Fe] = 0.5 / 'G if READZEXCO was called with a non-zer ofebrack, in order to interpolate in t oxygen/alpha-element enrichment [O/Fe]</pre>	used in dition to N93hz', o value of he excess
	khighz = 5:	the name of a file with non-zero [O/Fe] been set already, by calling the subro SET_OFE_FILE described below; it will instead of 'Alrd96a2', 'C95hz', or 'W9 interpolating in [O/Fe] (its [O/Fe] va be computed when it is read in; if it has [O/Fe] = 0.0, the resulting behavi defined and will surely be erroneous).	must have utine be used 5hz' when lue will actually or is not
	knighz = -1	thru -5: similar to khighz = 1 thru 5, that a different set of OPAL opacity f used, defining a different set of heav abundances to comprise the solar metal THE OLD FILE 'GN93hz' IS STILL REQUIRE but the opacities now stored are those new file with the same format (called by default), and this is the compositi is assigned a value of [O/Fe] = 0.0; k thru -5 likewise implies the use of fi [O/Fe] > 0.0 relative to the mix in 'G default 'GS98hz_OFe.3_Alrd96a2' at [O/ 'GS98hz_OFe.4_C95' at 0.4, 'GS98hz_OFe at 0.5, or user-defined for khighz = - subroutine SET_ALTMIX_OFE_FILE (see be main alternate solar-composition [O/Fe name can be changed from 'GS98hz' by c subroutine SET_ALTMIX_MAIN_FILE (see b this is done, khighz = -2 thru -4 shou used subsequently unless the replacement file still uses the Grevesse & Sauval rather, if one wishes opacities with a [O/Fe] value, one should do something call set_altmix_main_file('AGS04hz' call set_altmix_ofe_file('AGS04hz'	<pre>except iles is y-element licity Z. D AS WELL, from the 'GS98hz', on that highz = -2 les with S98hz': by Fe] = 0.3, .5_W95' 5 via the low). The]=0.0 file alling the welow); if ld not be nt main 1998 mix; non-zero such as:) 'e.5_W95')</pre>
	khiqhz = -11	ana then use khighz = -5. . thru -15, OR	

Sep 06, 07 19:0	z_xcotrin manual	Page 37/7
	<pre>11 thru 15: same as khighz = -1 thru -5 OR : except that CNO-interpolation opacity f: read in (if possible: uses the filenames CF_C, CF_O, CF_N" that can be set by cal SET_CNO_FILES: see below)</pre>	l thru 5, iles are s "CF_HZ, lling
	21 thru 25: same as khighz = -1 thru -5 OR except that a user-specified (OPAL) opac interpolation file is read in (if possil the filenames "CF_HZ, CF_U" that can be calling SET_CNO_FILES: see below)	l thru 5, city ole: uses set by
	<pre>khighz = -31 thru -35, OR 31 thru 35: same as khighz = -1 thru -5 OR except that BOTH the CNO- and user-spect opacity interpolation files are read in possible)</pre>	l thru 5, ified (if
iulow	<pre>INTEGER: the beginning Fortran unit number for reading of files; Fortran units iulow through iulow + 3 may b Zero or negative iulow values mean "use previous (or of value", where the default value is iulow = 23. A fata will result if iulow < 7 or iulow > 96 (unless you have the error level to 0, in which case these values are a (Note: unless the user explicitly calls READZEXCO, READCO, or READ_OPAL_DUMP, the default-setup call to b in OPAL will be executed, vielding the default iulow of</pre>	opacity oe used. default) al error ve set ignored). ADEXCO, READZEXCO of 23).
ofebrack	SINGLE-PRECISION REAL: the value of [O/Fe], the logarith oxygen (or alpha-element) enhancement factor, relative Sun: ofebrack = log10{ (O_mix/Fe_mix) / (O_sun/Fe_sun where O_mix, Fe_mix, O_sun, and Fe_sun are number dens If khighz = 0, 1, or -1, then ofebrack is ignored; of READZEXCO interpolates (or extrapolates) log(Kappa) 1: between mix 1 (or -1) and mix mod(khighz,10) , interp factors being such as to yield the desired [O/Fe] by of these mixes. Note: 'GN93hz' has [O/Fe] = 0.0 by defin 'Alrd96a2' has [O/Fe] = 0.3, 'C95hz' has [O/Fe] = 0.4 'W95hz' has [O/Fe] = 0.5, but they have different path enhancements for elements other than oxygen; their ele abundances and the corresponding opacity shifts are different below.	hmic to the h) } , sities. therwise, inearly polation combining hition, , and terns of emental iscussed
Discussion o	of Nzin, Zlo, Z, Zhi in calling the above subroutine R	======= EADZEXCO:
Z-interpolat The maximum given by the begin as "p requires abo values inclue Mb) still a	tion of opacity is actually carried out in terms of $log(2)$ number of z-values that can be stored (to interpolate at a value of the constant NZ in the parameter statements parameter (nz=". The maximum sensible value is NZ = 14 out 22.7 Mb of opacity matrix storage space. Other reasoned ade NZ = 8 (13.0 Mb) and NZ = 5 (8.1 Mb); a value of NZ = blows guadratic Z-interpolation while NZ = 2 (2.2 Mb) and	Z+0.001). nong) is that 4, which onable = 3 (4.9

Mb) still allows quadratic Z-interpolation, while NZ = 2 (3.2 Mb) allows only linear interpolation in $\log(Z+0.001)$; for NZ = 1 (1.6 Mb), the program behaves much the same as the earlier version of MAY 28, 1999 (or as if the subroutines READCO or READEXCO were used instead of READZEXCO).

If you have reduced the error-checking level to 0 (using SET_ERR_CHECK), then the input value of Nzin will be decreased if necessary so that it does not exceed NZ, the maximum available number of Z-storage values; otherwise, a value of Nzin > NZ or of Nzin < 1 is a fatal error, EXCEPT THAT Nzin = -9 means "use maximum possible value, i.e., as if Nzin = NZ". If necessary, the subroutine ASK_Z_LIMITS can be called to check the value of this hard-wired limit NZ, or the subroutine ASK_Z_USE can be called after READZEXCO to check the number of Z-values actually used (see below).

Page 38/71

Values of Zlo, Z, Zhi that are within 1.E-6 of one of the file z-values $\{0.0, 0.0001, 0.0003, 0.001, 0.002, 0.004, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1\}$ are generally reset to be exactly equal to that value (except that only the range [-1.E-6 , 1.E-8] is reset to be exactly zero). Any value of Zlo, Z, or Zhi greater than 0.1 is always a fatal error.

Significantly negative Z-values (below -1.E-6) mean "use default values":
if all three of Zlo, Z, Zhi are negative, then Z is reset to 0.02;
if only Z is negative, then it is reset to lie between Zlo and Zhi;
if Zlo and/or Zhi is negative, then the negative value(s) will be reset to "reasonable" values, according to the values of Nzin and Z.

If Nzin = 2, then the stored z-values are given by the input values of Zlo and Zhi; if both of these are negative, then a range +/- 10% in Z is used; if only one of them is negative, a total range of 20% in Z is used, or more if the remaining interval [Zlo,Z] or [Z,Zhi] is larger than this. The minimum allowed range is 1% in Z, or delta-Z = 1.E-5 for small Z values; this is a fatal error, unless you have reduced the error-checking level to 0, in which case the program quietly uses this lower limit. Likewise too large a range: Zlo < min{ 0.6 * Zhi , Zhi - 0.0002 } is a fatal error, unless you have reduced to 0, in which case the within [0.0,0.1]; BEWARE that large ranges yield inaccurate interpolation.

If Nzin > 2, then from the set of eight "largest-allowed-spacing" Z-values { z1=0.0, z2=0.001, z3=0.004, z4=0.01, z5=0.02, z6=0.03, z7=0.05, z8=0.1 }, choose the largest z_J and the smallest z_K such that z_J is no greater than Zlo and z_K is no less than Zhi; it is then a fatal error if Nzin < K - J, i.e., if the Z-range is too large for the given value of Nzin (unless of course you have reduced the error-checking level to 0, in which case arbitarily large ranges are accepted: BEWARE!). Also...

If Nzin > 2 , then: if a set of Nzin adjacent file z-values from the set
{ 0.0, 0.0001, 0.0003, 0.001, 0.002, 0.004, 0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.08, 0.1 } encompasses the range [Zlo,Z,Zhi] , then such a set of
Nzin z-values is used (as far as possible, it will be centered on Z): for
example, for Nzin = 3 , input Z-values [Zlo,Z,Zhi] = [0.01,0.02,0.03] or
[0.017,0.018,0.019] or [0.022,0.022,0.024] or [0.019,0.028,0.029] all yield
{ 0.02, 0.03, 0.04 }, while [0.021,0.028,0.029] yields { 0.02, 0.03, 0.04 }.

If Nzin = 3 and no set of 3 of the above file z-values will work, then the actual input values are used (except that, if the logarithmic interval from Zlo to Z is sufficiently different from that from Z to Zhi, the value of Z is reset to the logarithmic midpoint of Zlo and Zhi): for example, the input Z-value set [Zlo,Z,Zhi] = [0.012,0.024,0.04] yields { 0.012, 0.024, 0.04 }, while [0.012,0.015,0.04] yields { 0.012, 0.02208679, 0.04 }.

If Nzin > 3 and no set of Nzin of the above file z-values will work, then try whether a similar set that works can be obtained by removing (some of) the z-values that are not present in the C,O-rich OPAL opacity files Gz???.x??, which are available at { 0.0, 0.001, 0.004, 0.01, 0.02, 0.03, 0.05, 0.1 }; if such a set is found (with somewhat larger z-intervals), then it is used. Otherwise, endpoints Zlo and Zhi are used, with remaining z-values equally spaced in log(Z+0.001) between these endpoints.

****** NOTE that if you have set the error-level to 0, then there is NO UPPER LIMIT on the maximum allowed Z-range (except that it must lie in the range [0.0,0.1] where OPAL opacities are available), and thus QUITE INACCURATE Z-interpolation will occur if the input Z-range [Zlo , Zhi] is relatively large and Nzin (or NZ) is relatively small.

One or two of the Type-1 OPAL files can be read in (as specified by khighz

accuracy is GREATLY IMPROVED.

z xcotrin manual

Page 39/71

in your call to the opacity-reading subroutine READZEXCO). For example, call readzexco(14, 0.0, -1.0, 0.1, 1, 23, 0.0) will read in opacities at all Z-values from 0.0 to 0.1, reading additional opacities from 'GN93hz' (due to the value of khighz=1); Fortran units 23 through 26 will be used for input, and the opacities will have [0/Fe]=0.0 (solar composition for the abundances comprising Z). For non-CO-rich cases, this allows slightly improved Z-interpolation (for Z < 0.12) and slightly improved X-interpolation (for 0.03 < X < 0.75); for high hydrogen abundances (X > 0.75), such as may result from diffusion (e.g., helium settling), the

NOTE that only the version z14xcotrin21.f allows Nzin = 14 as in the above call; if one is using the less-memory-hogging version z5xcotrin21.f , then the above call would lead to a fatal error, unless you had reduced the error checking level, in which case it would lead to opacities being read in only for the Z-values Z = { 0.0, 0.00217, 0.00905, 0.0309, 0.1 }, yielding MUCH LESS ACCURATE Z-interpolation; USER BEWARE!!

For z1xcotrin21.f , only a SINGLE Z-value can be read in; the opacities from the files will be interpolated in Z while being read in, if necessary.

To read opacities in the widest available Z-range around some metallicity Z that is compatible with accuracy, one would use Nzin = -9, e.g., call readzexco(-9, -1.0, Z, -1.0, 11, 23, 0.0) This would read opacities with [O/Fe] = 0.0 in a range around Z that is determined by the value of NZ in the parameter statements in this file.

NOTE that if opacities have not already been read in, then the first time that an opacity-calculating subroutine is called (e.g., OPAC or OPAL), it will use "call readzexco(-9, -1.0, z, -1.0, 1, 23, 0.0)" to read in the opacities, i.e., basic opacities for the maximum reasonable Z-range (with [O/Fe] = 0.0 and no CNO-interpolation, only interpolation in "excess-C,O").

Subroutines used to control the switchover from OPAL to molecular opacities:

NOTE that the Ferguson and the Alexander switchover spcifications are entirely separate: only one will take effect at any time, namely, the one for which the corresponding molecular opacities have been read in.

z_xcotrin manual Sep 06, 07 19:03 Page 40/71 *** SET_LOGT_SW_FERG(FLTSW_LO, FLTSW_HI) Set the temperature-boundaries of ----- the switchover region from OPAL to Ferguson et al. (2005) molecular opacities (this subroutine can be called at any time, to change the switchover temperatures): FLTSW_LO = lowest logT of switchover region, where only Ferguson is used: -99.0 : leave current stored logT value unchanged. -50.0 : use the default value (of logT = 4.2). > -20 : use the input value FLTSW_LO, except that: it will not be lower than 3.75 (lowest T for OPAL), it will not exceed 4.45 (near highest Ferguson T). FLTSW_HI = highest logT of switchover region, where only OPAL is used: -99.0 : leave current stored logT value unchanged. -50.0 : use the default value (of logT = 4.4).
> -20 : use the input value FLTSW_HI, except that: it will not exceed 4.50 (highest Ferguson T), it will not be lower than 3.80 (near lowest OPAL). Note that in no case will FLTSW HI - FLTSW LO < 0.05 be allowed to occur (the values will be moved further apart if this happens). *** ASK_LOGT_SW_FERG(FLTSW_LO, FLTSW_HI) Return the current Ferguson logT ______ switchover values (as above). *** SET_LOGT_SW_ALEX(FLTSW_LO, FLTSW_HI) Set the temperature-boundaries of the switchover region from OPAL to Alexander & Ferguson 1994 molecular opacities (this subroutine can be called at any time, to change the switchover temperatures): FLTSW_LO = lowest logT of switchover region, where only Alexander is used: -99.0 : leave current stored logT value unchanged. -50.0: use the default value (of logT = 3.87). > -20 : use the input value FLTSW_LO, except that: it will not be lower than 3.75 (lowest T for OPAL), it will not exceed 4.05 (near highest Alexander T). FLTSW_HI = highest logT of switchover region, where only OPAL is used: -99.0 : leave current stored logT value unchanged. -50.0 : use the default value (of logT = 3.97). > -20 : use the input value FLTSW_HI, except that: it will not exceed 4.10 (highest Alexander T), it will not be lower than 3.80 (near lowest OPAL). Note that in no case will FLTSW_HI - FLTSW_LO < 0.05 be allowed to occur (the values will be moved further apart if this happens). *** ASK_LOGT_SW_ALEX(FLTSW_LO, FLTSW_HI) Return the current Alexander logT ----- switchover values (as above). *** SET_ALEX_DO_RHOSW(IRHOSW) Set the flag controlling whether there is a ----- density-switchover too (in the temperature region where both OPAL and Alexander 1994 opacities are available, but where the OPAL opacities are available up to higher densities): IRHOSW = input integer flag: 1 : (DEFAULT): use a density-switchover region too. 0 : do not do so. -9: use the default value of 1.

-99 : leave the stored value unchanged.

Page 41/71

*** SET_LOGRHO_SW_ALEX(FLRHOSW_LO, FLRHOSW_HI) Set the density-boundaries ----- of the switchover region (for Alexander 1994 opacities) that is enabled/disabled by SET_ALEX_DO_RHOSW above (this can be called at any time, to change the switchover densities): FLRHOSW_LO = lowest logRHO of switchover region, where only Alexander used: -99.0 : leave current stored logRHO value unchanged. -50.0 : use the default value (of logRHO = -6.25). > -20 : use the input value FLTSW_LO, except that it will lie in the range $-14.0 < FLRHOSW_LO < -6.0$ FLRHOSW_HI = highest logRHO of switchover region, where only OPAL is used: -99.0 : leave current stored logRHO value unchanged. -50.0 : use the default value (of logRHO = -5.75).
> -20 : use the input value FLTSW_HI, except that it will lie in the range $-13.75 < FLRHOSW_HI < -5.75$ Note that in no case will FLRHOSW_HI - FLRHOSW_LO < 0.25 be allowed to occur (the values will be moved further apart if this happens). *** ASK_LOGRHO_SW_ALEX(FLRHOSW_LO, FLRHOSW_HI) Return current switchover _____ logRHO values (as above). *** SET_LOGT_RHOSW_ALEX(FLTSW_R_LO, FLTSW_R_HI) Set the temperature-bounds _____ below which the Alexanderto-OPAL density-switchover described above does not take place (due to the low-temperature limit of the OPAL opacities): FLTSW_R_LO = lowest logT of switchover region, where only Alexander used: -99.0 : leave current stored logT value unchanged. -50.0: use the default value (of logT = 3.70). allowed OPAL-extrapolation logT value), it will not exceed FLTSW_HI - 0.05 (see the subroutine SET_LOGT_SW_ALEX above). FLTSW_R_HI = highest logT of switchover region, where only OPAL is used: -99.0 : leave current stored logT value unchanged. -50.0 : use the default value (of logT = 3.80). > -20 : use the input value FLTSW_HI, except that: it will not exceed FLTSW_HI, it will not be lower than 3.75 Note that in no case will FLTSW_R_HI - FLTSW_R_LO < 0.05 be allowed to occur (the values will be moved further apart if this happens). *** ASK_LOGT_RHOSW_ALEX(FLTSW_R_LO, FLTSW_R_HI) Return density-switchover logT-bounds as above. _____ The subroutines that control the X-interpolation accuracy: _____ *** SET_XHI(kxhi) Set a flag telling whether or not to use the additional ------ 'GN93hz' X-values for more accurate X-interpolation (provided they are available, i.e., 'GN93hz' or 'GS98hz' has been read in). If kxhi = 2 , then a flag is set such that the 'GN93hz' X-values will be

Sep 06, 07 19:03	z_xcotrin manual	Page 42/72
If kxhi = 1	<pre>used whenever they are available (this is the DEF case, if you never call SET_XHI). Note that only X > 0.03 will the 'GN93hz' X-values affect the re interpolated opacity values. , then a flag is set such that the 'GN93hz' X-values used whenever they are available, but ONLY for va</pre>	'AULT ' at sulting will be alues of
If kxhi = 0	X > 0.7 (this yields faster but slightly less acc X-interpolation for X < 0.7, while retaining accu opacities for large X-values up to X = 1-Z (such arise from diffusive processes). , then a flag is set such that the 'GN93hz' X-values NOT be used, even when they are available (this r in only slightly poorer X-interpolation for X < C	wrate wrate as may will cesults 0.75,
Note that the 'C the 'GN93hz' fil with a non-zero that, strictly, (C=O=0.0); but c to a CO-enhancen increases from (<pre>but yields wildly incorrect opacities for very la values, i.e., for X approaching 1-Z). N93hz' X-values are available for X-interpolation ONL has been read in, i.e., if READZEXCO above has been value of khighz among its input parameters. Note a the 'GN93hz' X-values are defined only for non-CO-ric corresponding opacity shifts are applied for consisten ment of C+O = 0.2, these shifts being reduced to zero 0.2 to 0.3 and being ignored for C+O of 0.3 or more.</pre>	rge x Y if called lso h mixes cy up as C+0
*** ASK_XHI(kxhi,	, kavail) Returns INTEGER VARIABLE flags telling whe	ther they
are actually ava Returns kxhi v Returns kavail kavail	<pre>ilable at the moment: ralue as set most recently by SET_XHI above (i.e., ret</pre>	urns ove); i = 2 . .he ised for .cates. and what .ater).
======================================	ines that control the CNO and/or user-interpolation:	
*** SET_CNO_INTERF default, both ar relevant opacity If kcno > 0 , If kuser > 0	<pre>>(kcno, kuser) Set flags telling whether or not to CNO/user-interpolation opacity shift re used, providing they are available (i.e., providing files were read in: see flag khighz in READZEXCO a , then the CNO-interpolation opacity shifts will be u available); otherwise, they will be ignored , then the user-specified opacity shifts will be use available); otherwise, they will be ignored</pre>	use the s; by the bove). used (if ed (if
*** ASK_CNO_INTER	?(kcno, kuser, kcno_avail, kuser_avail) Returns INT VARIABLE fl	'EGER .ags to
indicate whether obtaining opacit Returns kcno, Returns kcno_	CNO/user-interpolation opacity shifts will be used w ies. kuser as set by SET_CNO_INTERP above (or their defa values of 1 if SET_CNO_INTERP was never cal avail, kuser_avail values of 1 if the corresponding files have been read in, or 0 i	when Mult .led) opacity .f not

z xcotrin manual

Page 43/71

The subroutines that control the level of error-checking:

*** SET_ERR_CHECK(LEVEL) This subroutine sets the error-checking level to ______ the given (integer) input value LEVEL: Level = 0 : Only minimal error checking is performed on inputs. A Z-value above 0.1 in the arguments to the opacity-reading subroutine READZEXCO is a fatal error, as is an inconsistent composition input to the opacity-calculating subroutines OPAC or OPAL; most other problematic input is handled or accepted silently, in a manner that ought to be reasonable (but no guarantees!). Level = 1 : This is the DEFAULT case (which will occur if you never call the subroutine SET_ERR_CHECK). At this level, error-checking is performed on the arguments of the subroutine READZEXCO (which one calls to read in the opacities). As described above in the discussion of Nzin, Zlo, Z, Zhi , it is a fatal error if Nzin < 1 or if Nzin is too large (exceeding the available number of Z-storage spaces). It is also a fatal error if the Z-range [Zlo, Zhi] is too small or too large. At this level, a warning will be issued if you call SET_ALTMIX_MAIN_FILE and subsequently use khighz = -2, -3, or -4 (see above), or if any filename exceeds 255 characters (or an extension exceeds 80). Level = 2 : At this level of error-checking, in addition: If the arguments to OPAC or OPAL lie too far outside the opacity matrices, it is a fatal error and the program halts (normally, such a case would simply be signalled by a zero returned value of FEDGE). Also, it is a fatal error if you call SET_ALTMIX_MAIN_FILE and subsequently use khighz = -2, -3, or -4 (see above), or if any filename exceeds 255 characters (or an extension exceeds 80). Level = 3 : At this level of error-checking, in addition: if you have read the CNO-interpolation opacity files, and you then call the subroutine OPAL_X_CNO_FU with a metals-composition array xmet with a size nmet other than 19 elements, it is a fatal error (you would NOT usually want to use this Level = 3). *** ASK_ERR_CHECK(LEVEL) This subroutine returns the error-checking flag ----- value LEVEL of as set by SET_ERR_CHECK above.

