
TESTING INFLATION WITH THE COSMIC BACKGROUNDRADIATIONJ. Richard BONDCIAR Cosmology Program,Canadian Institute for Theoretical Astrophysics,University of Toronto, Toronto, Ontario, CANADAAbstractIn in
ation cosmologies, cosmic structure develops through the gravitational instabil-ity of the inevitable quantum noise in primordial scalar �elds. I show how the acceleration ofthe universe de�nes the shape of the primordial spectrum of gravitational metric and scalar�eld 
uctuations. I assess how we can determine the shape and overall amplitude over the�ve decades or so of spatial wavelengths we can probe, and use current data from cosmicbackground radiation (CMB) anisotropies, large scale clustering and streaming observations,distribution functions of cosmic objects, to show how far we are in this program. Broad-bandpower amplitudes are given for CMB anisotropy detections up to spring 1994, covering angularscales from all-sky down to arcminutes: DMR, FIRS, Tenerife, SP91, BigPlate, Python, SP89,MAX, MSAM, ARGO, White Dish, OVRO. It may be only a little premature to say that aspectral shape is emerging which is near that of preferred in
ation models. The cluster-scaledensity 
uctuation power derived from the broad-band power for COBE must fall within anarrow range to get the abundance of clusters right. This rules out many structure formationmodels, in particular restricting the primordial spectral index to be close to the scale invariantone. I show that COBE band-powers found with full Bayesian analysis of the 53; 90; 31 a+bGHz �rst year DMR (and FIRS) maps are in good agreement, and are essentially independentof spectral slope and degree of (sharp) signal-to-noise �ltering. Further, after (smooth) opti-mal signal-to-noise �ltering (i.e.,Wiener-�ltering), the di�erent DMR maps reveal the samelarge scale features and correlation functions with little dependence upon slope. However, themost probable slope depends upon how the maps are �ltered: with no �ltering whatsoever,the slope is high, but the power is not described by a single-slope law; as �ltering is increased,the index moves nearer to in
ation predictions.11 in Relativistic Cosmology, ed. M. Sasaki, Academic Press (1994); Proc. 8th Nishinomiya-YukawaMemorialSymposium, Japan, October 1993 1



21. IntroductionThe in
ation paradigm | that the region of the Universe in which we reside was oncein a state of accelerated expansion | remains the best way to account for local homogene-ity and isotropy. And, of course, quantum noise generated during acceleration is a naturalbyproduct that may account for the observed structure within our Hubble patch. The data onthe cosmic background and large scale cosmic structure is rapidly approaching a state wherethis can be tested in detail. I discuss the overall issue, describing and extending post-DMRdetection work in [1]-[7].1.1. Fluctuation Variables and Their Power SpectraOver the length scales we can probe with observations, i.e.,within our \Hubble patch",the post-in
ation distribution of the noise seems most likely to be linear 
uctuations on a slowlyvarying background geometry.A generic 
uctuation variable D(x; t) can be expanded in terms of modesM 2 f adi-abatic scalar, isocurvature scalar, vector or tensor; growing or decaying g:D(x; t) = f XkMnu(D)kM(t)QkM(x)akM + u(D)�kM (t)Q�kM(x)aykMo (1)f = 1=2 classical ; f = 1 quantum :For classical 
uctuations, akM is a random variable and aykM its complex conjugate, whilefor quantum 
uctuations, akM is an annihilation operator for the mode kM and aykM isthe creation operator. The u(i)kM(t) are mode functions which describe the evolution. Thespatial dependence of the modes is given by eigenfunctions QkM(x) of the Laplacian of thebackground geometry. For a 
at background of most relevance to in
ation models, it is simplya plane wave, QkM(x) = eik�x, labelled by a comoving wavevector k. For curved backgrounds,the eigenfunctions are more complex.The power spectrum of D associated with modeM is the 
uctuation variance per logwavenumber and can be expressed in terms of the statistics of akM and aykM:quantum : PDjM(k) � d�2DjMd lnk = k32�2 ju(D)kM(t)j2 (1 + 2haykMakMi) ; (2)classical : PDjM(k) = k32�2 ju(D)kM(t)j2 ha�kMakMi : (3)If the modes are Gaussian-distributed, statistically homogeneous and isotropic, then this is allthat is needed to specify the patterns in the �eld D(x; t).In the in
ation picture, the wavenumbers in the observable regime are usually con-sidered to be so high that any pre-in
ation mode occupation, haykMakMi, is negligible, andonly the unity zero point oscillation term appears. In that case, we connect to the random�eld description by making the real and imaginary parts of akM Gaussian-distributed withvariance 1=2. Although quantization is at least self consistent in linear perturbation theoryabout a classical background, there are still obvious subtleties associated with the transitionfrom a quantum to a classical random �eld description. A true inconsistency appears if weinclude the nonlinear backreaction of the 
uctuations upon the background �elds and uponthemselves. For this, we would need a quantum gravity theory. The stochastic in
ation theoryis an attempt to bypass this, by treating the 
uctuations quantum-mechanically and the inho-mogeneous background classically, with the 
uctuations in
uencing the background throughstochastic noise terms in a network of Langevin equations for the �eld variables, e.g., [8, 9].