The subroutines that control matrix Z-edge handling:

*** RESET_Z_LIMITS(vlo, dvlo, vhi, dvhi) This subroutine can only be called ----- AFTER a set of opacities has been read in (its effects are nullified during opacity input). WITHOUT affecting the stored z-values used for Z-interpolation, calling this subroutine resets the range considered to be "interpolation" (which returns FZEDGE = 1.0) and the allowed "extrapolation" region (where 0.0 < FZEDGE < 1.0 is returned). Negative values (actually, below -1.E-6) mean "leave old value unchanged". All these values should be SINGLE PRECISION REAL. If vlo is non-negative, then this resets Zlo = vlo. Ιf dvlo is non-negative, then this resets Zlo_ex = Zlo - dvlo . is non-negative, then this resets Zhi = vhi . If vhi If dvhi is non-negative, then this resets Zhi_ex = Zhi + dvhi . The values of Zlo and Zhi must not lie outside the range of stored z-values used for Z-interpolation, i.e., cases Zlo < z_low_interpolation_endpoint , Zhi > z_high_interpolation_endpoint , and Zlo > Zhi are prohibited. The

z xcotrin manual

Page 44/71

Sep 06, 07 19:03	Z_XCOUTIN Manual	Page 44/7
only constrain Zhi_ex > Zhi up to delta-Z calculated) on NOTE that i stored z-value the range [Zl continue to us the range of s NOT be calcula	t on the "extrapolation" region is that Zlo_ex < Zlo (setting dvlo and dvhi to zero allows extrapolation = 1.E-6). Note that FZEDGE is positive (and the opaci- ly for the range Zlo_ex < Z < Zhi_ex . f Zlo and/or Zhi is set inside the range covered br s, the value of FZEDGE will be less than unity for Z or o,Zhi], but the actual calculation of opacity values e interpolation (not extrapolation) as long as Z lies tored z-values; however, for FZEDGE = 0.0, the opaci- ted (even for Z still within the range of stored z-values)	and n by ty is y the utside will inside ty will ues).
*** ASK_Z_LIMITS allowing the u INTEGER vari SINGLE-PRECI SINGLE-PRECI	(nzmax, zmin, zmax) This subroutine returns the val- the hard-wired Z-interpolation ser to check what these limiting values actually are. able nzmax returns NZ: max number of interpolation Z SION REAL variable zmin returns 0.0 (the lowest allo SION REAL variable zmax returns 0.1 (the highest all	ues of limits, -values. wed Z). owed Z).
*** ASK_Z_USE(n 	zuse, zlo, zmid, zhi, zloex, zhiex) This subroutine : the current valu controlling Z-interpolation allowing the user to chec	returns es of k what
the values act INTEGER vari be used fo then nzus meaningles SINGLE-PRECI which a Z	ually are. able nzuse returns the number of stored z-values (the r Z-interpolation); if no opacity files have been read e = 0 is returned (and the other five variables will s values). SION REAL variable zlo returns the boundary Zlo be value is considered to require extrapolation; note tha	at will in yet, return low t Zlo
may lie ab SINGLE-PRECI has no rea SINGLE-PRECI which a Z may lie be SINGLE-PRECI below whic SINGLE-PRECI above whic	ove the lowest stored z-value, but not below it. SION REAL variable zmid returns the "typical" Z-valu 1 significance after the opacities have been read in). SION REAL variable zhi returns the boundary Zhi ab value is considered to require extrapolation; note tha low the highest stored z-value, but not above it. SION REAL variable zloex returns the boundary Zlo_e h Z-extrapolation is considered too extreme to be carr SION REAL variable zhiex returns the boundary Zhi_e h Z-extrapolation is considered too extreme to be carr	e (which ove t Zhi x at or ied out. x at or ied out.
*** ASK_Z_ARRAY(kzstart, karraystart, Zarray, Narray) This subrouting return (some set in the user-superson set in the	ne will of) the plied alues
supplied by th kzstart karraystart Zarray	<pre>e user, and may be constant integers). INTEGER: index of the first stored z-value to be retu INTEGER: the index in the user-supplied array Zarray the first returned z-value will be placed. SINGLE-PRECISION REAL ARRAY: is where the stored z-va returned; the array positions Zarray(karraystart) Zarray(min{ Narray , karraystart + nzuse - kzstart will contain the stored z-values kzstart through (where nzuse is the total number of stored z-valu subsequent elements of Zarray (up to element Nar will be filled with values of -1.0 (note that in no will elements beyond Narray be overwritten).</pre>	<pre>rned. where lues are through }) nzuse es); any ray) case</pre>
Narray	INTEGER: the size of the user-supplied array Zarray the array is specified as "dimension Zarray(Narray	, i.e.,)" .

z_xcotrin manual

Page 45/71

The subroutines that control matrix T,R-edge handling:

*** SET_LOGT6_LIMITS(VLO, DVLO, VHI, DVHI) These subroutines can be called ______ at ANY TIME, and their effects SET_LOGR_LIMITS(VLO, DVLO, VHI, DVHI) will last until they are called again; they are used to set (or reset) the LogT6 and LogR boundaries. These input boundaries VLO and VHI must not lie outside the matrix edges, and extrapolation is never allowed more than one grid-spacing beyond the edge of the matrix. All these input values should be SINGLE-PRECISION REAL, given in terms of log10(T6) and log10(R) = log10(rho/T6**3); values of -90.0 or less mean "leave the present values unchanged", and are ignored. If VLO > -90.0 , then (for subroutine SET_LOGT6_LIMITS) it is used to set the lower boundary LogT6_lo (minimum -2.25: logT=3.75), or (for subroutine SET_LOGR_LIMITS), to set the lower boundary LogR_lo (minimum -8.0). If VHI > -90.0, then it is used to set the upper boundary LogT6_hi (maximum +2.70: logT=8.70) or the upper boundary LogR_hi (maximum +1.0). If DVLO is non-negative, it is used to set the amount of "extrapolation" dLoqT6 or dLoqR allowed beyond the lower boundary, except that the extreme values LogT6_lo - dLogT6 and LogR_lo - dLogR are not allowed to lie more then one grid spacing beyond the matrix edge; if -90.0 < DVLO < 0.0, then the amount of extrapolation is set to its default (namely, dLogT6 = 0.05 or dLogR = 0.5); if DVLO < -90.0 , then it is ignored. If DVHI is non-negative, it is used to set the amount of "extrapolation" dLogT6 or dLogR allowed beyond the upper boundary, except that the extreme values LogT6_hi + dLogT6 and LogR_hi + dLogR are not allowed to lie more then one grid spacing beyond the matrix edge; if -90.0 < DVHI < 0.0, then the amount of extrapolation is set to its default (namely, dLogT6 = 0.20 or dLogR = 0.5; if DVHI < -90.0, then it is ignored. NOTE that even if the boundaries are set inside the matrix, the opacity calculation continues to use all available matrix entries: interpolation is still used (not extrapolation) as long as T6 and R lie inside the edge of matrix. The boundaries and "extrapolation" distances are used to obtain the value of FTREDGE to return, and whenever FTREDGE = 0.0 the opacity is NOT calculated (even if T6 and R lie inside the matrix edges). *** ASK_LOGT6_LIMITS(VLO, DVLO, VHI, DVHI) These subroutines can be called ----- at any time; they return the *** ASK_LOGR_LIMITS(VLO, DVLO, VHI, DVHI) current values of the lower and upper LogT6 or LogR boundaries and the corresponding allowed amounts of "extrapolation" dLogT6 or dLogR (SINGLE-PRECISION REAL variables must be supplied to hold returned values). NOTE ALSO that the OPAL arrays have a "cut-out" region where opacity values are not available at high T6,R values; one grid-spacing of extrapolation is allowed into this "cut-out" region. The boundary of this "cut-out" lies roughly at LogRho = 4 for 7.0 < logT < 7.5, and at somewhat higher densities for log T > 7.5 (up to LogRho = 6 at logT = 8.7, the high-T matrix edge). NOTE ALSO that the X=0.0 and X=0.03 matrices have small "cut-outs" at low T6 and small R. As noted by Rogers and Iglesias, "as a result of the mixing procedure used to calculate the OPAL opacity data, a few X=0.0 and X=0.03 low T - small R table values fell outside the range of T and R accessible from the X=0.35 data directly calculated for this purpose. These T-R locations are filled in with 9.999 (or for diagnostic purposes in some cases larger values)." In the present program, these regions are treated as a "cut-out" in the opacity tables (similar to the high T - large R corner), and one grid spacing of extrapolation is allowed into them, as at any other edge. For X > 0.1 they have no effect; for 0.03 < X < 0.1, the corner

(-8.0 < logR < -7.5 , 3.70 < logT < 3.95) [i.e., T6 < 0.008912509] is

z xcotrin manual

Page 46/71

Sep 00, 07 19.03		Faye 40/
<pre>extrapolated; and logT < 4.0) [i.e (i.e., the opacit Presumably very f low T - small R r at temperatures w ======= The subr =======</pre>	for X < 0.03, a ragged part of the region (log ., T6 < 0.01] is considered to be outside the op y is not calculated, and FTREDGE = 0.0 is return ew users will have applications that take them is egions at low hydrogen abundances X; in any case here molecular opacities may become non-negligib	R < -4.5 , acity grid ed). nto these , they are le.
*** SET_SMOOTH(ini	tsmooth, lowCOsmooth, interpCOsmooth) This sub:	routine
control how and w opacities are rea O when OPAC or OP in more detail fu IT IS RECOMME	allows t hether the opacity smoothing is carried out when d in, and which subroutine is used to interpolat AL is called. The smoothing and its effects are rther below. NDED THAT THE DEFAULT SMOOTHING VALUES NOT BE CH	he user to the OPAL e in C and discussed ANGED.
initsmooth	<pre>INTEGER: if initsmooth = 2 (the default), the opacities are smoothed by the subroutine OPAL they are read in, in order to remove random n errors; if initsmooth = 0, then this initia will not be carried out. A value initsmooth that opacities used for CNO-interpolation opac will not be smoothed. A value initsmooth < "do not change the current initial-smoothing"</pre>	n the OPAL IAB when umerical l smoothing = 1 means city shifts 0 means setting".
lowCOsmooth	<pre>INTEGER: if lowCOsmooth = 1 (the default), th opacities for the three mixes having max{C,O} be smoothed in the CO-direction when they are this is only done at (T6,R) points where opac between mixes with C,O = 0.0, 0.03, 0.1 are m but the opacity at C,O = 0.01 does not fit th the resulting adjustments are small, and only small minority of (T6,R) points. If lowCOsm then this initial CO-direction smoothing is n out. A value lowCOsmooth < 0 means "do not current initial-CO-smoothing setting".</pre>	en the OPAL = 0.01 may read in; ity-changes onotonic e trend; occur at a ooth = 0 , ot carried change the
interpCOsmooth	<pre>INTEGER: if interpCOsmooth = 1 (the default), subroutine COINTSMO is called by OPAC or OPAL to interpolate in C and/or O. If interpCOsm then the older subroutine COINTERP is used in yields less smooth interpolation, and it has i thoroughly tested. A value interpCOsmooth < "do not change the current CO-interpolation set"</pre>	then the in order ooth = 0 , stead; this been less 0 means etting".
*** ASK_SMOOTH(ini	tsmooth, lowCOsmooth, interpCOsmooth) This sub	routine the current
smoothing setting hold the returned handled.	s described above (INTEGER variables must be sup values), allowing the user to check how smoothi	plied to ng is being
++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	************ ++++++ r OPAL ++++++

z xcotrin manual

In general, a 6-variable interpolation of log10(Kappa) is performed, using the arguments of OPAC or OPAL, on a subgrid of the stored opacity matrices. In general, 4 stored values ("@" in the diagram at upper right) are used along each interpolation direction. A quadratic fit is performed for each of the 2 sets of 3 adjacent stored values ("1" and "2" at upper right), and then linear interpolation between these overlapping quadratics is used to obtain smoothed results. [For a value near (or beyond) the edge of the matrix, as in the diagrams at lower right, a single quadratic is used.] This procedure produces results that are similar to bicubic spline interpolation, but requires storage of only local information.

--- \overline{FIRST} , unless excess $\overline{C} = 0 = 0.0$, for each (Z_i , X_j , $T6_k$, R_n) grid value that will be needed, an interpolation is performed in the excess C and O values ("exC" and "exO" in the arguments to OPAC or OPAL). The actual C' and O' values used at each ($\tt Z_i$, $\tt X_j$) gridpoint are adjusted by a factor $cmod = (1 - X_i - Z_j) / (1 - X - Z)$, i.e., C' and O' are set to be proportional to the maximum possible value for their (Z_i , X_j) values, so as to avoid out-of-range C' and O' values (note that X is "xh", Z is "z" in the arguments to the subroutines OPAC or OPAL described above). The above formula for cmod can lead to problems when (1 - X - Z) is small, therefore: as X is increased from 0.7 to 0.8, cmod switches over smoothly to from the above formula to a constant value of unity (note that since the largest grid {X_i,Z_j} values are X=0.7 and Z=0.1 respectively, at X > 0.8 a value of cmod = 1.0 will never yield $X_i + Z_j + C' + O' > 1$).

The 2-D bi-quadratic interpolation of log(Kappa) in $log(C'+Z_i+0.001)$ and $\log(0'+Z_i+0.001)$ is performed by the subroutine COINTSMO (or by the older subroutine COINTERP, if you so choose: see description of subroutine SET_SMOOTH above). The function QCHK is used to evaluate the quadratic: it checks whether 2 of the 3 grid-points are excessively close together (as may happen near C + O = 1 - Z - X for some values of Z) and, if so, uses more nearly liner interpolation to avoid amplifying small errors in the stored opacity values. For the special case where C or O is slightly negative (slight depletion in C or O), the function QCHK does a linear extrapolation using a combination of the lowest three C or O gridpoints. If C and/or O is zero (to within an accuracy of 1.E-6), then interpolation in that direction is not necessary, and is not performed (unless the user has specified that the old subroutine COINTERP should be used).

--- SECOND, unless Z is within 1.E-6 of a stored z-value (or Z < 1.E-8, if the stored value is 0.0), for each (X_j , $T6_k$, R_n) grid value that will be needed, an interpolation is performed in log(Z+0.001). If there are only 2 stored z-values (numz = 2), linear interpolation is used; for numz = 3, a quadratic is used, while two overlapping quadratics are used for numz > 3 (unless Z is near the end of the range of stored z-values). The subroutine QZLOG4INT is called to perform this Z-interpolation. Since numerical errors in the stored opacities, or in the CO-interpolation, may be comparable to the opacity differences between adjacent stored z-values, the opacity at Z is not allowed to lie outside the range of the two opacities at the stored z-values bracketting it. (Note that, when opacities are read in for values of Z different from one of those available in the OPAL opacity files, the same type of interpolation with the same constraint is performed by the subroutines READZEXCO, READEXCO, or READCO.)

--- THIRD, a two-variable interpolation in performed in the temperature and density variables T6 and R (note slt = log10(T6) and slr = log10(R) in the input to OPAL); the 2-D quadratic interpolation in log10(T6) and log10(R) uses two overlapping quadratics in each direction, unless T6 or R is within one grid spacing of an edge of the table (in which case a single quadratic is used in the relevant direction). NOTE that the high-T,RHO "cutout" has been filled in (by subroutine REVISE_HITR_FOR_INITSMOOTH) with "reasonable" values, at the time when the opacities were read in; for T or RHO above the actual upper edges of the matrix, switch from extrapolation

z xcotrin manual

with the slope of the quadratic at the edge of the matrix to 2-point linear extrapolation one grid-spacing beyone the edge of the matrix. --- FOURTH, unless X is within 1.E-6 of one of the tabulated X-values (X is the input variable xh in OPAC or OPAL), log(Kappa) is interpolated quadratically in log(X+Xdel) , where Xdel = 0.03 is generally used (for 0.03 < X < 0.35, two overlapping quadratics are used). NOTE that pre-1997 versions of the opacity interpolation programs used a value of Xdel = 0.005, which led to non-monotonic behavior of the opacity as a function of X for small X values: for temperatures logT > 5.0 [T6 > 0.1], the interpolated opacity first dropped slightly as X was increased from 0.0 to about 0.005, then increased monotonically thereafter (at least up to X = 0.1). This spurious dip in the opacity for small X values was small (delta log(Kappa) of order 0.03), but it seemed worth getting rid of this dip by setting Xdel to 0.03, in order to obtain qualitatively correct behavior of the opacity for X close to zero. However, at low temperatures (i.e., for logT < 4), the X=0.0 opacities are very small with respect to the X=0.03 and X=0.1 opacities, and a smaller value of Xdel works better near X=0.0. Although such low X values are unlikely to be encountered at such low temperatures, provision was made in the program to reduce the value of Xdel used in such cases to a value that works better (down to a minimum value of 0.001); this was done ONLY for the quadratic that uses opacities at X = 0.0, 0.03, 0.1(note that for the higher X-values, the value of Xdel used is irrelevant). --- FIFTH, unless \bar{X} is within 1.E-6 of one of the tabulated X-values or X < 0.03 or C+O > 0.3 or the "accurate-X" feature was turned off (see the subroutine SET_XHI described above): for the X-values available in 'GN93hz' but not 'Gz???.x??', Z-interpolation and (T6,R)-interpolation is performed in delta-logKappa values, which are then interpolated in X to give opacity Improvements are small for X < 0.76, but large for X > 0.76. corrections. --- SIXTH, if (and only if) CNO- and/or user-interpolation is enabled and the corresponding CNO-interconverted opacity-files (or user-specified files) were available to read in: the delta-logKappa values corresponding to the interconversion of the CNO elements (and/or the user-specified composition shift) are multiplied by the relevant factors FCN, FCON, FCNONE, FU and then interpolated in Z, (T6,R), and X in order to give the corresponding opacity corrections.

NOTE: for the Ferguson et al. (2005) molecular opacity interpolation, MODIFIED quadratics are used for logT < 3.48, where sudden jumps in the opacity can occur between one grid-point and the next in any of the Z-, X-, R-, and/or T-directions. For a large jump, the original quadratics would lead to spurious wiggles on each side of the jump, with opacity errors of order a factor of 2 (occasionally more than an order of magnitude). The MODIFIED 3-pt quadratics switch over (smoothly), for a large jump, to linear interpolation in the flat segment, with a quadratic in the "jump" segment whose slope matches that of the flat segment where the two meet at the middle of the three points (two adjacent such modified 3-pt quadratics are still overlapped in general to get the final interpolated value). This gets rid of almost all the spurious wiggles next to opacity jumps. EXAMPLE:

Original quadrati	cs:	*	*			
		*	*			* *
combine	4 *	4 *	5	4 * * 5	* б>	4 * 5 * * 6
	* * *	* * *			* * *	with spurious wiggles in between pts 2 and 3 and
1 * 2 * * 3 2 * *	3 * *	3		1	* * 2 * 3 * *	between pts 4 and 5
Modified quadrati	cs: 4	4	* * 5	4 * *	5*б>	4 * * 5 * 6

Sep 06, 07 19:03		z_xcotrin manual	Page 49/71
combine	*	*	*
	*	*	*
	*	*	*
	*	*	*
	*	*	*
1 * 2 * * 3	2 * * 3	3 1	* 2 * * 3

The modified quadratic routines QUADSL, QDERSL, and QCHKSL are used only for Ferguson et al. 2005 opacity interpolation at logT < 3.48; they are similar to the functions QUAD, QDER, and QCHK [except that QCHKSL assumes that it is always the case that x1 < x2 and that x2 and x3 are the only pair of points that may coincide (or almost coincide)].

Note that the total metallicity Z for the OPAL mixes includes the following 19 elements: {C,N,O,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca,Ti,Cr,Mn,Fe,Ni}. Their relative abundances (by mass fraction and/or number fraction) for any mix can be obtained by calling the subroutine ASK_OPAL_Z_MIX, while their atomic weights (and their atomic numbers, i.e., nuclear charges) can be obtained by calling the subroutine ASK_OPAL_MIX_WT (see descriptions further above).

The makeup of Z in the files 'GN93hz', 'Alrd96a2', 'C95hz', and 'W95hz' is shown below, along with the maximum, mean, and spread of opacity differences relative to 'GN93hz' for Z = 0.1 (where the opacity shifts are largest), for T6 > 0.01 (logT > 4), for each X-value. Note that [i/Fe] gives the log of the enhancement of element i relative to Fe, where the solar reference is the 'GN93hz' mix; note that for i = Fe, [i/Fe] = 0.0 by definition. Newer "GS98" and "AGS04" mixes are given further below. NOTE THAT THE CO-RICH OPACITY FILES 'Gz???.x??' HAVE THE SAME COMPOSITION AS THE FILE 'GN93hz'.

NOTE: for this GN93hz mix, Z/X = 0.02448:

'GN93hz'	'Alrd96a2'	'C95hz'	'W95hz'		
[O/Fe] = 0.0	[O/Fe] = 0.3	[O/Fe] = 0.4	[O/Fe] = 0.5		
i Ni/Nz Xi/Z	Ni/Nz Xi/Z [i/Fe]	Ni/Nz Xi/Z [i/Fe]	Ni/Nz Xi/Z [i/Fe]		
C .245518 .173285 . N .064578 .053152 . O .512966 .482273 . Ne.083210 .098668 . Na.001479 .001999 . Mg.026308 .037573 . Al.002042 .003238 . Si.024552 .040520 . P .000195 .000355 . S .011222 .021142 . Cl.000219 .000456 . Ar.002291 .005379 . K .000091 .000210 . Ca.001586 .003734 . Ti.000075 .000211 . Cr.000329 .001005 . Mn.000170 .000548 . Fe.021877 .071794 .	$\begin{array}{c} .147909 & .102693 & 0.0 \\ .038904 & .031499 & 0.0 \\ .616594 & .570253 & .30 \\ .100010 & .116656 & .30 \\ .001778 & .002363 & .30 \\ .031622 & .044428 & .30 \\ .000617 & .000962 &3 \\ .029512 & .047912 & .30 \\ .000234 & .000420 & .30 \\ .013490 & .024999 & .30 \\ .002754 & .006360 & .30 \\ .000055 & .000124 & 0.0 \\ .001906 & .004415 & .30 \\ .000089 & .000245 & .29 \\ .000198 & .000595 & 0.0 \\ .000072 & .00023 &15 \\ .013177 & .042538 & 0.0 \\ .000260 & .000260 & .00 \\ .000076 & .000276 & .000276 \\ .000076 & .00023 & .00023 & .000 \\ .000072 & .00023 & .00023 & .00023 \\ .000072 & .00023 & .00023 & .00023 \\ .000072 & .00023 & .00023 & .00023 \\ .000072 & .00023 & .00023 & .0000023 \\ .000072 & .00023 & .00023 & .00000000000000000000000000000000000$.131157 .091924 0.0 .034498 .028196 0.0 .688325 .642620 .40 .044451 .052341 0.0 .000790 .001060 0.0 .035301 .050066 .40 .001091 .001718 0.0 .032945 .053992 .40 .000104 .000188 0.0 .015059 .028172 .40 .000117 .000242 0.0 .001224 .002853 0.0 .000122 .000279 .40 .000122 .000279 .40 .000127 .004975 .40 .000036 .0001164 .011687 .038085 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Sep 06, 07	19:03			Z_X	cotrin r	nanua				Page 50/7	
 h>.093729	.192623	.096583	.178899)	.101569	.18491	 19	.076879	.1423	 95	
where h>	is the	sum of e	======= everythi	===== .ng he	====== eavier t	:======= .han Ne	=====	======	=====	=====	
opacity-sh	nifts	'Al:	rd96a2′		' C	'C95hz'			'W95hz'		
dLogKappa for T6 > .	a 01		Fe] = 0.	3	[0/	Fe] = (D.4	[0/	 Fe] =	 0.5	
for Z = 0. relative	1,	max	mean s	==== sigma	====== max	mean	===== sigma	====== max	mean	===== sigma	
to 'GN93hz	X=0: X=.03: X=.10: X=.35: X=.70:	1512 1457 1464 1490 1539	0270 . 0258 . 0249 . 0236 . 0227 .	0321 0303 0297 0292 0297	1844 1835 1849 1886 1952	0351 0343 0334 0321 0311	.0371 .0364 .0361 .0359 .0367	2669 2270 2286 2334 2416	0537 0514 0498 0474 0458	.0514 .0487 .0477 .0471 .0480	
NOTE: if y mix the If yc Mn If yc Ti By defaul 'GN93hz. for other '.COtoN' 'AGS04hz' differenc	vou are us Al abun Mn abun ou are us abundand ou are us abundand ct, the (CtoN', mixes, '.CN(c). If s ces are o	using 'A ndance wi sing 'C9 ce will o sing 'W9 ce will o CNO-inte: 'GN93hz the defa DtoNe', a such non-	lrd96a2' ill go r ill go r 5hz' hav go negat 5hz' hav go negat rpolatic .COtoN' ault fil and '.us -GN93 fi from th	having negativing zive i zive i zive i zive i ne "Gh ne "Gh	ing [O/F ive if y [O/Fe] = if you e [O/Fe] = if you e les for N93hz.CN es are o to the m are not N93" fil	Ye] = 0 Fou extra- rou extra- to 0.4 () extrapol to 0.5 () extrapol the "GN NOtoNe' obtained ain min found, es inst	.3 (khi capolat chighz late chighz late N93" mi , and d by ap chiler CNO-in cead (ighz = 2 ce [O/F ce [O/F = 3), t [O/Fe] > = 4), t [O/Fe] < ix are 'GN93hz ppending hame ('G hterpola if these), the e] > 0 e] > 0 hen yo 0.546 hen yo -0.50 'GN93 .user' '.Ct S98hz' tion o are f	n your .476 ; .644 . ur mix ur mix 1 . hz' , ; oN' , or pacity ound).	
Opacities for the "GS98" solar/meteoritic abundances (N. Grevesse & A.J. Sauval 1998, Space Sci. Rev. 85, 161) are contained in the file 'GS98hz'; three other files were created with opacities for [O/Fe] enhancements (and alpha-element enhancements) RELATIVE TO THE "GS98" MIX, patterned after the corresponding three cases above. These files and compositions are: NOTE: for this GS98hz mix, Z/X = 0.02300: GS98hz GS98hz OFe 3 Alrd96a2 GS98hz OFe 4 C95 GS98hz OFe 5 W95											
[O/Fe]	= 0.0	[0]	Fe] = 0. =======	3	/0] ======	Fe] = ().4 ======	/0] ======	Fe] = ======	0.5	
i Ni/Nz	Z	Ni/Nz	Xi/Z [i	/Fe]	Ni/Nz	Xi/Z	[i/Fe]	Ni/Nz	Xi/Z	[i/Fe]	
C .245825 N .061748 O .501922 Ne.089265 Na.001562 Mg.028224 Al.002294 Si.026954 P .000235 S .012602 Cl.000141 Ar.001865 K .000100 Ca.001670	.171836 .050335 .467356 .104831 .002090 .039924 .003603 .044057 .000423 .023513 .000292 .004335 .000228 .003896	.148069 .037193 .603216 .107280 .001877 .033921 .000693 .032394 .000282 .015145 .000170 .002241 .000060 .002007	.101930 .029858 .553139 .124072 .002473 .047252 .001071 .052144 .000501 .027829 .000346 .005131 .000135 .004611	$\begin{array}{c} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & 3 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 0 \\ 3 & 3 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 0 \\ 3 & 3 & 0 \\ 3 & 3 & 0 \\ 3 & 3 & 0 \\ 5 & 3 & 0 \\ 5 & 3 & 0 \\ 5 & 0 & 0 \\ 5 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 0 \\$.131883 .033128 .676395 .047890 .000838 .038036 .001231 .036324 .000126 .016982 .000076 .001000 .001000 .000135 .002251	.09163 .02684 .62609 .05590 .00113 .05348 .00192 .05903 .00022 .03149 .00019 .00023 .00019 .00023 .00030	38 0.0 43 0.0 52 .40 55 0.0 14 0.0 30 .40 21 0.0 17 .40 26 0.0 97 .40 56 0.0 12 0.0 56 0.0 12 0.0 55 .40 05 .40 18 .40	.108877 .027349 .702986 .077089 .000692 .031401 .001016 .023820 .000104 .011933 .000063 .000826 .000044 .002339	.0763 .0223 .6567 .0908 .0009 .0445 .0016 .0390 .0001 .0223 .0001 .0019 .0001 .0054	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Sep 06, 07 19:03	Z_X(cotrin manual	Page 51/71								
Ti.000070 .000195 Cr.000369 .001117 Mn.000244 .000779 Fe.023517 .076433 Ni.001393 .004757	.000082 .000226 .29 .000222 .000663 0.0 .000104 .00032715 .014165 .045339 0.0 .000878 .002955 .02	.000092 .000256 .39 .000198 .000596 0.0 .000052 .0001654 .012616 .040761 0.0 .000747 .002537 0.0	.000129 .000362 .62 .000163 .000496 0.0 .000108 .000346 0.0 .010416 .033965 0.0 .000646 .002214 .02								
h>.101240 .205642	.104241 .191003	.110704 .199561	.083700 .153698								
where h> is the sum of everything heavier than Ne Opacities can be read in for the newer "AGS04" solar/meteoritic abundances											
 (M. Asplund, N. Grevesse, & A.J. Sauval 2004, astro-ph/0410214 [v2]; ALSO: M. Asplund, N. Grevesse, & A.J. Sauval 2005, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis [eds. F.N. Bush & T.G. Barnes], ASP Conf. Series, Vol. 336, p. 25; ALSO: M. Asplund, N. Grevesse, & A.J. Sauval 2006, Nucl. Phys. A 777, 1). 											
NOTE: for this A	GS04hz mix, $Z/X = 0.0$	16555973									
AGS04hz A	GS04hz_OFe.3_Alrd96a2	AGS04hz_OFe.4_C95	AGS04hz_OFe.5_W95								
[O/Fe] = 0.0	[O/Fe] = 0.3	[O/Fe] = 0.4	[O/Fe] = 0.5								
i Ni/Nz Xi/Z	Ni/Nz Xi/Z [i/Fe]	Ni/Nz Xi/Z [i/Fe]	Ni/Nz Xi/Z [i/Fe]								
C .257854 .176688 N .063296 .050578 O .480145 .438260 Ne.072700 .083693 Na.001956 .002565 Mg.035594 .049354 Al.002827 .004352 Si.033992 .054464 P .000264 .000466 S .015184 .027771 Cl.000178 .000361 Ar.001590 .003623 K .000121 .000269 Ca.002050 .004686 Ti.000082 .000223 Cr.000458 .001358 Mn.000310 .000972 Fe.029696 .094613 Ni.001703 .005704	.157301 .106433 0.0 .038613 .030467 0.0 .584425 .526743 .30 .088481 .100581 .30 .002381 .003084 .30 .043324 .059318 .30 .043324 .059318 .30 .000865 .0013153 .041375 .065461 .30 .000321 .000560 .30 .018483 .033381 .30 .000216 .000431 .30 .001935 .004355 .30 .000074 .000163 0.0 .002495 .005633 .30 .000099 .000267 .29 .000279 .000817 0.0 .000133 .00041215 .018112 .056981 0.0 .001088 .003598 .02	.138833 .094547 0.0 .034080 .027065 0.0 .649367 .589077 .40 .039143 .044785 0.0 .001053 .001373 0.0 .048138 .066338 .40 .001522 .002328 0.0 .045972 .073207 .40 .000142 .000249 0.0 .020536 .037330 .40 .000096 .001939 0.0 .000856 .001939 0.0 .000163 .000361 .40 .0002771 .006297 .40 .000109 .000296 .39 .000247 .000728 0.0 .000066 .0002064 .015989 .050629 0.0 .000917 .003052 0.0	.116312 .080363 0.0 .028551 .023004 0.0 .684888 .630346 .50 .063935 .074215 .29 .000882 .001166 0.0 .040329 .056385 .40 .001275 .001979 0.0 .030593 .049426 .30 .000119 .000212 0.0 .014644 .027007 .33 .000080 .000163 0.0 .000717 .001648 0.0 .000054 .000121 0.0 .002924 .006742 .50 .000153 .000422 .62 .000207 .000619 0.0 .000140 .000442 0.0 .013395 .043032 0.0								
h>.126005 .250781	.131180 .235776	.138577 .244526	.106314 .192072								
<pre>where h> is the sum of everything heavier than Ne Unlike earlier papers, "AGS04" above gives meteoritic H, He, C, N, O, Ne, Ar abundances. There are almost no noble gases (He, Ne, Ar), less C, N, O (relative to Si or Fe) than in the solar mix, and almost no hydrogen. [For other elements, meteoritic abundances were used in the above "AGS04" mix, instead of the less-accurate solar-surface observations.] The actual values for the meteoritic mix are given below [with many digits, to show the actual abundances of He, Ne, Ar; note that Ab_i = log10(N_i/N_H_sun) + 12.0]: Complete "AGS04" meteoritic abundances Meteoritic mix (components of Z)</pre>											
======================================	= Xi	= =================================	Xi/Z								
н 8.25.3127275	00321341 .02094443389	0450 [Z=.979055556989581]								

Sep 06, 07 19:03	z_xcotrin manual	Page 52/71							
He 1.29 .00000034289886 C 7.40 .044173943244219 N 6.25 .003127275003213 O 8.39 .431684461811492 Ne -1.06 .00000000153167 Na 6.27 .003274596717318 Mg 7.53 .059588954783339 Al 6.43 .004732763251461 Si 7.51 .056906999803204 P 5.40 .000441970109086 S 7.16 .025419977789240 Cl 5.23 .000297994997793 Ar -0.45 .0000000623973 K 5.06 .000202569633331 Ca 6.29 .003431964862220 Ti 4.89 .000137278594489 Cr 5.63 .000766751174096 Mn 5.47 .000518980052336 Fe 7.45 .049714940755353 Ni 6.19 .002851042029444	.00000009119969 .035255788483962 .064274280534767 .002910629954482 .004550269595690 .458939274347532 .628112551500661 .00000000205377 .00000000222863 .005002390294590 .004764626668792 .096237981691629 .086703538675350 .008485288886437 .006886298360263 .106202066768971 .082801221741094 .000909645014595 .000643078446095 .054153160875713 .036986754263261 .000702016082572 .000433590770473 .00000001656328 .00000000907898 .000526280567971 .00294744287793 .009140199460691 .004993601570053 .000436941664783 .000199744062802 .002649167869084 .001115643667846 .001894561100742 .000755129993520 .184489597541457 .072336581572827	.036009997831346 .002972895596887 .468757131371265 .00000000209770 .005109403913677 .098296752420816 .008666810403005 .108473994157720 .000929104592789 .055311632204228 .000717033959472 .00000001691761 .000537539023413 .009335731149717 .000446288938011 .002705840184626 .001935090493299 .188436290692971 .011358461165226							
h> .208286785176682	.481949863998228 .303062898146020	.492259974990732							
<pre>Meteoritic mixes as obtained from solar abundances by reducing C,N,O,Ne,Ar as per the AGS04 meteoritic abundances, and "antimeteor" Z-mixes that yield solar abundances when added to 50% and 20% as much meteoritic Z-material:</pre>									
GN93hz.meteor	GN93hz.5antimeteor GN93	hz.2antimeteor							

	=======================================	===================	=========	========	========================		
i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	
 CNO Nag Ali PSL r KCair Mn Fei	$\begin{array}{c} .062096387323045\\ .004396103132102\\ .606837084080657\\ .00000000215357\\ .005283859474681\\ .093987679773822\\ .007295227181013\\ .087714215091835\\ .000696654916553\\ .040091598026506\\ .000782397036934\\ .00000000877017\\ .000325105632923\\ .005666126529857\\ .000267944210671\\ .001175381889649\\ .000607340179662\\ .078157536632930\\ .004619357794785\end{array}$	$\begin{array}{c} .\\ .034055950767625\\ .002811584920288\\ .443326132928943\\ .000000000198429\\ .005546683967014\\ .104307149947153\\ .008987793491910\\ .112486310445815\\ .000985278857158\\ .058690042443895\\ .001266565623746\\ .00000001599745\\ .000580403334678\\ .010369588461345\\ .000586040222841\\ .002790592585741\\ .001523534791034\\ .199305017419850\\ .012381327992788 \end{array}$.3096329 .0856148 .4801523 .1122968 .0001500 .0026495 .0002060 .0024732 .0000197 .0011309 .0000219 .0030924 .0000097 .0001590 .0000300 .0000168 .0022038 .0001298	.2428995 .0783222 .5017450 .1480020 .0002252 .0042059 .0003631 .0045368 .0000399 .0023680 .0000507 .0080685 .0000248 .0000248 .0000235 .0001122 .0000602 .0080385 .0004978	.2728055 .0735314 .4989998 .0955898 .0009138 .0162384 .0012607 .0151550 .0001204 .0069273 .0001351 .0026323 .0000566 .0009783 .0000463 .0002030 .0001046 .0135039 .0007978	.2011308 .0632201 .4900612 .1184016 .0012895 .0242262 .0020880 .0261267 .0002289 .0136324 .0002939 .0064548 .0001359 .0024069 .0001360 .0006479 .0003529 .0462918 .0028745	
 h>	.326670425248838	.519806331184714	.0123032	.0290313	.0590735	.1271863	
(1	IOTE: some abundar	ices would go nega	ative beyo	ond GN93hz	 z.561743ar	itimeteor)	
	GS98hz.	meteor (GS98hz.5an	timeteor	GS98hz.2a	antimeteor	
i 	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	

Sep	Sep 06, 07 19:03 z_xcotrin manual									
С	.061833419528987	.033847976603222	.3108195	.2408300	.2734442	.1994336				
Ν	.004377442231746	.002794386850040	.0820144	.0741053	.0703603	.0598431				
0	.604274480285562	.440624098408040	.4657653	.4807222	.4865568	.4727025				
Ne	.00000000214427	.00000000197201	.1207976	.1572465	.1026646	.1257972				
Na	.005179390157206	.005426796827570	.0002843	.0004216	.0010191	.0014226				
Mg	.093587138052187	.103667372071604	.0051357	.0080523	.0184132	.0271753				
Al	.007606607490520	.009353799223261	.0004180	.0007276	.0014971	.0024528				
Si	.089375982574740	.114401914525715	.0049037	.0088845	.0175839	.0299880				
Р	.000779229621820	.001099992396139	.0000423	.0000845	.0001529	.0002876				
S	.041786601600009	.061056356041069	.0022925	.0047413	.0082210	.0160043				
Cl	.000467537763442	.000755439983010	.0000264	.0000603	.0000926	.0001993				
Ar	.00000000873527	.00000001590383	.0025233	.0065025	.0021445	.0052020				
K	.000331587065415	.000590861589288	.0000185	.0000466	.0000655	.0001554				
Ca	.005537504221631	.010115144589889	.0003042	.0007864	.0010898	.0026522				
Ti	.000232110957854	.000506712319369	.0000127	.0000391	.0000456	.0001327				
Cr	.001223556258112	.002899506965060	.0000673	.0002257	.0002409	.0007605				
Mn	.000809072444438	.002025771911462	.0000439	.0001556	.0001588	.0005296				
Fe	.077979330676706	.198476752244634	.0042777	.0154111	.0153411	.0520243				
Ni	.004619007981672	.012357115663043	.0002527	.0009569	.0009081	.0032370				
 h>	329514657739278	522733537941497	0206032	0470960	0669741	1422236				
117	=======================================	=======================================	=========	=========	=========	=======				
(N	OTE: some abundar	nces would go nega	ative beyo	ond GS98hz	2.624814ar	timeteor)				
	AGS04hz	.meteor AG	GS04hz.5ar =======	ntimeteor	AGS04hz.2	lantimeteor				
i 	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z				
С	.064274208429525	.036009888957169	.3303785	.2470271	.2883952	.2048236				
N	.004550290959465	.002972903901491	.0853040	.0743805	.0725636	.0600990				
0	.628110449385059	.468754671183736	.4247136	.4230127	.4568036	.4321613				
Ne	.00000000222945	.00000000209847	.0999372	.1255395	.0841701	.1004316				
Na	.004764660515098	.005109430493010	.0009033	.0012928	.0015125	.0020561				
Ma	.086704154588141	.098297263764627	.0164453	.0248824	.0275300	.0395653				
Al	.006886347278212	.008666855488115	.0013066	.0021946	.0021869	.0034890				
Si	.082801809933137	.108474558443967	.0157052	.0274587	.0262910	.0436619				
P	.000643083014308	.000929109426030	.0001216	.0002344	.0002039	.0003734				
S	.036987017004729	.055311919937648	.0070150	.0140005	.0117437	.0222628				
~ Cl	.000433593850556	.000717037689513	.0000829	.0001830	.0001382	.0002898				
Ar	.000000000907947	.00000001691848	.0021853	.0054345	.0018405	.0043476				
ĸ	.000294746381558	.000537541819713	.0000553	.0001347	.0000931	.0002153				
Ca	004993637042920	009335779714580	0009463	0023611	0015848	0037560				
тi	000199745481717	000446291259625	0000374	0001114	0000630	0001783				
Cr	.001115651593004	.002705854260520	.0002113	.0006841	.0003540	.0010884				
Mn	.000755135357710	.001935100559721	.0001434	.0004904	.0002399	.0007794				
Fe	.072337095427584	.188437270946424	.0137206	.0477009	.0229685	.0758481				
Ni	.004148372626387	.011358520252416	.0007872	.0028767	.0013175	.0045731				
 h>	.303065051003006	.492262535747757	.0596667	.1300402	.0980675	.2024845				
(1)			======================================	======================================	=========	======== >== :===>				
(1)		ices would go nega	acive beyo	JIIQ AGSU4I	12.9900902	ancimeteor)				
Si co th sh Ne me	Since the solar C, N, and O abundances have been reduced more-or-less in concert from one abundance paper to the next, it is not unreasonable to consider them NOT to be independent, and to vary all of them together by their quoted uncertainties (or by double this amount) to get mixes with shifted C, N, and O that can still be considered "reasonable" (note that Ne and Ar should be shifted by the same amount as O, since it is their ratios Ne/O and Ar/O that are measured). The shifted-CNO mixes would have the same meteoritic abundances as "AGS04" above, but different "anti-meteor" mixes:									
Z/	X = 0.01809864 AGS04hiCNONe	AGS04hiCNONe_OFe	e.5_W95 AGS04hiCN	AG NONe.5anti	SO4hiCNON	Ie.2antimeteor				