3Over the observable k-range, it is convenient to separate the issues of overall ampli-tude for PDjM(k) | characterized say by PDjM(R�1n ) at some normalization length scale Rn,or, better, by an integral wrt a �lter, R W (kRn)PDjM(k)d lnk, from shape | characterizedby an index nD(k) + 3 � d lnPDjM(k)=d lnk : (4)Thus �nD is a \fractal dimension": zero is white noise, while three is scale invariance in D,or 
icker noise, with each octave contributing the same loudness.In the in
ation regime,D 2 f��inf ; ��is; h+; h�; � lna; � lnH; �q; : : :g : (5)That is, D would refer to 
uctuations in (1) the in
aton �eld ��inf whose equation of statecan give the negative pressure needed to drive the acceleration, (2) other scalar �eld degreesof freedom ��is which can, for example, induce scalar isocurvature perturbations,2 (3) grav-itational wave modes h+; h�, (4) the inhomogeneous scale factor a(x; t), Hubble parameterH(x; t) and deceleration parameter : q(x; t) � �d lnHa=d lna ; (6)encoding scalar metric perturbations and their variations. In
ation ends when q passes fromnegative to positive. Provided the 
uctuations over the observable k-range remain Gaussian,the outcome of in
ation is therefore a set of amplitudes for scalar metric (adiabatic) pertur-bations, gravity wave modes and various possible isocurvature modes, and primordial spectralindex functions for each, in particular:scalar : ns(k) � 1 + d lnPln ajH (k)d lnk ; where � lnajH � � ln a(x; t(x;H�1)) ; (7)tensor : nt(k) � �3 + d lnPGW (k)d lnk ; where PGW (k) � Ph+(k) + Ph� (k) : (8)Measuring the power in scalar metric 
uctuations on the time surfaces upon which the inho-mogeneous Hubble parameter H(x; t) | the proper time derivative of ln a(x; t) | is constantis useful [11, 12, 13, 9]: Once Ha exceeds k for a mode with wavenumber k, it becomes time-independent during an in
ation epoch with a single dynamically-important scalar �eld, and itremains so through reheating and the passage from radiation into matter dominance until Hafalls below k (the wave \re-enters" the horizon). 3In the post-in
ation period,D 2 f��cdm; �vcdm; ��B; �vB; �f
 ; �fer� ; �fm� ; h+; h�;�; : : :g : (9)That is, D would refer to 
uctuations in the density and velocity of dark matter and baryons(��cdm ; �vcdm; ��B; �vB), in the distribution functions for photons (�f
 ) and relativistic orsemi-relativistic neutrinos (�fer� ; �fm�), and in the metric (dispersing gravitational wave2 If axions are the dark matter, �is would be the axion �eld. The isocurvature baryon mode would need tohave a �is coupled some way to the baryon number, e.g., [16].3 To be precise about the scalar perturbation quantities used in practice, in the notation of Bardeen [10],� ln a = �H , � lnH = �H�1 _�H + �H in the `longitudinal gauge', where H is de�ned as �1=3� `traceof the extrinsic curvature'. A translation to the time surface on which �H = 0 gives � lnajH, which[9] used to characterize the metric amplitudes in stochastic in
ation. But in linear perturbation theory,� ln ajH = � lna� d lnad lnH � lnH is just Bardeen's 'com (where�r2'com=(4�a2) is the 3-curvature on comov-ing hypersurfaces). It is related to �bst of [11] by �bst = 'com +r2�H=(3(Ha)2(1 + q)). The latter termis small when k < Ha: both are nearly constant `outside the horizon' as long as the in
ation models arenot too outrageous (see x 2.). The use of 'com was advocated by [13, 15] and �bst by [11, 12, 14]. Eitherwill do.