z xcotrin manual

Page 54/71

		========							
i d:	Ab_i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z
C +	0.05	.261002	.181349	.117585	.082019	.3333123	.2540186	.2915434	.2104168
N +	0.06	.065561	.053122	.029536	.024025	.0879866	.0781965	.0750329	.0631518
0 +	0.05	.486005	.449821	.692380	.643323	.4337738	.4403542	.4639452	.4460345
Ne +	0.05	.073584	.085897	.064632	.075741	.1006317	.1288455	.0850084	.1030764
Na	0.00	.001765	.002347	.000795	.001061	.0006621	.0009658	.0012990	.0017945
Mg	0.00	.032110	.045147	.036336	.051288	.0120428	.0185719	.0236341	.0345169
Al	0.00	.002551	.003981	.001149	.001800	.0009568	.0016381	.0018774	.0030438
Si	0.00	.030665	.049822	.027564	.044958	.0115013	.0204957	.0225709	.0380915
Р	0.00	.000238	.000427	.000107	.000192	.0000895	.0001759	.0001755	.0003266
S	0.00	.013698	.025404	.013194	.024565	.0051371	.0104500	.0100819	.0194224
Cl	0.00	.000161	.000330	.000072	.000148	.0000607	.0001365	.0001186	.0002526
Ar +	0.05	.001609	.003719	.000725	.001682	.0022008	.0055785	.0018591	.0044628
K	0.00	.000109	.000246	.000049	.000111	.0000404	.0001002	.0000799	.0001877
Ca	0.00	.001849	.004287	.002634	.006131	.0006931	.0017626	.0013607	.0032772
Ti	0.00	.000074	.000204	.000138	.000384	.0000273	.0000829	.0000540	.0001555
Cr	0.00	.000413	.001242	.000186	.000562	.0001546	.0005101	.0003038	.0009492
Mn	0.00	.000280	.000889	.000126	.000402	.0001050	.0003659	.0002059	.0006798
Fe	0.00	.026789	.086548	.012069	.039143	.0100475	.0356034	.0197181	.0661701
Ni 	0.00	.001537	.005218	.000723	.002465	.0005766	.0021477	.0011312	.0039899
h>		.113848	.229811	.095867	.174892	.0442956	.0985852	.0844701	.1773205
= (NC	:=====)TE: s	ome abur	udances w	======== vould go	negativ	=========== e beyond A	GS04hiCN	======================================	====== 2amet)
Z/X	α = 0. Α	01983278 GS04vhCN	AGSC IONe)4vhCNON∈ 	e_OFe.5_1 AGS	w95 04vhCNONe.	AGS04 5antimet	vhCNONe.2a eor	antimeteor
=		=========	================	==========	====== :	===========	===========	============	=======
i d: 	Ab_i	Ni/Nz 	Xi/Z 	Ni/Nz 	Xi/Z 	Ni/Nz 	Xi/Z	Ni/Nz 	Xi/Z
C +	0.10	.263820	.185686	.118732	.083546	.3358885	.2605241	.2943424	.2156212
N +	0.12	.067812	.055659	.030518	.025042	.0906599	.0820020	.0774886	.0661962
0 +	0.10	.491254	.460576	.699138	.655310	.4418255	.4564867	.4703199	.4589405
Ne +	0.10	.074376	.087948	.065260	.077148	.1012381	.1319220	.0857528	.1055376
Na	0.00	.001590	.002142	.000716	.000964	.0004434	.0006583	.0011044	.0015485
Mg	0.00	.028927	.041200	.032700	.046561	.0080606	.0126514	.0200899	.0297805
Al	0.00	.002298	.003633	.001034	.001634	.0006406	.0011161	.0015959	.0026262
Si	0.00	.027625	.045465	.024806	.040815	.0076973	.0139602	.0191852	.0328631
Р	0.00	.000214	.000389	.000096	.000174	.0000594	.0001189	.0001487	.0002810
S	0.00	.012340	.023183	.011874	.022302	.0034384	.0071185	.0085700	.0167572
CT	0.00	.000145	.000301	.000065	.000135	.0000406	.0000930	.0001007	.0002178
Ar +	0.10	.001627	.003808	.000732	.001713	.0022142	.0057120	.0018755	.0045696
K	0.00	.000098	.000225	.000044	.000101	.0000272	.0000687	.0000681	.0001625
Ca	0.00	.001666	.003912	.002370	.005565	.0004637	.0012001	.0011566	.0028272
Ti	0.00	.000066	.000186	.000123	.000345	.0000181	.0000559	.0000458	.0001339
Cr	0.00	.000372	.001133	.000167	.000509	.0001032	.0003466	.0002581	.0008184
Mn	0.00	.000252	.000811	.000114	.000367	.0000702	.0002489	.0001749	.0005862
Fe	0.00	.024134	.078981	.010861	.035534	.0067250	.0242529	.0167609	.0570897
Ni	0.00	.001384	.004762	.000650	.002235	.0003861	.0014637	.0009616	.0034427
h>		.102738	.210131	.086352	.158954	.0303880	.0690652	.0720963	.1537045
=					===== : 				======= lomot \
(NC	ULE: S	ome abur	luances w	ioura do	negative	e peyona A	GSU4VNCN	UNE./14584	tainet)
The	comp	onents c	t the me	tallicit	v tor t	$h \cap CNO - v = r$	ned mixe	a are dive	n halow

Note that burning C to N increases Z slightly, burning O to N decreases Z slightly, and burning CNO to Ne increases Z significantly; thus, although the mass fraction <Xheavy> of elements heavier than Ne does not change, the ratio <h> = <Xheavy>/Z differs between these CNO-varied mixes:

Sep 06, 07 19:03 **z_xcotrin manual**

Page 55/71

	'GN93hz'			'GN93hz.CtoN'		'GN93hz.COtoN'		'GN93hz.CNOtoNe'		
		solar (CNO	most C	> N	most C,O> N		all C,N,	all C,N,O> Ne	
i	===== Ab_i	Ni/Nz	======= Xi/Z	======== Ni/Nz	xi/Z	======== Ni/Nz	======= Xi/Z	======== Ni/Nz	Xi/Z	
C N O Ne Na Mg Al Si P S	8.55 7.97 8.87 8.08 6.33 7.58 6.47 7.55 5.45 7.21	.245518 .064578 .512966 .083210 .001479 .026308 .002042 .024552 .000195 .011222	.173285 .053152 .482273 .098668 .001999 .037573 .003238 .040520 .000355 .021142	.000246 .309850 .512966 .083210 .001479 .026308 .002042 .024552 .000195 .011222	.000169 .247897 .468789 .095909 .001942 .036523 .003147 .039387 .000345 .020550	.000246 .817686 .005130 .083210 .001479 .026308 .002042 .024552 .000195 .011222	.000179 .694328 .004976 .101793 .002061 .038764 .003340 .041803 .000366 .021811	.000000 .000000 .000000 .906272 .001479 .026308 .002042 .024552 .000195 .011222	.000000 .000000 .000000 .847998 .001577 .029650 .002555 .031975 .000280 .016683	
Ar K Ca Ti Cr Mn Fe Ni	5.50 6.52 5.12 6.36 5.03 5.68 5.39 7.50 6.25	.000219 .002291 .000091 .001586 .000075 .000329 .000170 .021877 .001293	.000456 .005379 .000210 .003734 .000211 .001005 .000548 .071794 .004459	.000219 .002291 .000091 .001586 .000075 .000329 .000170 .021877 .001293	.000443 .005228 .000203 .003631 .000205 .000977 .000533 .069787 .004335	.0002291 .002291 .001586 .000075 .000329 .000170 .021877 .001293	.000471 .005548 .000216 .003854 .000218 .001037 .000566 .074068 .004601	.000219 .002291 .000091 .001586 .000075 .000329 .000170 .021877 .001293	.000380 .004244 .000165 .002948 .000167 .000793 .000433 .056653 .003519	
<h></h>	=====	.093729 ====================================	.192623	.093729 ====================================	.187236	.093729 ========	.198724	.093729 ======	.152002	

For the GS98 mix, the corresponding CNO-varied metallicity components are:

	'GS98hz'			'GS98hz.CtoN'		.COtoN'	'GS98hz.CNOtoNe'		
	solar (CNO	most C	> N	most C,(> N	all C,N,	,0> Ne	
i Ab_i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	
C 8.52 N 7.92 O 8.83 Ne 8.08 Na 6.32 Mg 7.58 Al 6.49 Si 7.56 P 5.56 S 7.20 Cl 5.28 Ar 6.40 K 5.13 Ca 6.35 Ti 4.94 Cr 5.69	.245825 .061748 .501922 .089265 .001562 .028224 .002294 .026954 .000235 .012602 .000141 .001865 .000100 .001670 .000070 .000369	.171836 .050335 .467356 .104831 .002090 .039924 .003603 .044057 .000423 .023513 .000292 .004335 .000228 .003896 .000195 .001117	.000246 .307327 .501922 .089265 .001562 .028224 .002294 .026954 .000235 .012602 .000141 .001865 .000100 .001670 .000070 .000369	.000167 .243574 .454393 .101924 .002032 .038816 .003502 .042835 .000412 .022861 .000283 .004216 .000221 .003787 .000190 .001086	.000246 .804230 .005019 .089265 .001562 .028224 .002294 .026954 .000235 .012602 .00141 .001865 .000100 .001670 .000369	.000177 .675229 .004813 .107973 .002153 .041120 .003710 .045377 .000436 .024218 .000300 .004466 .000234 .004012 .000201 .001150	.000000 .000000 .000000 .898760 .001562 .028224 .002294 .026954 .000235 .012602 .00141 .001865 .000100 .001670 .000070 .000369	.000000 .000000 .000000 .836936 .001657 .031657 .002856 .034935 .000336 .018645 .000231 .003438 .000180 .003089 .000155 .000855	
Mn 5.53 Fe 7.50 Ni 6.25	.000244 .023517 .001393	.076433 .004757	.023517	.074315 .004627	.023517	.000804 .078726 .004901	.023517 .001393	.060619 .060608 .003773	
 <h> ===== where <h< td=""><td>.101240</td><td>.205642 ====== ne sum of</td><td>.101240 ====================================</td><td>.199942 ====== ing heavi</td><td>.101240 =======</td><td>.211808</td><td>.101240</td><td>.163064</td></h<></h>	.101240	.205642 ====== ne sum of	.101240 ====================================	.199942 ====== ing heavi	.101240 =======	.211808	.101240	.163064	

/71

Sep	06, 07	19:03			Page 56/				
For	the	AGS04 mi	x, the c	orrespond	ling CNO-	varied me	etallicit	cy compone	ents are:
	'AGS04hz'		z′	'AGS04hz	.CtoN'	'AGS04hz.	COtoN'	'AGS04hz.	CNOtoNe'
	solar CNO			most C	> N	most C,O> N		all C,N,	0> Ne
i	Ab_i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z
 C N O Na Mg Al S C Ar C T C M R E N I F E N	8.39 7.78 8.66 7.84 6.27 7.53 6.43 7.51 5.40 7.16 5.28 5.28 5.29 4.83 5.28 5.29 5.47 5.28 5.28 5.29 5.28 5.29 5.47 5.28 5.29 5.47 5.28 5.29 5.47 5.29 5.47 5.28 5.29 5.47 5.28 5.47 5.29 5.47 5.28 5.47 5.29 5.47 5.29 5.47 5.29 5.47 5.29 5.47 5.29 5.47 5.29 5.47 5.47 5.47 5.29 5.47 5.47 5.29 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 7.45 6.19	.257854 .063296 .480145 .072700 .001956 .035594 .002827 .033992 .000264 .015184 .000178 .001590 .000121 .002050 .000082 .000458 .000310 .029696 .001703	.176688 .050578 .438260 .083693 .002565 .049354 .004352 .054464 .000466 .027771 .000361 .003623 .000269 .004686 .000223 .001358 .000972 .094613 .005704	.002579 .318571 .480145 .072700 .001956 .035594 .002827 .033992 .000264 .015184 .001590 .000121 .002050 .000082 .000458 .000310 .029696 .001703	.001717 .247373 .425880 .081329 .002493 .047960 .004229 .052926 .000453 .026987 .000350 .003521 .0003521 .000262 .004555 .000218 .001320 .000944 .091941 .005542	.002579 .793915 .004801 .072700 .001956 .035594 .002827 .033992 .000264 .015184 .001590 .000121 .002050 .000082 .000458 .000310 .029696 .001703	.001812 .650653 .004494 .085836 .002631 .050618 .004463 .055859 .000478 .028483 .000369 .003716 .000277 .004807 .000230 .001393 .000996 .097036 .005849	.000000 .000000 .000000 .873995 .001956 .035594 .002827 .033992 .000264 .015184 .001590 .001590 .000121 .002050 .000082 .000458 .000310 .029696 .001703	.000000 .00000 .00000 .800479 .002041 .039266 .003462 .043331 .000371 .022095 .000286 .002883 .000215 .000215 .003729 .000178 .001081 .000773 .075273 .004537
 <h></h>		.126005	.250781	.126005	.243701	.126005	.257205	.126005	.199521 =======

where <h> is the sum of everything heavier than Ne.

For the high-C,N,O,Ne version of the "AGS04" mix:

		'AGS04h	'A LCNONe'	GS04hiCNO	SU4hiCNONe.CtoN' 'AGSU4hiCNONe.CNOtoNe'					
		solar (CNO	most C	> N	most C,()> N	all C,N,O> Ne		
i 	Ab_i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	
C N	8.44	.261002	.181349	.002610	.001761	.002610	.001861	.000000	.000000	
0 Ne Na	8.71 7.89 6.27	.073584	.085897	.073584	.083408	.004860 .073584 .001765	.004616 .088156 .002409	.886152	.818221	
Mg Al Si	7.53 6.43 7.51	.032110 .002551 .030665	.045147 .003981 .049822	.032110 .002551 .030665	.043839 .003866 .048378	.032110 .002551 .030665	.046335 .004086 .051132	.032110 .002551 .030665	.035711 .003149 .039408	
P S Cl	5.40 7.16 5.23	.000238 .013698 .000161	.000427 .025404 .000330	.000238 .013698 .000161	.000414 .024669 .000321	.000238 .013698 .000161	.000438 .026073 .000339	.000238 .013698 .000161	.000337 .020095 .000261	
Ar K Ca	6.23 5.06 6.29	.001609 .000109 .001849	.003719 .000246 .004287	.001609 .000109 .001849	.003611 .000239 .004163	.001609 .000109 .001849	.003816 .000253 .004400	.001609 .000109 .001849	.002941 .000195 .003391	
Ti Cr Mn	4.89 5.63 5.47	.000074 .000413	.000204 .001242	.000074 .000413	.000199 .001206	.000074 .000413	.000210 .001275	.000074	.000162 .000983	
Fe Ni	7.45 6.19	.026789	.086548	.026789	.084039	.026789	.088823	.026789	.068457	
 <h></h>	=====	.113848	.229811	.113848	.223155	.113848	.235859	.113848	.181779	

z_xcotrin manual

Page 57/71

where <h> is the sum of everything heavier than Ne.

For the very-high-C,N,O,Ne version of the "AGS04" mix:

		′AGS04vh	'A nCNONe'	GS04vhCN	3S04vhCNONe.CtoN' 'AGS04vhCNO 'AGS04vhCNONe.COtoN'					
		solar (CNO	most C	!> N	most C,C)> N	all C,N,	0> Ne	
i	===== Ab_i	Ni/Nz	xi/Z	======= Ni/Nz	xi/Z	Ni/Nz	======= Xi/Z	======== Ni/Nz	Xi/Z	
C N O Na Mg Al S C I C R K C T I C M N E S C I R K C M S C I S C I S C N S C I S C S S C S S C S S C S S S S S S	$\begin{array}{c} 8.49\\ 7.90\\ 8.76\\ 7.94\\ 6.27\\ 7.53\\ 6.43\\ 7.51\\ 5.40\\ 7.16\\ 5.23\\ 6.28\\ 5.06\\ 6.29\\ 4.89\\ 5.63\\ 5.47\\ 7.45\\ 6.19\\\end{array}$.263820 .067812 .491254 .074376 .001590 .028927 .002298 .027625 .000214 .012340 .000145 .001627 .000098 .001666 .000066 .000372 .000252 .024134 .001384	.185686 .055659 .460576 .087948 .002142 .041200 .003633 .045465 .000389 .023183 .000301 .003808 .000225 .003912 .000186 .001133 .000811 .078981 .004762	.002638 .328994 .491254 .074376 .001590 .028927 .002298 .027625 .000214 .012340 .001627 .000098 .001666 .0000372 .000252 .024134 .001384	.001802 .262029 .446925 .085341 .002079 .039978 .003526 .044117 .000377 .022496 .000292 .003696 .000218 .000218 .003797 .000180 .001100 .001100 .000787 .076640 .004620	002638 815335 004913 074376 001590 028927 002298 027625 000214 012340 000145 000145 001627 000098 001666 000066 0000372 000252 024134 001384	.001907 .687252 .004730 .090318 .002200 .042310 .046690 .000399 .023808 .000309 .003911 .000231 .004018 .000190 .001164 .000833 .081110 .004889	.000000 .000000 .000000 .897262 .001590 .028927 .002298 .027625 .000214 .012340 .000145 .001627 .000098 .001666 .000066 .000066 .000372 .000252 .024134 .001384	.000000 .000000 .000000 .834689 .001685 .032412 .002858 .035768 .000306 .018238 .000237 .002996 .000177 .003078 .000146 .000892 .000638 .062135 .003745	
<h> whe</h>	===== re <h< td=""><td>.102738 ====================================</td><td>.210131 ======= ne sum of</td><td>.102738 ======= everyth</td><td>.203903</td><td>.102738 ======== ier than N</td><td>.215793 ====== Ne.</td><td>.102738</td><td>.165311</td></h<>	.102738 ====================================	.210131 ======= ne sum of	.102738 ======= everyth	.203903	.102738 ======== ier than N	.215793 ====== Ne.	.102738	.165311	
The in arg un Z/:	ere ar ferred gument certai X = 0.	re indica l from th s agains n, so he 01724878 AGS043	ations th ne observ st this t ere are A 3 AG c15Ne	at Ne mi red Solar coo; at t GS04 mix S04x15Ne 	ght have coronal he very es with _OFe.5_W	e an abunda Ne/O rati least, the Ne * 1.5, 195 AGS04x151	ance up t los, alth Ne abur 2.0, 2.5 Ne.5amet	to 3 times hough ther hdance may 5, and 3.0 AGS04x15	that te are be quite : Ne.2amet	
i d	====== :Ab_i	Ni/Nz	xi/Z	Ni/Nz	======= Xi/Z	Ni/Nz	======= Xi/Z	======================================	Xi/Z	
C N Na Mg Al Si P S Cl Ar K Ca Ti Cr	0.000 0.000 0.000 +.176 0.000	.248810 .061076 .463305 .105225 .001887 .034345 .002728 .032800 .000255 .014651 .000172 .001534 .000116 .001978 .000079 .000442	.169591 .048547 .420657 .120496 .002462 .047372 .004177 .052277 .000448 .026656 .000346 .003478 .000258 .004498 .000214 .001303	.112709 .027666 .663672 .092932 .000855 .039079 .001236 .029646 .000116 .014190 .000077 .000695 .000052 .002833 .000148 .000200	.077488 .022181 .607789 .107340 .001125 .054367 .001909 .047659 .000206 .026040 .000156 .001589 .000116 .006499 .000406 .000595	.3184504 .0824077 .4011116 .1449344 .0008012 .0145862 .0011587 .0139299 .0001083 .0062221 .0000733 .0021132 .0000489 .00008394 .0000331 .0001872	2363816 0713340 3966082 1807440 0011383 0219094 0019321 0241782 0002074 0123280 0001605 0052170 0001182 0020791 0000979 0006016	.2781026 .0700487 .4371453 .1219276 .0014303 .0260341 .0020679 .0248626 .0001933 .0111057 .0001305 .0017777 .0000880 .0014988 .0000595 .0003346	.1963072 .0576618 .4110377 .1445952 .0019325 .0371869 .0032790 .0410375 .0003518 .0209248 .0002718 .0041736 .0002021 .0035304 .0001675 .0010224	

Sep 06, 07 19:03	z_xcotr	rin manual	Page 58/71
Mn 0.000 .000299 .000933 Fe 0.000 .028654 .090812 Ni 0.000 .001644 .005475	.000136 .000428 .012980 .041493 .000778 .002614	.0001272 .0004319 .0121689 .0419994 .0006983 .0025332	.0002269 .0007326 .0217199 .0712869 .0012460 .0042983
h> .121584 .240709	.103021 .185202	.0530959 .1149322	.0927758 .1903981
(NOTE: some abundances	would go negative	beyond AGS04x15Ne	======================================
Z/X = 0.01794158 A AGS04x2Ne	GS04x2Ne_OFe.5_W9 	5 AGS04x2Ne.5amet	AGS04x2Ne.2amet
i d:Ab_i Ni/Nz Xi/Z	======================================	======================================	======================================
C 0.000 .240379 .163043 N 0.000 .059006 .046672 O 0.000 .447605 .404412 Ne +.301 .135546 .154458 Na 0.000 .001823 .002367 Mg 0.000 .033182 .045543 Al 0.000 .002636 .004016 Si 0.000 .031688 .050258 P 0.000 .00246 .000430 S 0.000 .014155 .025626 Cl 0.000 .00146 .000333 Ar 0.000 .001482 .003344 K 0.000 .001482 .003344 K 0.000 .001911 .004324 Ti 0.000 .0001911 .004324 Ti 0.000 .0001911 .004324 Ti 0.000 .000427 .001253 Mn 0.000 .000427 .001253 Mn 0.000 .000289 .000897 Fe 0.000 .027683 .087306 Ni 0.000 .001588 .005264 	.109323 .074812 .026835 .021415 .643730 .586793 .120186 .138176 .000829 .001086 .037906 .052491 .001199 .001843 .028755 .046012 .000112 .000198 .013764 .025141 .000075 .000151 .000674 .001534 .000051 .000114 .002748 .006275 .000143 .000390 .000194 .000575 .000132 .000413 .012590 .040059 .000754 .002522 	.3072900 .2265596 .0796959 .0685215 .3790228 .3722407 .1870455 .2316870 .0007056 .0009958 .0128463 .0191659 .0122678 .0211497 .0010207 .0016906 .0122678 .0211497 .0000949 .0001804 .0054793 .0107830 .0000648 .0001410 .0020455 .0050160 .0000430 .0001032 .0007390 .0018181 .0000292 .000859 .0001650 .0005266 .0001121 .0003779 .0107174 .0367404 .0006152 .0022167	.2684938 .1884496 .0676994 .0554118 .4187884 .3915437 .1571847 .1853496 .0013536 .0018185 .0246373 .0349921 .0019571 .0030858 .0235282 .0386147 .0001824 .0003302 .0105093 .0196888 .0001237 .0002562 .0017190 .0040128 .0000832 .0001901 .0014182 .0033216 .0000564 .0001579 .0003167 .0009624 .0002147 .0006894 .0205546 .0670797 .0011793 .0040451
Z/X = 0.01863439 A AGS04x25Ne	GS04x25Ne_OFe.5_W 	95 AGS04x25Ne.5amet	AGS04x25Ne.2amet
i d:Ab_i Ni/Nz Xi/Z	======================================	======================================	=========================== Ni/Nz Xi/Z
C 0.000 .232500 .156981 N 0.000 .057072 .044937 O 0.000 .432932 .389378 Ne +.398 .163879 .185894 Na 0.000 .001764 .002279 Mg 0.000 .032094 .043849 Al 0.000 .002549 .003867 Si 0.000 .030650 .048389 P 0.000 .000238 .000414 S 0.000 .013691 .024674 Cl 0.000 .00161 .000321 Ar 0.000 .001434 .003219 K 0.000 .001434 .003219 K 0.000 .001434 .003219 K 0.000 .001848 .004164 Ti 0.000 .000109 .000239 Ca 0.000 .0001848 .004164 Ti 0.000 .000143 .001206 Mn 0.000 .000280 .000863 Fe 0.000 .026776 .084060 Ni 0.000 .001536 .005068	.106134 .072313 .026052 .020700 .624950 .567196 .145851 .166953 .000805 .001050 .036800 .050737 .001164 .001782 .027916 .044475 .000109 .000192 .013362 .024301 .000073 .000147 .000655 .001484 .000050 .000111 .002667 .006064 .000140 .000380 .000189 .000557 .000128 .000399 .012223 .038722 .000732 .002437	.2968211 .2174666 .0771536 .0659190 .3583114 .3496897 .2265366 .2788410 .0006160 .0008638 .0112136 .0166249 .0008914 .0014671 .0107089 .0183462 .0000828 .0001564 .0047837 .0093550 .0000569 .0001230 .0019815 .0048285 .0000376 .0000897 .0006455 .0015781 .0000253 .0000739 .0001438 .0004561 .000975 .0003269 .0093558 .0318714 .0005370 .0019227	.2594992 .1811752 .0655014 .0533298 .4016121 .3735029 .1901794 .2230728 .0012818 .0017129 .0233291 .0329593 .0018535 .0029070 .0222792 .0363719 .0001727 .0003110 .0099520 .0185464 .0001173 .0002418 .0016635 .0038628 .0000789 .0001793 .0013433 .0031296 .0000533 .0001483 .0002998 .0009060 .0002031 .0006486 .0194638 .0631845 .0011166 .0038099
h> .113617 .222810	.097013 .172838	.0411773 .0880837	.0832079 .1689193

z_xcotrin manual

Page 59/71

(NOTE: some abundances would go negative beyond AGS04x25Ne.797451amet)

Z,	Z/X = 0.01932720 AGS04x3Ne_OFe.5_W95									
		AGS042	k3Ne			AGS04x31	Ne.5amet	AGS04x31	le.2amet	
ic	====== 1:Ab i	======================================	======== xi/z	======================================	xi/7	======================================	xi/7.	======================================	xi/7.	
C 0.000 .225122 .151354 .103126 .069977 .2869847 .2090261 .2510645 .174422										
Ν	0.000	.055261	.043326	.025314	.020031	.0747640	.0635025	.0634395	.0513966	
0	0.000	.419197	.375420	.607243	.548880	.3388465	.3287527	.3855011	.3567533	
Ne	+.477	.190413	.215077	.170059	.193870	.2636471	.3226155	.2211244	.2580924	
Na	0.000	.001708	.002198	.000783	.001017	.0005325	.0007423	.0012150	.0016157	
Mg	0.000	.031075	.042278	.035756	.049097	.0096809	.0142684	.0221037	.0310741	
Al	0.000	.002468	.003728	.001131	.001724	.0007692	.0012586	.0017558	.0027402	
Si	0.000	.029677	.046655	.027125	.043039	.0092449	.0157452	.0211086	.0342911	
Ρ	0.000	.000230	.000399	.000105	.000184	.0000713	.0001339	.0001635	.0002930	
S	0.000	.013256	.023789	.012983	.023515	.0041291	.0080275	.0094286	.0174844	
Cl	0.000	.000156	.000309	.000071	.000142	.0000488	.0001050	.0001109	.0002274	
Ar	0.000	.001388	.003104	.000636	.001435	.0019220	.0046560	.0016120	.0037248	
Κ	0.000	.000105	.000230	.000048	.000106	.0000321	.0000762	.0000745	.0001685	
Ca	0.000	.001789	.004014	.002591	.005867	.0005567	.0013531	.0012723	.0029496	
Тi	0.000	.000071	.000191	.000135	.000365	.0000218	.0000634	.0000505	.0001399	
Cr	0.000	.000400	.001163	.000183	.000538	.0001242	.0003916	.0002841	.0008544	
Mn	0.000	.000271	.000832	.000124	.000385	.0000842	.0002804	.0001924	.0006114	
Fe	0.000	.025926	.081047	.011876	.037470	.0080765	.0273519	.0184408	.0595689	
Ni	0.000	.001487	.004886	.000711	.002358	.0004635	.0016497	.0010578	.0035915	
 h>		.110007	.214823	.094258	.167242	.0357577	.0761032	.0788705	.1593349	
(1	(NOTE: some abundances would go negative beyond AGS04x3Ne.747866amet)									

Z/X = 0.01887595	AGS04hiCNOx15Ne	_OFe.5_W95	AGS04hi	CNOx15Ne.	2amet
AGS04hiCNOx15	5Ne	AGS04hiCNOx15Ne	.5amet		

	=====			========			========	========		
i c	l:Ab_i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	
C N O Ne Mg Al S C A K C T I C M E	$\begin{array}{c}\\ +.050\\ +.060\\ +.050\\ +.226\\ 0.000\\ 0.$.251740 .063234 .468761 .106459 .001702 .030971 .002460 .029577 .000230 .013211 .000155 .001552 .001552 .001783 .000105 .001783 .000270 .025839	.173881 .050934 .431300 .123540 .002250 .043288 .003817 .047770 .000409 .024358 .000316 .003566 .000236 .000195 .001191 .000852 .082984	.113904 .028611 .670709 .093912 .000770 .035199 .001113 .026702 .000104 .012780 .000702 .000070 .000702 .000047 .002551 .000133 .000180 .000122 .011691	.079026 .023148 .619856 .109465 .001023 .049417 .001735 .043319 .000186 .023667 .000143 .001620 .000106 .005906 .000368 .000541 .000387 .037714	.3212059 .0849795 .4097142 .1459095 .0005669 .0103179 .0008198 .0098536 .0000764 .0044013 .0000518 .0021275 .0000346 .0005935 .0000230 .0001325 .0000898 .0086083	.2428166 .0749145 .4125727 .1853100 .0008203 .0157834 .0013921 .0174177 .0001489 .0088810 .0001155 .0053490 .0000852 .0014971 .0000694 .0004336 .0003104 .0302574	.2810428 .0724070 .4438537 .1231012 .0012231 .0222584 .0017680 .0212567 .0001650 .0094951 .0001114 .0017949 .0000753 .0012813 .0002862 .0001938 .0185702	.2014552 .0605262 .4238093 .1482480 .0016781 .0322861 .0028470 .0356291 .0003050 .0181672 .0002358 .0042792 .0001757 .0030648 .0001447 .0008880 .0006354 .0018933	
Ni 	0.000	.001482	.005003	.000700	.002373	.0004940	.0018252	.0010653	.0037319	
h>		.109806	.220345	.092864	.168505	.0381909	.0843862	.0795953	.1659613	
(1	(NOTE: some abundances would go negative beyond AGS04hiCNOx15Ne.775992amet)									
Z/	Z/X = 0.01965326 AGS04hiCNOx2Ne_OFe.5_W95 AGS04hiCNOx2Ne.2amet AGS04hiCNOx2Ne AGS04hiCNOx2Ne.5amet									

z xcotrin manual

Page 60/71

0ep 00, 07	13.05			2_7000				1 age 00/
====== i d:Ab_i 	======== Ni/Nz	xi/Z	======== Ni/Nz	====== Xi/Z	======================================	Xi/Z	======================================	Xi/Z
C +.050 N +.060	.243112 .061067	.167004 .048920	.110446 .027742	.076243	.3098835	.2325011 .0718935	.2712458 .0699583	.1932028 .0581094
0 + .050 Np + 351	.452697	.414238	.650349	.598029	.3872014	.3869797	.4250999	.4033349
Na 0.000	.001644	.002161	.000747	.000987	.0004782	.0006868	.0011525	.0015713
Mg 0.000 Al 0.000	.029909	.041576	.034130	.04/6//	.008/044	.0132154	.0209747	.0302317 .0026658
Si 0.000	.028563	.045881	.025891	.041793	.0083129	.0145842	.0200310	.0333623
s 0.000	.012759	.023394	.012393	.022836	.0037125	.0074350	.0089470	.0170104
Cl 0.000 Ar + 050	.000150	.000304	.000068	.000139	.0000440	.0000975	.0001053	.0002214
к 0.000	.000101	.000227	.000046	.000103	.0000294	.0000717	.0000711	.0001649
Ca 0.000	.001722	.003948	.002473	.005697	.0005009	.0012541	.0012077	.0028704
Cr 0.000	.000385	.001144	.000130	.000523	.0000197	.0003631	.0002697	.0008316
Mn 0.000	.000260	.000819	.000118	.000373	.0000760	.0002609	.0001829	.0005958
Fe 0.000 Ni 0.000	.024953	.079702	.011336	.036386	.0072621	.0253344	.01/4992	.0579549
 h> =====	.106043	.211633	 .090047 	.162580	 .0324837 ========	.0713182	.0750495	.1555069
(NOTE: s	some abur	ndances w	ould go	negative	e beyond A	AGS04hiCNO	Dx2Ne.7278	360amet)
Z/X = 0.	02043057 GS04hiCN	7 AGS0 NOx25Ne	4hiCNOx2	5Ne_OFe. AG	5_W95 SO4hiCNOx	AGS(25Ne.5ame)4hiCNOx25	Ne.2amet
====== i d:Ab_i	Ni/Nz	 Xi/Z	======== Ni/Nz	 Xi/Z	======================================	Xi/Z	======================================	Xi/Z
C +.050	.235057	.160650	.107192	.073650	.2992678	.2229701	.2620815	.1855780
N + .060 O + .050	.059044	.047059	.026925	.021574	.0795330	.0691020	.0676675	.0558762
Ne +.448	.165674	.190232	.147299	.170033	.2279647	.2853480	.1918908	.2282784
Na 0.000	.001589	.002079	.000725	.000953	.0003954	.0005638	.0010867	.0014729
Al 0.000	.028918	.003527	.001047	.001616	.00071913	.0009571	.0015710	.0283333
Si 0.000	.027617	.044135	.025128	.040371	.0068680	.0119652	.0188840	.0312671
P 0.000 S 0.000	.000214	.000378	.000098	.000174	.0000533	.0001024	.0001467	.0002678
Cl 0.000	.000145	.000292	.000066	.000134	.0000361	.0000795	.0000990	.0002070
Ar + .050	.001449	.003295	.000661	.001511	.0019945	.0049425	.0016789	.0039540
Ca 0.000	.000098	.000218	.000045	.000101	.0000240	.0010291	.0000669	.0001541
Ti 0.000	.000066	.000181	.000125	.000343	.0000163	.0000484	.0000453	.0001279
Cr 0.000	.000372	.001100	.000170	.000506	.0000921	.0002971	.0002541	.0007788
Mn 0.000 Fe 0 000	.000252	.000787	.000115	.000361	.0000625	.0002129	.0001721	.0005574
Ni 0.000	.001384	.004622	.000659	.002213	.0003443	.0012537	.0009463	.0032747
 h>	.102528	.203580	.087394	.157050	.0271314	.0592387	.0707959	.1458433
(NOTE: s	ome abur	ndances w	rould go	negative	e beyond A	GS04hiCN	 Dx25Ne.682	2227amet)
Z/X = 0.	02120788 GS04hiCN	3 AGSO NOx3Ne	4hiCNOx3	Ne_OFe.5 A	5_W95 GS04hiCNC	AGS Dx3Ne.5ame	504hiCNOx3	3Ne.2amet
====== i d:Ab_i	Ni/Nz	Xi/Z	======== Ni/Nz	====== Xi/Z	======================================	Xi/Z	======================================	xi/Z
C +.050 N +.060	.227518	.154762	.104125	.071229	.2892973	.2141381	.2534926	.1785124 .0538062

Sep 06, 07 19:03		z_xcotrin manual							
O +.050 .423658 Ne +.527 .192433 Na 0.000 .001538 Mg 0.000 .027991 Al 0.000 .002223 Si 0.000 .0022731 P 0.000 .0026731 P 0.000 .000207 S 0.000 .011940 Cl 0.000 .00140 Ar +.050 .001403 K 0.000 .00040 Ar +.050 .001612 Ti 0.000 .000360 Mn 0.000 .000244 Fe 0.000 .002353 Ni 0.000 .001340 	.3414322 .3298680 .0004498 .0086434 .0007621 .0095397 .0000814 .0048625 .0000645 .0047610 .0000462 .0008191 .0000379 .0002371 .0001709 .0165714 .0010002	.3911257 .2230522 .0010251 .0186483 .0014811 .0178097 .0001382 .0079547 .0000938 .0016262 .0000630 .0010734 .0000426 .0002397 .0001626 .0155587 .0008926 	.3668969 .2638944 .0013817 .0265741 .0023430 .0293267 .0002510 .0149524 .0001950 .0038088 .0001445 .0025224 .0001195 .0007308 .0005238 .0509445 .0030719 						
======================================	dances would go	======= negative	bevond A	======= AGS04hiCNC	======================================	======= 22amet)			
Z/X = 0.02070490 AGS04vhCN) AGS04vhCNOx IOx15Ne	15Ne_OFe. AG	5_W95 S04vhCNOx	AGS0 15Ne.5ame	94vhCNOx15	Ne.2amet			
i d:Ab_i Ni/Nz	Xi/Z Ni/Nz	======== Xi/Z	======================================	Xi/Z	Ni/Nz	Xi/Z			
C +.100 .254360 N +.120 .065381 O +.100 .473639 Ne +.276 .107564 Na 0.000 .001533 Mg 0.000 .027890 Al 0.000 .002215 Si 0.000 .0026635 P 0.000 .0026635 P 0.000 .000207 S 0.000 .011897 Cl 0.000 .00140 Ar +.100 .001568 K 0.000 .001568 K 0.000 .001606 Ti 0.000 .000064 Cr 0.000 .000359 Mn 0.000 .000243 Fe 0.000 .023269 Ni 0.000 .001335 	.177864 .114980 .053315 .029554 .441177 .677043 .126365 .094797 .002051 .000693 .039464 .031667 .003480 .001001 .043550 .024023 .000373 .000094 .022206 .011498 .000289 .00063 .003648 .000709 .000215 .000043 .003747 .002295 .000178 .000120 .001086 .000162 .000777 .000110 .075654 .010518 .004561 .000630	.080443 .024112 .630963 .111424 .000928 .044832 .001573 .039300 .000170 .021472 .000130 .001650 .000098 .005358 .000335 .000491 .000352 .034215 .002154 .002154 .153058	. 3236246 .0875472 .4173540 .1467589 .0003546 .0064587 .0005134 .0061680 .0000479 .0027549 .0000331 .0021401 .0000215 .0003713 .0000143 .0000143 .0000563 .0053889 .0003093 	.2487911 .0784860 .4273882 .1895475 .0005218 .0100474 .0008866 .0110877 .0000949 .0056530 .0000750 .0054720 .0000537 .0009526 .0000439 .0002761 .0001979 .0192624 .0011622	.2836549 .0747562 .4498350 .1241412 .0010342 .0188256 .0014955 .0179784 .0001396 .0080305 .0000948 .0018103 .0000636 .0010837 .0000429 .0002421 .0001640 .0157065 .0009010 .0676127	.2062348 .0633834 .4356617 .1516380 .0014393 .0276973 .0024426 .0305651 .0002618 .0155848 .0002034 .0043776 .0001505 .0026292 .0001243 .0007620 .0005454 .0530973 .0032015			
(NOTE: some abur	ndances would go	negative	beyond A	AGS04vhCNC)x15Ne.663	458amet)			
Z/X = 0.02157703 AGS04vhCN	AGS04vhCNOx NOx2Ne	2Ne_OFe.5 A	_W95 GS04vhCNC	AGS Dx2Ne.5ame	304vhCNOx2	2Ne.2amet			
i d:Ab_i Ni/Nz	Xi/Z Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	 Xi/Z			
C +.100 .245556 N +.120 .063118 O +.100 .457245 Ne +.401 .138454 Na 0.000 .001480 Mg 0.000 .026925 Al 0.000 .002139	.170675 .111458 .051160 .028649 .423344 .656303 .161677 .122524 .001968 .000672 .037869 .030698 .003339 .000971	.077562 .023249 .608366 .143245 .000895 .043228 .001518	.3121591 .0846360 .3944695 .1893233 .0002722 .0049614 .0003942	.2380076 .0752535 .4006387 .2425155 .0003973 .0076549 .0006751	.2736893 .0722074 .4307287 .1599419 .0009694 .0176472 .0014017	.1976080 .0607974 .4142621 .1940124 .0013397 .0257833 .0022734			

si 0.000 .025713 .041790 .023287 .037893 .0047383 .0044477 .0166531 .0284531 0 .000 .000206 .000035 .000037 .000165 .000274 .0001309 .000248 s 0.000 .011466 .021309 .011147 .020705 .000257 .0000575 .0000887 .0011890 Ar +.100 .01151 .003500 .000687 .001590 .0002703 .005050 .000745 .0001397 Ca 0.000 .000091 .000026 .000041 .000093 .0000162 .0000403 .00011397 Ca 0.000 .00055 .000326 .000224 .005164 .0002354 .0007261 .0010161 .0024480 Ti 0.000 .000625 .000046 .000171 .000137 .0000637 .0002101 .000248 .0001792 Mn 0.000 .000245 .000046 .001017 .000343 .0001637 .0002101 .000248 .000792 Mn 0.000 .000245 .000746 .00107 .000473 .0006837 .0002101 .000235 .000842 .0005627 .0001288 .0004437 .000610 .002075 .000238 .0008427 .0028807 h> .005627 .193144 .081066 .147578 .0194121 .0435847 .0634327 .1333201 .005627 .003248 .001288 .004172 .027797 .022445 .0310071 .002245 .264772 .1496270 .0050 .001288 .004172 .027797 .022445 .0310071 .072215 .0088421 .0584118 .2/X = 0.02244915 AGS04vhCN0x25Ne_OFE.5_W95 AGS04vhCN0x25Ne.2amet .1 d:Ab_1 Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z .003505 .005488 .016545 .012465 .002632 .03598 .02779 .52435 .37355 .37355 .373562 .4128652 .264772 .1895520 N + 120 .06106 .04172 .02779 .022445 .0381071 .072215 .0658421 .0584118 0 + 110 .041494 .046897 .036795 .587335 .373352 .3755682 .4128652 .264772 .194555 N + .000 .001430 .001892 .000652 .000843 .0008451 .0013847 .0021465 .0004616 .002647 .003210 .001952 .003845 .000283 .0004916 .0013841 .0021465 .00004616 .002647 .003216 .001453 .003846 .0001955 .005484 .0016545 .0021465 .00004616 .002667 .003216 .000263 .0008451 .0001381 .000455 .0007831 .001361 .0000560 .000145 .000146 .000185 .000454 .0001361 .0001756 .00000130 .000145 .000145 .000495 .0006454 .00018	Sep 06, 07	7 19:03			z_xcot	rin manu	ıal		Page	62/71
P 0.000 0.002488 .000136 .0001368 .0000724 .001288 S 0.000 0.011486 .002139 .0011417 .020705 .0001253 .0000570 .0001890 Ar +1.00 .001514 .00237 .0000162 .0001792 .0002263 .0000402 .0001397 C 0.000 .000591 .0002164 .0000345 .000141 .000137 .000117 .000137 .0001345 .00024400 Ti 0.000 .000345 .000147 .000137 .0000437 .0001345 .000748 P 0.000 .0022453 .000147 .000134 .0001514 .000582 P 0.000 .0224453 .072556 .010217 .0002378 .0008462 .000447 .0024907 Ni .0000 .001288 .004377 .000610 .02275 .0002378 .0008462 .000447 .0029807 Ni .0000 .02244915 AGS04vhCN0x25Ne_CPE-5_95 AGS04vhCN0x25Ne_C28me .00	Si 0.000	.025713	.041790	.023287	.037893	.0047383	.0084477	.0168531	.0284531	
<pre>S 0.000 .011486 .021309 .011147 .020705 .0021165 .0043075 .0070582 .0145084 Ar +.100 .00135 .000277 .000061 .000125 .0000253 .0000570 .0000887 .0001890 Ar +.100 .000296 .000206 .000241 .000093 .0000162 .0000402 .0000594 .0001397 Ca 0.000 .000265 .000226 .000117 .000125 .0000110 .0000234 .0001403 .0001159 Cr 0.000 .000265 .000171 .000135 .0000171 .0000251 .00010161 .0024480 Cr 0.000 .000265 .000746 .000177 .000473 .0000637 .0002101 .000259 .0007092 Mn 0.000 .00235 .000746 .000177 .000473 .0000637 .0002101 .0002328 .00001159 Cr 0.000 .00236 .00174 .000177 .000275 .0002778 .000862 .0008447 .0027807 M 0.000 .00238 .00174 .000107 .000275 .0002778 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .000610 .002075 .0002778 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .000610 .002075 .0002778 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .000610 .002075 .0002778 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .000610 .002075 .0002778 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .000610 .002075 .000278 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .000410 .002075 .000278 .000862 .0008447 .0027807 M 0.000 .001288 .004377 .00045 .00145 .014732 .0058547 .05304VhCN0x25Ne.2amet AGS04VhCN0x25Ne AGS04VhCN0x25Ne .2amet AGS04VhCN0x25Ne .2mmet M //KZ X1/Z N1/NZ X1/Z C +.100 .237341 .164045 .108145 .074880 .3014154 .2280626 .264374 .1896520 N +.120 .441949 .406897 .636799 .587335 .3730252 .375662 .4128629 .3945257 N +.120 .441949 .406897 .636799 .587335 .3730252 .375662 .4128629 .3945257 N +.400 .001403 .001842 .000652 .000864 .000156 .000283 .0000930 .0012485 N +.400 .001403 .001892 .000654 .000157 .000283 .0000930 .0012485 N +.400 .001403 .001842 .000652 .0002843 .0001951 .005814 .002186 N 0.000 .00130 .002465 .000157 .000283 .0001514 .0012270 .002270 S 0.000 .00130 .00344 .00088 .000157 .000283 .0001514 .001247 .002186 N 0.000 .00143 .000345 .000157 .000283 .0001514 .001247 .0012485 N 0.000 .00143 .000346 .000657 .00132 .0000151 .0000545 .0001561 .0000457 .0001375 N 0.000 .001348 .000146 .000157 .</pre>	P 0.000	.000200	.000358	.000091	.000163	.0000368	.0000724	.0001309	.0002438	
C1 0.000 .001351 .000277 .000061 .000125 .0000253 .0000570 .0000887 .0001890 AT +1.00 .001514 .000350 .000647 .001393 .0000162 .0000402 .0000594 .0001397 Ca 0.000 .001550 .000356 .0002244 .005164 .0002854 .0001361 .0010161 .00224480 Ti 0.000 .000346 .001042 .000177 .000325 .0000110 .0000334 .0000403 .0001792 Mn 0.000 .0002345 .000746 .000177 .000341 .0000434 .0001514 .0001599 Cn 0.000 .0022463 .0072566 .010166 .032990 .0041396 .01467544 .0147232 .0494277 Ni 0.000 .0022463 .004377 .000610 .002075 .0002378 .0008862 .0008447 .0029807 	S 0.000	.011486	.021309	.011147	.020705	.0021165	.0043075	.0075282	.0145084	
Ar +.100 .001514 .003500 .000687 .001590 .0020703 .0052500 .001794 .0001397 Ca 0.000 .000150 .000206 .000024 .000093 .0000162 .000007261 .0010161 .0024480 Ca 0.000 .001550 .0002264 .000171 .0000235 .0000110 .0000334 .0001159 Cr 0.000 .000265 .000746 .000177 .000473 .0000637 .0002101 .00002862 Pe 0.000 .00235 .000746 .000107 .000314 .0000134 .0001514 .0001539 .0005082 Fe 0.000 .022463 .072596 .010196 .032990 .0041396 .0146754 .0147232 .0494277 Ni 0.000 .001288 .004377 .000610 .002075 .0002378 .0008462 .0008447 .0028807 INOTE: some abundances would go negative beyond AGS04vhCN0x2ENe.621160amet) Z/X = 0 .02244915 AS304vhCN0x25Ne_OFE .5_W95 ASG04vhCN0x2ENe.2amet AGS04vhCN0x25Ne .1 AGS04vhCN0x25Ne .2amet I AGS04vhCN0x25Ne .2amet AG	Cl 0.000	.000135	.000277	.000061	.000125	.0000253	.0000570	.0000887	.0001890	
<pre>K 0.000 .000091 .000296 .000041 .000093 .0000162 .0000402 .0000594 .0001397 Ca 0.000 .000155 .000356 .0002224 .000164 .0000354 .0001034 .000161 .0024480 Ti 0.000 .000246 .000142 .000157 .000473 .0000637 .0002101 .0002269 .0007092 Mn 0.000 .002246 .001196 .02299 .0041396 .0146754 .0147232 .0494277 Ni 0.000 .012188 .004377 .000610 .002075 .0002378 .0008862 .0008447 .0029807 </pre>	Ar +.100	.001514	.003500	.000687	.001590	.0020703	.0052500	.0017490	.0042000	
Ca 0.000 .001550 .003596 .002224 .005164 .0002854 .0007261 .0010161 .0024840 Ti 0.000 .000025 .000171 .000177 .000325 .0000110 .0000334 .0000403 .0001159 Cr 0.000 .000235 .000746 .000107 .000473 .0000637 .0002101 .0002269 .0007092 Mn 0.000 .0022463 .072596 .010196 .032990 .0041396 .0146754 .0147323 .0494277 Ni 0.000 .001288 .004377 .000610 .002075 .0002378 .0008862 .0008447 .0023807 	K 0.000	.000091	.000206	.000041	.000093	.0000162	.0000402	.0000594	.0001397	
Ti 0.000 .000042 .001142 .000157 .000473 .0000637 .0002101 .0002493 .0007092 Mm 0.000 .002463 .001042 .000157 .000473 .0000637 .0002101 .0002269 .0097092 Mm 0.000 .022463 .0072596 .001096 .032990 .0041396 .0146754 .0147323 .0494277 Ni 0.000 .01248 .004377 .000610 .022075 .0002378 .0008862 .0008447 .0023807 	Ca 0.000	.001550	.003596	.002224	.005164	.0002854	.0007261	.0010161	.0024480	
Cr 0.000 .000146 .000167 .000473 .000637 .0001101 .000153 .000153 .000153 .000153 .000582 Fe 0.000 .022463 .072556 .010166 .032990 .0041396 .0146754 .0147232 .0494277 In 0.000 .001288 .004377 .000610 .002275 .002378 .0008862 .008447 .0023807 In 0.000 .001288 .004377 .000610 .002755 .002378 .0008862 .008447 .0023807 In 0.000 .001487 .000510 .002755 .0023844 .0024801 .1333201 In 0.000 .002346191 AGS04vhCN0x25Ne_OFE.5_W95 AGS04vhCN0x25Ne.28met .1 .1 .1 .1 .1 .1 .1 .1 .1 .0 .0 .0 .0 .0 .1 .0 .1 .0 .	Ti 0.000	.000062	.000171	.000117	.000325	.0000110	.0000334	.0000403	.0001159	
<pre>Mn 0.000 .000235 .000746 .000107 .000341 .0000434 .0001514 .0001539 .0005082 Fe 0.000 .001236 .072596 .010196 .032990 .0041396 .0146754 .0147232 .0494277 Ni 0.000 .001238 .004377 .000610 .002075 .0002378 .0008862 .0008467 .0029807</pre>	Cr 0.000	.000346	.001042	.000157	.000473	.0000637	.0002101	.0002269	.0007092	
<pre>Fe 0.000 .022443 .072596 .010196 .032990 .0041396 .0146754 .0147232 .0494277 Ni 0.000 .001288 .004377 .000610 .002075 .0002378 .000862 .0008447 .0023807 N> .095627 .193144 .081066 .147578 .0194121 .0435847 .0634327 .1333201</pre>	Mn 0.000	.000235	.000746	.000107	.000341	.0000434	.0001514	.0001539	.0005082	
<pre>Ni 0.000 .001288 .004377 .000610 .002075 .0002378 .0008862 .0008467 .0029807 .095627 .193144 .081066 .147578 .0194121 .0435647 .0634327 .1333201 .007E: some abundances would go negative beyond AGS04vhCNOx2Ne.621160amet) Z/X = 0.02244915 AGS04vhCNOx25Ne_OFe.5_W95 AGS04vhCNOx25Ne.2amet AGS04vhCNOx25Ne AGS04vhCNOx25Ne.5amet </pre>	Fe 0.000	.022463	.072596	.010196	.032990	.0041396	.0146754	.0147232	.0494277	
<pre>h> .095627 .193144 .081066 .147578 .0194121 .0435847 .0634327 .1333201 (NOTE: some abundances would go negative beyond AGS04vhCNOx2Ne.621160amet) Z/X = 0.02244915 AGS04vhCNOx2SNe_OFe.5_W95 AGS04vhCNOx2SNe.2amet AGS04vhCNOx2SNe AGS04vhCNOx2SNe_SNe_X Xi/Z Ni/Nz Xi/Z C +.100 .237341 .164045 .108145 .074880 .3014154 .2280626 .2643742 .1896520 N +.120 .061006 .049172 .027797 .022445 .0819071 .0722715 .0698241 .0584118 0 +.100 .41949 .406897 .636799 .587335 .3759682 .4128692 .3945257 Ne +.498 .167278 .194245 .148603 .172865 .2292092 .2913675 .1934070 .2330940 Na 0.000 .001430 .001892 .000652 .000864 .0001956 .0002833 .0000903 .0012485 Mg 0.000 .022607 .003210 .000942 .001465 .001956 .0002833 .0000903 .0012485 Mg 0.000 .022853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .001130 .000266 .000059 .000121 .0000283 .0000541 .001227 .0002270 S 0.000 .011101 .020481 .010815 .001517 .0002063 .0000541 .001227 .002270 S 0.000 .001130 .00266 .000059 .000121 .000181 .0000405 .0000830 .0001758 AT +100 .001463 .003364 .000667 .001320 .0050460 .0016919 .0040368 K 0.000 .000189 .000198 .000159 .000214 .0002043 .000555 .0070581 .0135148 C1 0.000 .000169 .000159 .000151 .0002045 .0000510 .000310 .000376 M 0.000 .000266 .000159 .000121 .0000141 .0002042 .000557 .0001301 C2 0.000 .000189 .000194 .000153 .0002044 .0001282 .000557 .0001301 C2 0.000 .000148 .000159 .000151 .0002045 .0001445 .0001475 M 0.000 .000227 .000717 .000104 .000329 .000076 .000229 .000376 .000175 M 0.000 .000227 .000717 .000104 .000329 .000076 .0001283 .000376 .0001475 M 0.000 .001245 .004207 .000593 .001170 .0001443 .00329 .000076 .000225 M 0.000 .001245 .004027 .000218 .000076 .000224 .000557 .0022800 Ti 0.000 .001245 .00427 .000593 .001270 .00027767 M 0.000 .001245 .00427 .000218 .000076 .000239 .0000312 .000792 .0027767 M 0.000 .001245 .00427 .000593 .013185 .0029630 .0104454 .0138042 .0460437 Ti 0.000 .001245 .00427 .005995 .021695 .073455 .218601 .2556460 .1822900 N + 120 .025031 .047333 .026995 .021695 .0733452 .0695130 .0675</pre>	Ni 0.000	.001288	.004377	.000610	.002075	.0002378	.0008862	.0008447	.0029807	
<pre></pre>	h>	.095627	.193144	.081066	.147578	.0194121	.0435847	.0634327	.1333201	
Z/X = 0.02244915 AGS04vhCN0x25Ne_OFe.5_W95 AGS04vhCN0x25Ne.2smet i d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z i d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z N + 120 0.61006 0.49172 0.027491 0.022445 0.081901 0.0722715 0.6698241 0.5698241 0 + 1.00 .441949 .406897 .636799 .587335 .3730252 .3759682 .4128692 .3945257 Ne + .498 .167278 .148603 .172865 .022433 .000993 .0012485 Mg 0.000 .001430 .001892 .000652 .0002833 .000993 .0012485 Al 0.000 .002467 .033210 .000942 .001452 .0002833 .0000132 .015814 .002270 S 0.000 .001463 .003544 .000127 .0002270 .000354 .0001227 .002270 S 0.000 .001463 .00364 .0000454 .000127 .000270 .00131 .002270 .00131 .002280 .00137 .000368 .00137 .001301 .002270 .002376 .00107	====: (NOTE •	======================================	dances v		======= negative	======================================		======================================	======================================	
Z/X = 0.02244915 AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne AGS04vhCN0x25Ne C +.100 .237341 .164045 .108145 .074880 .3014154 .2280262 .2643742 .1896520 N +.120 .061066 .049172 .07777 .022445 .0819071 .0722715 .0568241 .058411 0 +.100 .441949 .406897 .636799 .587335 .3730252 .2735682 .4128692 .3945257 Ne +.498 .16778 .194245 .148603 .172865 .229202 .291367 .1934070 .2330940 Na 0.000 .002624 .03398 .029785 .001233 .000481 .0011347 .022186 Si 0.000 .001431 .0002485 .000127 .0002270 .0007270 .0002270 S 0.000 .001101 .	(NOIE.	Some abui	luances v	voura go	llegative	beyond F	499040110100	JAZNE.021	Lovalliet)	
i d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z C +.100 .237341 .164045 .108145 .074880 .3014154 .2280626 .2643742 .1896520 N +.120 .061006 .049172 .027797 .022445 .0819071 .0722715 .0698241 .0584118 0 +.100 .441949 .406897 .636799 .587335 .3730252 .3759682 .4128692 .3945257 Nme +.498 .167278 .194245 .148603 .172865 .2292092 .2913675 .1934070 .2330940 Na 0.000 .001430 .001892 .000652 .000364 .0001395 .003444 .0165456 .0240181 Al 0.000 .002467 .032585 .005483 .0013147 .002186 Si 0.000 .001463 .00044 .000181 .0002270 .0002270 S 0.000 .001463 .002667 .001364 .00015178 .0030865 .0070581 .013147 C 0.000 .003264 .0000	Z/X = 0	.02244915 AGS04vhCN	5)4vhCNOx2 	25Ne_OFe. AG	5_W95 S04vhCNO2	AGS(25Ne.5ame	94vhCNOx25	5Ne.2amet	
1 0.102 11/12 11	===== ; d·nh ;	======================================	v; /7		======= v://7		v://7	======================================	========= v://7	
C +.100 .237341 .164045 .108145 .074880 .3014154 .2280626 .2643742 .1896520 N +.120 .061006 .049172 .027797 .022445 .0819071 .0722715 .0698241 .0584118 O +.100 .441949 .406897 .636799 .587335 .3730252 .3759682 .4128692 .3945257 Ne +.498 .167278 .194245 .148603 .172865 .2292092 .2913675 .1934070 .2330940 Mg 0.000 .0026024 .036398 .029785 .041732 .0035585 .0054484 .0165456 .0240181 Al 0.000 .022624 .036398 .029785 .041732 .0035585 .0054484 .0165456 .0240181 Al 0.000 .022623 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .001433 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .00193 .000344 .000088 .000157 .000263 .0000514 .0001227 .0002270 S 0.000 .01101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0131478 C1 0.000 .000130 .000266 .000059 .000121 .0000181 .0000405 .0000830 .0001758 Ar +.100 .001463 .003364 .000667 .001536 .0020051 .0050460 .0016919 .0040368 K 0.000 .000048 .000198 .000040 .000090 .0000114 .0000228 .0000575 .0001301 Ca 0.000 .00148 .003456 .002158 .004986 .002044 .005161 .0009525 .0022800 Ti 0.000 .000149 .000464 .000113 .000312 .000076 .0000229 .0000376 .0001075 Cr 0.000 .000227 .000717 .000104 .000329 .0000312 .000179 .0001443 .0004734 Fe 0.000 .001271 .009776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .001707 .0006312 .0007920 .0027767 	1_U.Ab_1 		A1/2		A1/2		A1/2		A1/2	
<pre>N +.120 .061006 .049172 .027797 .022445 .0819071 .0722715 .0698241 .0584118 0 +.100 .441949 .406897 .636799 .587335 .3730252 .3759682 .4128692 .3945257 Ne +.498 .167278 .194245 .148603 .172865 .2292092 .291675 .1934070 .2330940 Na 0.000 .001430 .001892 .000652 .000864 .0001956 .0002833 .000903 .0012485 Mg 0.000 .026024 .036398 .029785 .041732 .0035855 .0054444 .0165456 .02240181 Al 0.000 .024853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .00133 .000344 .000088 .000157 .0000263 .0000264 .0001227 .0002270 S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 C1 0.000 .000130 .000266 .00059 .00121 .000181 .000405 .0000830 .000175 Ar +.100 .001486 .003464 .000607 .00136 .0020051 .0050460 .0016919 .004368 K 0.000 .000088 .000198 .00040 .00090 .0000114 .0000282 .0000557 .0001301 Ca 0.000 .000168 .000164 .000133 .000312 .000076 .0000229 .000376 .000175 CT 0.000 .000335 .001001 .000153 .000459 .0000444 .0005161 .0009525 .0022800 Ti 0.000 .000127 .000717 .000104 .000312 .000076 .000129 .000376 .000175 CT 0.000 .000277 .000717 .000104 .000312 .0000146 .0001245 .0006600 Mm 0.000 .001245 .004207 .000592 .002003 .000179 .0001443 .0004734 Fe 0.000 .01245 .004207 .000592 .002003 .000179 .000454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 </pre>	C +.100	.237341	.164045	.108145	.074880	.3014154	.2280626	.2643742	.1896520	
O +.100 .441949 .406897 .636799 .587335 .3730252 .3759682 .4128692 .3945257 Ne +.498 .167278 .194245 .148603 .172865 .2292092 .2913675 .1934070 .2330940 Na 0.000 .001430 .001892 .000652 .000864 .0001956 .0002833 .0009093 .0012485 Mg 0.000 .026024 .036398 .029785 .041732 .0035585 .0054484 .0165456 .0240181 Al 0.000 .02067 .003210 .000942 .001465 .0002833 .0004816 .0013147 .0021186 Si 0.000 .024853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .00113 .000344 .00088 .000157 .0002263 .000514 .0001227 .0002270 S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 Cl 0.000 .000130 .000266 .000059 .000121 .0000181 .0000405 .0000830 .0001758 Ar +.100 .001463 .003364 .000667 .001536 .0020051 .0050460 .0016919 .0040368 K 0.000 .000088 .000198 .000040 .000090 .0000114 .0000282 .0000557 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .000525 .002800 Ti 0.000 .000160 .000164 .000113 .000312 .0000076 .000129 .000376 .000175 Cr 0.000 .00035 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0026600 Mm 0.000 .21712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	N +.120	.061006	.049172	.027797	.022445	.0819071	.0722715	.0698241	.0584118	
Ne +.498 .167278 .194245 .148603 .172865 .2292092 .2913675 .1934070 .2330940 Na 0.000 .001430 .001892 .000652 .000864 .0001956 .0002833 .000903 .0012485 Mg 0.000 .026024 .036398 .029785 .041732 .0035585 .0054484 .0165456 .0240181 Al 0.000 .024853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .00193 .000344 .000088 .00157 .0000263 .0000514 .0001227 .0002270 S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030555 .0070581 .0135148 Cl 0.000 .000183 .000364 .000667 .001536 .0020051 .0050460 .0016919 .0040368 K 0.000 .000188 .000198 .00040 .00090 .000114 .000282 .000557 .0001301 Ca 0.000 .001643 .00356 .002128 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000164 .000113 .000312 .000076 .0000229 .0000376 .000175 Cr 0.000 .000355 .00101 .000153 .000459 .0000454 .0001486 .0002125 .0026800 Ti 0.000 .00277 .00077 .000144 .000312 .000076 .0000229 .0000376 .000175 Cr 0.000 .001245 .004207 .000592 .002031 .000454 .001486 .0002125 .0006600 Mm 0.0000 .001245 .004207 .000592 .002003 .000170 .000143 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .000143 .0027767 	0 +.100	.441949	.406897	.636799	.587335	.3730252	.3759682	.4128692	.3945257	
Na 0.000 .001430 .001892 .000652 .000864 .0001956 .0002833 .0009093 .0012485 Mg 0.000 .026024 .036398 .029785 .041732 .0035585 .0054484 .0165456 .0240181 Al 0.000 .002067 .003210 .000942 .001465 .0002833 .0004816 .0013147 .0021186 Si 0.000 .024853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .001101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 Cl 0.000 .00130 .00266 .000059 .000121 .0000181 .0000405 .0000830 .0001758 Ar +.100 .001463 .00364 .000667 .01536 .002051 .0050460 .0016919 .0040368 K 0.000 .000188 .000198 .000040 .000090 .000114 .000282 .0000557 .001301 Ca 0.000 .001498 .003456 .002158 .004986 .002044 .0005161 .009525 .0022800 Ti 0.000 .00068 .001013 .000312 .000076 .0001229 .0000376 .000175 Cr 0.000 .000060 .00164 .000113 .000312 .000076 .000129 .000143 .0004734 Fe 0.000 .00227 .000717 .000104 .00329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002033 .001707 .0006312 .0007920 .0027767 	Ne +.498	.167278	.194245	.148603	.172865	.2292092	.2913675	.1934070	.2330940	
Mg 0.000 .026024 .036398 .029785 .041732 .003585 .0054484 .0165456 .0240181 Al 0.000 .002067 .003210 .000942 .001465 .0002833 .0004816 .0013147 .0021186 Si 0.000 .024853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .001193 .000344 .00088 .000157 .0000263 .0000514 .0001227 .0002270 S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 Cl 0.000 .001463 .00364 .000667 .001536 .002051 .0050460 .0016919 .0040368 K 0.000 .000148 .00364 .000667 .001536 .0020051 .0050460 .0016919 .0040368 K 0.000 .000148 .003456 .002158 .004986 .002044 .0005161 .0009555 .0022800 Ti 0.000 .00148 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mm 0.000 .000227 .000717 .000104 .00329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	Na 0.000	.001430	.001892	.000652	.000864	.0001956	.0002833	.0009093	.0012485	
Al 0.000 .002067 .003210 .000942 .001465 .000283 .0004816 .0013147 .0021186 Si 0.000 .024853 .040167 .022595 .036583 .0033987 .0060132 .0158014 .0265055 P 0.000 .00193 .000344 .00088 .00157 .000263 .000514 .0001227 .0002270 S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 C1 0.000 .00130 .00266 .000059 .000121 .0000181 .0000405 .000830 .0001758 Ar +.100 .001463 .003364 .000667 .001536 .002051 .0050460 .0016919 .0040368 K 0.000 .000088 .000198 .000040 .00090 .0000114 .000282 .0000557 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0022041 .0005161 .0009525 .0022800 Ti 0.000 .00060 .000164 .000133 .000459 .0000454 .0001486 .0002125 .0006600 Mm 0.000 .000227 .000717 .000104 .000329 .0000312 .000179 .0001443 .0004734 Fe 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	Mg 0.000	.026024	.036398	.029785	.041732	.0035585	.0054484	.0165456	.0240181	
Si 0.000 .024853 .040167 .022595 .036583 .003987 .0060132 .0158014 .0265055 P 0.000 .00193 .000344 .00088 .000157 .0000263 .0000514 .0001227 .0002270 S 0.000 .011101 .020481 .01815 .019988 .0015178 .0030655 .0070581 .0135148 Cl 0.000 .00130 .000266 .000059 .000121 .0000181 .0000405 .0000830 .000178 Ar +.100 .001463 .003364 .000667 .001536 .002051 .0050460 .0016919 .0040368 K 0.000 .000188 .000198 .00040 .00009 .0000114 .0000282 .0000557 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000060 .000164 .000113 .000312 .000076 .0000229 .0000376 .0001075 Cr 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mn 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	Al 0.000	.002067	.003210	.000942	.001465	.0002833	.0004816	.0013147	.0021186	
P 0.000 .000193 .000344 .000088 .000157 .0000263 .0000514 .0001227 .0002270 S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 C1 0.000 .000130 .000266 .000059 .000121 .0000405 .0000830 .0001758 Ar +.100 .001463 .003364 .000667 .001536 .0020051 .0050460 .0016919 .0040368 K 0.000 .000088 .000198 .00040 .000090 .0000114 .0000282 .0000557 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000060 .000164 .000113 .000312 .000076 .0000229 .0000376 .0001075 Cr 0.000 .000227 .000717 .000104 .000329 .0000454 .0001486 .0002125 .0006600 Mm 0.000 .00227 .000777 .000592 .002003 .0001707 .0006312 .0007920 .0027767 Fe 0.000 .01245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	Si 0.000	.024853	.040167	.022595	.036583	.0033987	.0060132	.0158014	.0265055	
S 0.000 .011101 .020481 .010815 .019988 .0015178 .0030655 .0070581 .0135148 C1 0.000 .000130 .000266 .000059 .000121 .0000181 .0000405 .0000830 .0001758 Ar +.100 .001463 .003464 .000667 .001536 .002051 .0050460 .0016919 .0040368 K 0.000 .000088 .000198 .000040 .000090 .0000114 .0000282 .0000557 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000355 .00101 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mm 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .001245 .004207 .000592 .002030 .0001707 .0006312 .0007920 .0027767 I 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 I 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 I 0.002 .00232128 AGS04vhCNOx3Ne_OFe.5_W95 AGS04vhCNOx3Ne.2amet AGS04vhCNOx3Ne AGS04vhCNOx3Ne_Samet I d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z C +.100 .229658 .157910 .105024 .072378 .2913253 .2188601 .2556460 .1822900 N +.120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 O +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .266617 .3365655 .247788 .224758 .224758 .224378 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	P 0.000	.000193	.000344	.000088	.000157	.0000263	.0000514	.0001227	.0002270	
Cl 0.000 .000130 .000266 .000059 .000121 .0000181 .0000405 .0000830 .0001758 Ar + 100 .001463 .003364 .000667 .001536 .002051 .0050460 .0016919 .0040368 K 0.000 .00088 .000198 .000404 .000090 .0000114 .000282 .0000575 .0022800 Ti 0.000 .000164 .000113 .000312 .000076 .000229 .000376 .0001075 Cr 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0026800 Mn 0.000 .00227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	S 0.000	.011101	.020481	.010815	.019988	.0015178	.0030655	.0070581	.0135148	
Ar + 1.00 .001463 .003364 .000667 .001536 .0020051 .0050460 .0016919 .0040368 K 0.000 .000088 .000198 .00040 .000090 .0000114 .0000282 .000057 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mm 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 h> .092426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 .0022426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 .0022426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 .002426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 .002588 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 .002598 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 .002604vhCNOx3Ne AGS04vhCNOx3Ne.5amet .0000 .001245 .00270 .0027767 .0000 .001245 .0027767 .0027378 .2913253 .2188601 .2556460 .1822900 N +.120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 0 +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	Cl 0.000	.000130	.000266	.000059	.000121	.0000181	.0000405	.0000830	.0001758	
<pre>K 0.000 .000088 .000198 .000040 .000090 .0000114 .0000282 .0000557 .0001301 Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000060 .000164 .000113 .000459 .0000076 .000129 .0000376 .0001075 Cr 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 h> .092426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 </pre>	Ar +.100	.001463	.003364	.000667	.001536	.0020051	.0050460	.0016919	.0040368	
Ca 0.000 .001498 .003456 .002158 .004986 .0002044 .0005161 .0009525 .0022800 Ti 0.000 .000060 .000164 .000113 .000312 .0000076 .0000229 .0000376 .0001075 Cr 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mn 0.000 .00227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	к 0.000	.000088	.000198	.000040	.000090	.0000114	.0000282	.0000557	.0001301	
Ti 0.000 .000060 .000164 .000113 .000312 .000076 .0000229 .0000376 .0001075 Cr 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mn 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	Ca 0.000	.001498	.003456	.002158	.004986	.0002044	.0005161	.0009525	.0022800	
Cr 0.000 .000335 .001001 .000153 .000459 .0000454 .0001486 .0002125 .0006600 Mn 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 	Ti 0.000	.000060	.000164	.000113	.000312	.0000076	.0000229	.0000376	.0001075	
<pre>Mn 0.000 .000227 .000717 .000104 .000329 .0000312 .0001079 .0001443 .0004734 Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767</pre>	Cr 0.000	.000335	.001001	.000153	.000459	.0000454	.0001486	.0002125	.0006600	
<pre>Fe 0.000 .021712 .069776 .009893 .031850 .0029690 .0104454 .0138042 .0460437 Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 </pre>	Mn 0.000	.000227	.000717	.000104	.000329	.0000312	.0001079	.0001443	.0004734	
<pre>Ni 0.000 .001245 .004207 .000592 .002003 .0001707 .0006312 .0007920 .0027767 h> .092426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165 </pre>	Fe 0.000	.021712	.069776	.009893	.031850	.0029690	.0104454	.0138042	.0460437	
<pre>h> .092426 .185641 .078656 .142475 .0144431 .0323302 .0595255 .1243165</pre>	Ni 0.000	.001245	.004207	.000592	.002003	.0001707	.0006312	.0007920	.0027767	
<pre>(NOTE: some abundances would go negative beyond AGS04vhCNOx25Ne.580960amet) Z/X = 0.02332128 AGS04vhCNOx3Ne_OFe.5_W95 AGS04vhCNOx3Ne.2amet</pre>	h> ====	.092426	.185641	.078656	.142475	.0144431	.0323302	.0595255	.1243165	
Z/X = 0.02332128 AGS04vhCNOx3Ne_OFe.5_W95 AGS04vhCNOx3Ne.2amet AGS04vhCNOx3Ne AGS04vhCNOx3Ne.5amet i d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z c +.100 .229658 .157910 .105024 .072378 .2913253 .2188601 .2556460 .1822900 N + .120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 0 + .100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne + .577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	(NOTE:	some abur	ndances v	would go	negative	beyond A	AGS04vhCNC	0x25Ne.580)960amet)	
AGS04vhCNOx3Ne AGS04vhCNOx3Ne.5amet i d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z c +.100 .229658 .157910 .105024 .072378 .2913253 .2188601 .2556460 .1822900 N +.120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 0 +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	7/Y = 0	00000100		Marh CNIOse		MOE	7.00	0 Arrh CNTOrr	No lamot	
i d:Ab_i Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z Ni/Nz Xi/Z C +.100 .229658 .157910 .105024 .072378 .2913253 .2188601 .2556460 .1822900 N +.120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 O +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	2/X = 0 =====	.02332128 AGS04vhCN ========	0 AGS(10x3Ne =======		A======	_w95 .GS04vhCN0 ========	AG: 0x3Ne.5ame	t	=========	
C +.100 .229658 .157910 .105024 .072378 .2913253 .2188601 .2556460 .1822900 N +.120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 O +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	i d:Ab_i	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	Ni/Nz	Xi/Z	
N +.120 .059031 .047333 .026995 .021695 .0793452 .0695130 .0675919 .0562050 O +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	C + 100	.229658	.157910	.105024	.072378	.2913253	.2188601	.2556460	.1822900	
0 +.100 .427642 .391682 .618420 .567711 .3528913 .3531457 .3961398 .3762677 Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	N + 120	059031	047333	026995	021695	0793452	0695130	0675919	0562050	
Ne +.577 .194235 .224377 .173177 .200507 .2666617 .3365655 .2247580 .2692524 Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	0 + 100	427642	391682	618420	567711	3528913	3531457	3961398	3762677	
Na 0.000 .001384 .001821 .000633 .000835 .0001230 .0001768 .0008523 .0011633 Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	Ne + 577	.194235	. 224377	.173177	200507	.2666617	.3365655	.2247580	.2692524	
Mg 0.000 .025181 .035037 .028925 .040337 .0022411 .0034069 .0155137 .0223849	Na 0.000	.001384	.001821	.000633	.000835	.0001230	.0001768	.0008523	.0011633	
	Mg 0.000	.025181	.035037	.028925	.040337	.0022411	.0034069	.0155137	.0223849	
Al 0.000 .002000 .003090 .000915 .001417 .0001787 .0003016 .0012327 .0019746	Al 0.000	.002000	.003090	.000915	.001417	.0001787	.0003016	.0012327	.0019746	
Si 0.000 .024048 .038665 .021942 .035359 .0021405 .0037602 .0148158 .0247031	Si 0.000	.024048	.038665	.021942	.035359	.0021405	.0037602	.0148158	.0247031	
P 0.000 .000187 .000331 .000086 .000153 .0000165 .0000319 .0001150 .0002114	P 0.000	.000187	.000331	.000086	.000153	.0000165	.0000319	.0001150	.0002114	
S 0.000 .010742 .019715 .010503 .019320 .0009557 .0019165 .0066178 .0125956	s 0.000	.010742	.019715	.010503	.019320	.0009557	.0019165	.0066178	.0125956	
Cl 0.000 .000126 .000256 .000057 .000116 .0000115 .0000255 .0000778 .0001638	Cl 0.000	.000126	.000256	.000057	.000116	.0000115	.0000255	.0000778	.0001638	
Ar +.100 .001416 .003238 .000648 .001485 .0019439 .0048570 .0016384 .0038856	Ar +.100	.001416	.003238	.000648	.001485	.0019439	.0048570	.0016384	.0038856	

Sep 06, 07 19:03	z_xcotrin manual	Page 63/71
K0.000.000085.000191Ca0.000.001450.003327Ti0.000.000058.000158Cr0.000.000324.000964Mn0.000.000219.000690Fe0.000.021009.067166Ni0.000.001205.004049	.000039 .000087 .0000072 .0000177 .0000524 .002096 .004820 .0001287 .0003226 .0008932 .000110 .000302 .0000046 .0000139 .0000353 .000148 .000442 .0000286 .0000931 .0001994 .000100 .000315 .0000196 .0000674 .0001352 .009607 .030784 .0018695 .0065304 .0129429 .000575 .001937 .0001074 .0003942 .0007424	.0001217 .0021252 .0001003 .0006156 .0004410 .0429117 .0025871
h> .089434 .178698 ===================================	.076384 .137709 .0097765 .0219157 .0558643 ====================================	.1159849 ====== 57amet)
OPAL ATOMIC MASSES: We to convert number fract	list the OPAL atomic masses (atomic weights ions (Ni) to mass fractions (X, Y, Z, Xi).) used
Element Mass (a.u.)	Element Mass (a.u.) Element Mass (a.u.)
1 H 1.00790 2 He 4.00260 6 C 12.01100 7 N 14.00670 8 O 15.99940 10 Ne 20.17900 11 Ne 22.08077	12 Mg 24.30500 19 K 39.09830 13 Al 26.98154 20 Ca 40.08000 14 Si 28.08550 22 Ti 47.90000 15 P 30.97376 24 Cr 51.99600 16 S 32.06000 25 Mn 54.93800 17 Cl 35.45300 26 Fe 55.84700	

Z-interpolation errors if 'GN93hz' file not used:

For the non-CO-rich mixes (C=O=0.0), one can check the accuracy of the Z-interpolation among the 'Gz???.x??' files when opacities are read in, by looking at the 'GN93hz' opacities. Where the Z values are in both files, the opacities are identical. When only 'GN93hz' (or only the 'Gz???.x??' files) contains the Z value, errors in interpolation among 'Gz???.x??' files are shown below; the largest, the mean, and the rms error in logKappa are given (at T6 of 0.01 or higher, and all log R values). Note that the 'Gz???.x??' files contain Z = 0.05, but 'GN93hz' does not; for this case, interpolation in 'GN93hz' is tested, rather than interpolation among 'Gz???.x??' files. Note that the Z-interpolation errors tend to be quite small, with an rms error of less than 4% even in the worst case; applying the 'GN93hz' opacity-shifts (as is the default) when interpolating in Z should significantly reduce these errors (note: T6 < 0.01 omitted):

Z-interpolation errors if 'GN93hz' file not used (if khighz=0 in READZEXCO):

dLogKappa(X=0.00) dLogKappa(X=0.10) dLogKappa(X=0.35) dLogKappa(X=0.70) _____ 7 max mean rms max mean rms max mean rms rms max mean ____ ____ ____ ___ ____ ___ ____ _ _ _ _ _ _ .0001 .128 .0078 .0169 .042 .0047 .0084 .040 .0041 .0077 .039 .0040 .0078 .0003 .112 .0072 .0151 .045 .0046 .0084 .043 .0041 .0079 .046 .0040 .0081 -.036-.0018 .0038 -.012-.0012 .0023 -.012-.0011 .0022 -.013-.0010 .0025 .002 -.003 .0000 .0003 -.001 .0000 .0002 .001 .0000 .0002 .001 .0000 .0002 .04 .001 .0000 .0002 .001 .0000 .0002 .001 .0000 .0002 .05 * -.003 .0000 .0003 .001 .0000 .0003 -.001 .0000 .0003 .001 .0000 .0003 -.001 .0000 .0003 -.004 .0000 .0004 -.001 .0000 .0003 .06 .08 -.003 .0000 .0004 -.001 .0000 .0003

Thursday September 06, 2007

z xcotrin manual

Page 64/71

It is clear from the following table that X-interpolation errors in the file 'GN93hz' (to get X=0.03) would be much larger than any Z-interpolation error in the files Gz???.x03 ; thus any opacity shifts for X=0.03 are interpolated from the X=0, X=0.1, and X=0.35 opacity shifts (unless only a single mix is being read in, which is NOT the default case). The size of the error in these X-interpolated opacity shifts is presumably somewhat smaller than the opacity shifts themselves, which in turn are smaller than the errors shown below that would result if the 'GN93hz' opacities were interpolated in X to get the X=0.03 opacities.

X-interpolation errors at X=0.03 if ONLY the 'GN93hz' file were used:

X interpolation errors, for X = 0.03, interpolating in X = 0.0, 0.1, 0.2 in the file 'GN93hz' (note that a value of Xdel = 0.005 was used for this interpolation, and all T6 < 0.01 opacities were omitted):

X-interpolation errors that would occur if 'Gz???.x??' files were not used:

z:	0.	0.001	0.004	0.01	0.02	0.03	0.1	(at X=0.03)
max	3514	2971	2454	1913	1396	1062	0614	(dLogKappa)
mean	0159	0149	0141	0132	0124	0118	0103	
rms	.0399	.0350	.0305	.0259	.0219	.0196	.0158	

X-interpolation/extrapolation errors if 'GN93hz' file not used:

The file 'GN93hz' contains (non-CO-rich) opacities at X-values not available from the 'Gz???.x??' files, namely, X = 0.2, 0.5, 0.8, 0.9, 0.95, and 1-Z. If one sets khighz = 0 in the call to READZEXCO that reads the opacities, then the 'GN93hz' file is not read in and X-interpolation is less accurate [or alternatively, if one turns off "accurate-X" by calling SET_XHI(0)]. For X < 0.75 or so, the errors are comparable to or smaller than the errors from the original OPAL opacity computation; but for extrapolation to larger X-values, the error grows very rapidly, and can become as large as an order of magnitude as X approaches 1-Z:

X-interpolation/extrapolation errors if 'GN93hz' file not used (khighz=0):

***Inter	**Interpolation (dLogKappa):									
Z:	0.	0.0001	0.001	0.004	0.01	0.02	0.03	0.05	0.08	0.1
X=0.2:										
max	0146	.0375	0153	0147	0139	0137	0142	0129	0124	0126
mean	0023	0017	0021	0018	0016	0014	0013	0012	0010	0010
rms	.0044	.0051	.0040	.0036	.0033	.0031	.0029	.0027	.0025	.0024
X=0.5:										
max	.0291	.0291	.0284	.0269	.0260	.0249	.0244	.0243	.0234	.0234
mean	.0028	.0027	.0023	.0019	.0016	.0013	.0011	.0010	.0008	.0008
rms	.0076	.0073	.0066	.0059	.0053	.0048	.0045	.0042	.0039	.0038
***Extra	apolatio	on (dLog	gKappa)	:						
Z:	Ο.	0.0001	0.001	0.004	0.01	0.02	0.03	0.05	0.08	0.1
X=0.8:										
max	0732	0721	0706	0680	0637	0620	0597	0578	0557	0565
mean	0071	0068	0059	0049	0041	0035	0031	0027	0024	0023
rms	.0178	.0172	.0153	.0134	.0119	.0107	.0100	.0092	.0086	.0084
X=0.9:										

Sep 06, 0	07 19:03	z_xcotrin manual								
max	2415	2405	2328	2220	2063	1980	1914	1854	1828	1860
mean	0226	0216	0186	0154	0129	0110	0099	0088	0082	0085
rms	.0565	.0544	.0480	.0416	.0366	.0328	.0306	.0284	.0273	.0281
X=0.95:										
max	4256	4189	4025	3805	3555	3321	3264	3213		
mean	0377	0360	0307	0253	0212	0181	0165	0154		
rms	.0950	.0910	.0797	.0684	.0600	.0537	.0505	.0486		
X=1-Z:										
max	9901	9632	8694	7293	6045	4773	4059	3213	2219	1860
mean	0818	0758	0609	0468	0370	0306	0279	0154	0175	0085
rms	.2079	.1941	.1592	.1249	.0982	.0769	.0645	.0486	.0356	.0281

CO-interpolation errors:

Note that there are six cases (at three different metallicities) where mixes on the line C+O = 1-X-Z, with identical compositions, are interpolated in two different ways when being read into two different positions in the matrix CO; since these cases all have X > 0, they do not correspond to mixes that are likely to be encountered by investigators, but they do give another estimate of interpolation errors for some CO-rich mixes. (Note that there are several other cases where mixes with identical compositions appear at two different places in the matrix CO, but these occur at tabulated Z-values and thus have identical opacity values.) Differences for the CO-rich cases with identical compositions (note that T6 < 0.01 were omitted):

Differences for CO-rich mixes interpolated in two different ways:

case:	Z=0.04	X=0.35	35 Z=0.07 X=0.7		Z=0.09	X=0.7	
C & O:	.01 .6	.6 .01	.03 .2	.2 .03	.01 .2	.2 .01	
max	0333	0026	0491	0110	0422	0084	(dLogKappa)
mean rms	0029 .0061	0002 .0008	0046 .0091	0014 .0029	0041 .0081	0011 .0023	

These errors are still quite small, with an rms of 1% or less, smaller than the estimated error in the opacity computations quoted above or than the largest of the Z-interpolation errors at C=0=0.0 (though larger than the errors for the C=0=0.0 mix for the same metallicity Z). The maximum error is less than 12% (note that the maximum errors tend to lie at fairly low temperatures, where CO-rich opacities are less likely to be needed).

The above tables of errors were obtained by considering Z-interpolation as the opacities were read in. One may also compare opacities where the only Z-interpolation was performed on input (i.e., Nzin = 1 in READZEXCO) with opacities interpolated in Z by the call to OPAC or OPAL (i.e., which had had Z > 4 in READZEXCO). These are interpolated among somewhat different grid points, and thus give some idea of the Z-interpolation and CO-interpolation errors. NOTE THAT USE OF COINTERP WILL LEAD TO SIGNIFICANTLY LARGER ERRORS, as discussed further below. For several Z-values, the number of points compared and the maximum and rms differences in log10(Kappa) are given below both at and between (X,T6,R,C,O) gridpoints, for low (4<logT<6) and high (logT>6) temperatures (T6 < 0.01 are omitted; table Z-values are also omitted, since opacity differences are zero there, as expected). Note that rms differences are always small, less than 0.3%, but this may be misleading as many comparison points will interpolate between the same gridpoints, just in a different order, and thus will have identical interpolated log10(Kappa) values. For C = 0 = 0.0, the maximum differences are small, less than 1%; however, the CO-interpolation can induce somewhat larger errors in opacities

Sep 06, 07 19:03			z_xcotr	in manua	l		Page 66	5/71				
of CO-rich mixes at low metallicity: for logT > 6 at X = 0.0 (where CO-rich opacities are likely to be needed), the maximum differences do not exceed 1% for Z > 0.001, but they can be as high as 8% for 0.0001 < Z < 0.001, and can reach 11% for Z < 0.0001.												
"max" gives so	ome indica	ations of	combined	Z– and CO	-interpol	ation err	ors:					
dLogKappa f	for:			<	$\max\{C, 0\}$	> 0.0	>					
< (C = O = 0	.0 , all X	>	<g< td=""><td>rid></td><td><off-< td=""><td>Grid></td><td></td></off-<></td></g<>	rid>	<off-< td=""><td>Grid></td><td></td></off-<>	Grid>					
<pre><on-g 4<logt<6<="" pre="" z=""></on-g></pre>	frid> logT>6	<0ff- 4 <logt<6< td=""><td>Grid> logT>6</td><td>all X logT>4</td><td>X = 0.0 logT>6</td><td>all X logT>4</td><td>X = 0.0 logT>6</td><td></td></logt<6<>	Grid> logT>6	all X logT>4	X = 0.0 logT>6	all X logT>4	X = 0.0 logT>6					
.00001:N= 3895	2075	27695	15375	273426	21580	7185558	315535					
max000038	.000067	000069	.000121	066377	.009322	093110	.012053					
rms .000003	.000004	.000004	.000004	.000178	.000103	.000174	.000074					
.00005:N= 3895	2075	27695	15375	279396	21995	7228628	314790					
max000080	.000171	000156	.000310	.046540	.039973	118741	.046853					
rms .000008	.000009	.000010	.000010	.000401	.000363	.000352	.000230					
max000214	.000447	000404	.000828	041788	.028401	058897	035296					
rms .000010	.000015	.000012	.000016	.000365	.000267	.000317	.000197					
.0005:	000304	000512	000854	0//071	017724	061407	020058					
rms .000025	.000025	.000032	.000030	.000357	.000155	.000271	.020958					
.0015:												
max .001481	000494	.002325	.001390	019924	.001625	025380	.001904					
rms .000086	.000033	.000111	.000042	.000202	.000062	.000165	.000059					
max001855	000593	002934	001971	006332	001797	.006585	002046					
rms .000107	.000032	.000138	.000049	.000181	.000076	.000158	.000072					
.0070: N= 3895	2075	27695	15375	279396	21995	7218820	314790					
max .000882	.000475	.001406	001663	005493	.001000	008853	.001083					
rms .000054	.000026	.000070	.000041	.000098	.000044	.000111	.000043					
0150: N= 3895	2075	27695	15375	279396	21995	7199204	314790					
$\max000052$	000111	000136	000213	009724	000550	.038904	001056					
rms .000002	.000010	.000003	.000009	.000087	.000019	.000482	.000019					
0250 · N- 3895	2075	27695	15375	277008	21005	7137840	314790					
max .000087	000088	.000233	000140	003307	.000414	.036001	000738					
rms .000006	.000009	.000009	.000009	.000049	.000025	.000439	.000023					
 0350: N- 3895	2075	27695	15375	277008	21995	7059376	314790					
max = .000253	000406	.002127	.000610	005123	000655	041995	000777					
rms .000024	.000031	.000032	.000033	.000099	.000046	.000626	.000050					
	 2075	27605	1 5 2 7 5	274620	21005	7000500	21/700					
max 000980	000782	001798	003330	274020	000765	054504	001237					
rms .000061	.000076	.000069	.000090	.000149	.000065	.000921	.000080					
			1 5 2 7 5									
.0550: N= 3895	2075	27695	15375 001627	268650	21995	6940230	311300					
rms .000457	000596	.000047	.000060	.0004//0	.000045	.000108	.001523					
.0700: N= 3895	2075	27695	15375	266262	21995	6844538	311300					
max000404	000476	.001360	UU1767	.007161	000599	.042980	UU1666					
100002/	.000038	.000032	.000046	.0001/5	.000036	.000708	.000097					
.0900: N= 3895	2075	27695	15375	263874	21995	6665478	311300					
max000236	.000500	001106	.002409	.008298	.000866	045470	004078					

Thursday September 06, 2007

_

- 1

Sep 06,	Sep 06, 07 19:03 z_xcotrin manual							Page 67/7	71
rms	.000022	.000042	.000034	.000066	.000221	.000029	.000966	.000140	

Z-interpolation errors when one uses linear Z-interpolation (Nzin = 2):

If, for example, diffusion leads to relatively small Z-variations in a star (say, of order 10%), then one might wish to use linear interpolation in logZ by setting nZin = 2 in READZEXCO. (Note that opacity interpolation with nZin = 2 will usually be significantly faster than nZin = 3, which will in general be faster than nZin = 4; however, all values of nZin > 4 take the same amount of time as the nZin = 4 case, except for the slight added start-up time to read in the extra opacity files). The size of the errors introduced by nZin = 2 linear interpolation are easily estimated, e.g., by comparing { nZin = 2, Zlo = .019, Zhi = .021 } opacities at Z = 0.02 with the Z=0.02 opacity tables themselves. Such errors for the nZin = 2 case are tabulated below for several values of Z, for two different cases with Z-ranges of +/-10% and of +/-20%, respectively (referred to as cases "1" and "2" in the table headings on the left). The mean errors are given as well as the maximum and rms errors, since it is not unreasonable to expect a systematic tendency from linear interpolation of a curve; however, they turn out to be negligible (always < 0.04%) for a Z-range of +/- 10%. The rms error in the Z-interpolation is likewise negligible (always < 0.2%) for a Z-range of +/-10%; the maximum errors are less than 1% for C = O = 0.0, and also for Z > 0.001 at logT > 6 with X = 0.0, max{C,O} > 0.0, although for Z < 0.001 the CO-interpolation can result in errors up to 9% in a few places for CO-rich mixes. Even for a Z-range of +/- 20%, the mean errors are always < 0.14%; the C = O = 0.0 case has rms errors < 0.2% and maximum errors < 1.7%, while { Z > 0.001, logT > 6, X = 0.0, max{C,O} > 0.0 } has rms errors < 0.21% and maximum errors < 1.4% (up to 9% for Z < 0.001).

Errors if linear Z-interpolation is used, with Z-ranges +/-10% and +/-20%:

Z=	0.0001	0.001	0.004	0.01	0.02	0.03	0.05	0.08
Zlo1= Zhi1=	0.00009 0.00011	0.0009	0.0036	0.009 0.011	0.018 0.022	0.027 0.033	0.045	0.072
Zlo2= Zhi2=	0.00008	0.0008	0.0032	0.008 0.012	0.016 0.024	0.024 0.036	0.040 0.060	0.064 0.096
C=O=0. max1 mean1 rms1	0, OnGrid 000703 000026 .000056	a, logT>4 .001008 .000017 .000064	dLogKappa .001107 .000065 .000109	.000764 .000103 .000146	.000989 .000133 .000183	.000925 .000145 .000199	001984 .000150 .000241	.001149 .000149 .000214
max2 mean2 rms2	002772 000103 .000219	.001246 .000043 .000145	002859 .000238 .000375	.003076 .000416 .000587	.003924 .000537 .000733	.003731 .000583 .000793	.004402 .000612 .000857	.004059 .000609 .000853
C=O=0. max1 mean1 rms1	0, OffGri 000707 000024 .000051	d, logT>4 002721 .000015 .000076	dLogKapr .003203 .000065 .000119	oa: .001427 .000100 .000141	.002620 .000130 .000178	.002294 .000143 .000197	.003412 .000149 .000245	.002120 .000149 .000213
max2 mean2 rms2	002806 000095 .000198	002473 .000041 .000153	005426 .000232 .000367	.005459 .000405 .000568	.005472 .000524 .000713	.003856 .000573 .000780	.006457 .000606 .000848	.007094 .000605 .000849
max{C, max1	0}>0.0, X 032688	x=0.0, One .000776	Frid, log .000689	C>6 dLogKa 000687	appa: .000569	.000581	001612	.000677

Sep 06, 07 19:03	Page 68/71						
mean1000003	.000007	.000030	.000065	.000098	.000115	.000148	.000147
rms1 .000221	.000024		.000117	.000163	.000190	.000248	.000219
max2032967	.000873	.001402	.001871	.002107	.002235	.002763	.002591
mean2000005	.000027	.000122	.000262	.000395	.000464	.000589	.000593
rms2 .000223	.000071	.000247	.000468	.000651	.000749	.000905	.000875
<pre>max{C,O}>0.0, X max1038349 mean1000002 rms1 .000140</pre>	E=0.0, Offo .001053 .000007 .000023	Grid, log .000879 .000029 .000060	T>6 dLogK 001188 .000064 .000114	appa: 000875 .000097 .000160	001059 .000114 .000187	002342 .000148 .000244	002052 .000148 .000222
max2038750	001171	.001398	.002108	.002854	003313	004253	006058
mean2000004	.000027	.000118	.000257	.000390	.000458	.000586	.000594
rms2 .000156	.000071	.000239	.000458	.000641	.000740	.000898	.000881
<pre>max{C,O}>0.0, a max1032688 mean1000017 rms1 .000111</pre>	ll-X, OnG 025873 - .000015 .000135	rid, logT 001446 .000039 .000075	<pre>2>4 dLogKa .001413 .000078 .000118</pre>	ppa: 003337 .000106 .000159	.003056 .000121 .000179	009148 .000134 .000261	.001397 .000137 .000198
<pre>max2036713 mean2000058 rms2 .000237</pre>	025350	.005615	.005444	.007725	008038	007972	.007035
	.000047	.000154	.000320	.000439	.000495	.000567	.000569
	.000228	.000250	.000463	.000615	.000697	.000813	.000804
<pre>max{C,O}>0.0, a max1038349 mean1000015 rms1 .000073</pre>	======================================	Grid, log 004328 .000039 .000075	T>4 dLogK 004072 .000078 .000116	appa: 028706 .000102 .000377	028234 .000116 .000375	047400 .000119 .000776	====== .041999 .000143 .000729
max2050575	032346	.005371	.008759	027245	.052397	045954	.042481
mean2000056	.000050	.000152	.000318	.000432	.000494	.000546	.000576
rms2 .000193	.000174	.000245	.000461	.000692	.000952	.001109	.001302
+++++++++++++++++++++++++++++++++++++++	•+++++++++++	++++++++	++++++++	.+++++++++	.++++++++++++++++++++++++++++++++++++++	-+++++++++	++++++

Details of opacity shifts from initial smoothing when opacities are read in

The opacity tables to be interpolated among (i.e., the OPAL files) are known to have somewhat random numerical errors of a few percent. Consequently, adjusting the data prior to performing the interpolation is justified at this level. The code first reads the original (unsmoothed) tabular data; this data is then passed through a smoothing filter, using a set of routines developed by Mike Seaton (see M.J. Seaton, MNRAS 265, L25, 1993). It is the adjusted data that is actually used in carrying out the interpolations in OPAC or OPAL. The initial adjustment step helps improve the smoothness of the OPAC output, particularly at the smallest values of R. The medium to large R output is only slightly affected by this step. It takes only a few seconds to carry out the initial data smoothing step, but this initial smoothing can be skipped by calling the subroutine SET_SMOOTH (described further above) with a value of initsmooth = 0.

In addition, a few opacities in the mixes adjacent to the C=O=0.0 mix (i.e., in the three mixes with C or O = 0.01, and C+O no more than 0.02) are smoothed in the C-O direction, if opacity changes between mixes with C,O = 0.0, 0.03, 0.1 are monotonic but the opacity at C,O = 0.01 does not fit the trend; the resulting adjustments are small, and only occur at a small minority of the (T6,R) points, but this smoothing can also be skipped, by calling SET_SMOOTH (described further above) with lowCOsmooth = 0.

Maximum and rms differences between smoothed and unsmoothed opacity tables for selected metallicities Z, for non-CO-rich mixes ("CO=0") and CO-rich

z xcotrin manual

mixes ("CO>0") of each hydrogen abundance X, at intermediate temperatures
("4<logT<6") and high temperatures ("logT>6"); note: T6 < 0.01 was omitted:</pre>

Opacity shifts resulting from initial smoothing when they are read in:

dLogKappa	a for:									
X =	= 0.0	00	0.0)3	0.1	0.10		0.35		70
	max	rms								
Z=0.0: CO=0:	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
4 <logt<6< td=""><td>.0288</td><td>.0062</td><td>.0492</td><td>.0082</td><td>.0534</td><td>.0072</td><td>.0278</td><td>.0044</td><td>.0168</td><td>.0026</td></logt<6<>	.0288	.0062	.0492	.0082	.0534	.0072	.0278	.0044	.0168	.0026
logT>6	.0172	.0023	.0175	.0022	.0160	.0021	.0125	.0016	0038	.0006
CO>0:										
4 <logt<6< td=""><td>0512</td><td>.0077</td><td>.0761</td><td>.0075</td><td>.0763</td><td>.0064</td><td>.0800</td><td>.0050</td><td>.0874</td><td>.0037</td></logt<6<>	0512	.0077	.0761	.0075	.0763	.0064	.0800	.0050	.0874	.0037
logT>6	.0767	.0025	.0771	.0026	.0776	.0026	.0782	.0027	.0757	.0017
Z=.001:CO=0:	=====	=====	======	=====	======	=====	======	=====	======	=====
4 <loat<6< td=""><td>0416</td><td>.0064</td><td>.0469</td><td>.0079</td><td>.0524</td><td>.0069</td><td>.0255</td><td>.0043</td><td>.0154</td><td>.0027</td></loat<6<>	0416	.0064	.0469	.0079	.0524	.0069	.0255	.0043	.0154	.0027
logT>6	0149	.0022	0148	.0021	0145	.0020	0124	.0016	.0059	.0011
CO>0:										
4<10aT<6	.0792	.0072	.0689	.0072	.0528	.0061	0517	.0047	.0458	.0033
ς ΙοαΤ>6	- 0324	0023	- 0341	0023	- 0362	0024	- 0369	0024	0153	0015
7 = 02; $C0 = 0$;	======	=====	======	=====	======	=====	======	=====	======	=====
4<100T<6	- 0570	0069	0483	0076	0517	0066	0200	0043	- 0128	0031
logTNG	- 0108	0021	_ 0113	0021	_ 0110	0021	- 0107	.0010	- 0083	0017
CO20.	.0100	.0021	.0115	.0021	.0110	.0021	.0107	.0020	.0005	.0017
	0795	0071	0675	0060	0521	0057	0103	0044	0275	0022
	.0785	.0071	.0075	.0009	.0521	.0057	0493	.0044	0375	.0033
1091>0	0303	.0023	0320	.0023	0345	.0024	0343	.0024	0140	.0010
		=====			======	=====	======			=====
4<10g1<6	0397	.00/3	.0564	.0078	.0496	.0066	.0182	.004/	0137	.0038
Tog.I.>0	0093	.0021	0096	.0021	0097	.0021	0096	.0021	0087	.0018
CO>0:										
4 <logt<6< td=""><td>.0765</td><td>.0074</td><td>.0664</td><td>.0070</td><td>.0497</td><td>.0058</td><td>0404</td><td>.0046</td><td>0259</td><td>.0038</td></logt<6<>	.0765	.0074	.0664	.0070	.0497	.0058	0404	.0046	0259	.0038
loqT>6	0246	.0023	0262	.0023	0273	.0024	0259	.0023	0095	.0017

For T6 > 0.01, the rms effect of the smoothing is always less than 2%, i.e., comparable to the Z-interpolation errors found for the CO-rich mixes above, and smaller than the estimated opacity computation errors.

Use of the smoother CO-interpolation routine COINTSMO (rather than the old routine COINTERP) yields opacities that differ at only a few grid-points (those which COINTERP ignores when interpolating opacities), but that differ over a significant area of the CO-plane between grid-points. Opacities were compared at points chosen randomly in log T, log RHO, C, and O (always with C+O > 0, and with some excess probability of having either C=O, O=O, or C+O=1-X-Z). Opacity differences are tabulated below for selected metallicities Z, for X = 0 and for two ranges of non-zero X, at intermediate temperatures ("4<logT<6") and high temperatures ("logT>6"); note that very low temperatures (T6 < 0.01) were omitted:

CO-interpolation differences: from using subroutines COINTSMO vs. COINTERP:

dLogKappa	for:	X = 0.0			0.0	< X < C	.35	0.35 < X < 0.8		
7-0 0:		N	max	rms	N	max	rms	N	max	rms
4 <log< td=""><td>лт<б 2</td><td>209131</td><td>0495</td><td>.0021</td><td>91697</td><td>0540</td><td>.0042</td><td>117239</td><td>0939</td><td>.0061</td></log<>	лт<б 2	209131	0495	.0021	91697	0540	.0042	117239	0939	.0061

Sep 06, 07 19:03			Page 70/71					
logT>6	2523340198	.0009	109760	0575	.0045	142313	.1272	.0062
Z=0.001:	====== ======	=====	======	=====	=====	=====	=====	=====
4 <logt<6< td=""><td>2088240376</td><td>.0019</td><td>91547</td><td>0525</td><td>.0040</td><td>117033</td><td>.0872</td><td>.0056</td></logt<6<>	2088240376	.0019	91547	0525	.0040	117033	.0872	.0056
logT>6	2519650195	.0008	109603	0568	.0045	142087	.1259	.0061
Z=0.02:		=====	======	=====	=====	=====	=====	=====
4 <logt<6< td=""><td>2082250275</td><td>.0014</td><td>91265</td><td>.0388</td><td>.0032</td><td>116669</td><td>.0975</td><td>.0042</td></logt<6<>	2082250275	.0014	91265	.0388	.0032	116669	.0975	.0042
logT>6	2512350161	.0006	109266	.0538	.0039	141670	.1031	.0051
Z=0.1:	====== =====	=====	======	=====	=====	=====	=====	=====
4 <logt<6< td=""><td>2079540189</td><td>.0010</td><td>91162</td><td>.0318</td><td>.0024</td><td>116518</td><td>.0591</td><td>.0031</td></logt<6<>	2079540189	.0010	91162	.0318	.0024	116518	.0591	.0031
logT>6	2509230104	.0003	109122	.0452	.0029	141482	.0812	.0039

The routine COINTERP may have opacity discontinuities of the same order as the opacity differences (up to 5%, for X=0 and logT > 6; larger elsewhere), at those points where it switches over from interpolation in one direction to interpolation in another direction, interpolating among a different set of gridpoints (this generally occurs somewhere in the region 0 = C + (-0.2).

Each of the individual tables in a file Gz???.x?? covers 70 temperatures in the range logT=3.75 [T6=0.0056341325] (referred to as temperature 1) to logT=8.7 [T6=501.187] (note that the logT step size is 0.05 below logT=6.0, 0.10 below logT=8.1, and 0.20 above that), and covers 19 values of log R in the range logR=-8.0 (referred to as 1) to logR=+1.0, at half-integer steps. (NOTE: earlier tables were explicitly in terms of T6. For convenience the present tables tabulate log Kappa vs logT. The interpolation however still uses logT6 for the temperature variable, not logT.) Values of Z from 0.0 to 0.1 are available (at up to 14 values of Z). Type 2 OPAL tables have 8 Z-values from Z = 0.0 to Z = 0.1 and 5 X-values from X = 0.0 to X = 0.7 (plus 8 each of excess-C and excess-O values from 0.0 to 1 - X - Z), while Type 1 OPAL tables have 13 Z-values from Z = 0.0 to Z = 0.1 and 10 X-values from X = 0.0 to X = 1 - Z (but with less-good X-interpolation at low X); combining these tables allows accurate X-interpolation at all X, and more accurate Z-interpolation among 14 Z-values.

The sizes of the matrices (holding the input opacities) are set by the constant values in parameter statements. The number NZ of available Z-storage values was mentioned above (in the discussion of the inputs to the subroutine READZEXCO); its value in the parameter statements can be changed to any value between 1 and 14 (provided that it is the same everywhere!) and the program recompiled. Smaller values of NZ yield smaller ranges where Z can be interpolated (or less accurate interpolation over a wide range), but also save storage space; NZ = 5 is a reasonable compromise. Low values (NZ = 2 or 3) yield less accurate interpolation, but reduce both the storage space and the typical amount of CPU-time per opacity interpolation, since fewer Z-grid values need to be computed in general. For NZ = 1, only a constant Z can be accomodated. Other than NZ, no size parameter of the OPAL matrices should be changed.

The molecular and conductive opacity matrix sizes are independent of NZ, taking up about 1 Mb; their sizes should never be changed. The Ferguson et al. (2005) molecular opacity tables have the same range in logR as the OPAL tables, but with 2.7 < logT < 4.5 (or possibly 2.8 < logT < 4.5 for some cases); they are available at 16 Z-values from Z = 0.0 to Z = 0.1, and at 10 X-values from X = 0.0 to X = 1 - Z. For low X, their X-interpolation is less accurate (but at low temperatures where molecular opacities are needed one seldom will encounter X values close to zero).

Roughly (1.1 Mb) + NZ * (1.63 Mb) of storage space is required in total.