4modes h+;� and the gravitational potential for scalar 
uctuations � = �� ln a). The Gaus-sian nature of the statistics is not modi�ed until mode-mode coupling occurs in the nonlinearregime. The goal of much of cosmology is to use observations of structure in our Hubble patchto piece together the power spectra for observables, then from these to infer the power spectrafor the post-in
ation 
uctuations, i.e.,fPln ajH (R�1n );PGW (R�1n );P��is(R�1n ); ns(k); nt(k); nis(k)g ; (10)and thereby learn about the physics of the early universe. Hampering this program is thelarge number of unknown cosmological parameters. We know well the CMB temperatureTcmb = 2:726� 0:005 [17] and the number of light relic neutrinos, hence 

 and, apparently,
er� . We do not know the `global' parametersfh;
B;
�;
cdm;
hdm � 
m� ;
curv � 1�
tot; : : :g ; (11)as well as energy densities and lifetimes for any decaying particles that were once present. (Hereh is the Hubble parameter in units of 100 km s�1Mpc�1 and the density parameters are 
j ��j=�cr , where �cr = 10:5 h2 kev cm�3.) A reasonably strong case can be made that we actuallyknow 
Bh2 = 0:0125 to within 10% or so [18]. The small curvature 
uctuations observedwith COBE is suggestive of small mean curvature, 
curv � 1. 
� � 0 is preferred over theodd physics that would be required to make 
� (or hV (�)i=(3� 10�12GeV)4) signi�cant justat the current time. The favoured theoretical hypothesis is then that the total density innon-relativistic matter, 
nr, is 1, but, with the best astronomical values for h (� 0:7� 0:8),one gets a globular cluster age crisis unless 
� or 
curv is nonzero | or something else existswhose energy density varies more slowly than the �a�3 of nonrelativistic matter.As well as the unknowns in `global' parameters, astrophysical functions required formapping from observable to in
ation spectra are unknown. Examples are biasing factorsrelating power spectra for galaxies (Pgg), clusters (Pcc), etc. to those for the underlying massdensity �eld (P��), b2g(k) � Pgg(k)=P��(k) ; b2c(k) � Pcc(k)=P��(k) : (12)The hope is that linear ampli�cation holds over large scales, i.e., that bg and bc are k-independent, and the power spectra inferred from redshift surveys reveal an underlying densityspectrum [19]. A prediction is that the power in the cross-correlation of clusters and galaxiesobeys Pgc(k) = bgbcP��(k) [20]. Remarkably, the data are roughly consistent with this simplepicture. Another important unknown is the reheating history of the Universe, which may have astrong impact upon CMB anisotropies, and because it depends upon when and how e�cientlymassive stars formed in the pregalactic Universe, it is especially hard to predict in a giventheory.1.2. The Observable Range in k-spaceFor hierarchical theories of cosmic structure formation, we may roughly divide k-spaceinto various wavebands shown in Fig.1.. (I normalize a to be unity now so that comovingwavelengths, 2�k�1, are expressed in current cosmic length units. Since these are estimatedfrom recession velocities, the unit is the h�1Mpc. a�1 � 1 is the redshift at time t.) Theastronomy associated with each band is: ULSS (ultra-large-scale-structure), with k�1 inexcess of a few times the Hubble radius, cH�10 = 3000 h�1Mpc. We get mean Hubble patchvalues out of this (i.e.,\global" parameters such as 
curv) and a little very long wavelength
uctuation information. VLSS (very-large-scale-structure), from the horizon scale (k�1 �2cH�10 for Einstein-deSitter models) down to say k�1 � 100 h�1Mpc: �� and �v are apparently
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Fig. 1. Cosmic waveband probes. The bands of cosmic 
uctuation spectra probed by LSSobservations are contrasted with the bands that current CMB experiments can probe.The (linear) density power spectrum for the standard ns = 1 CDM model, labelled� = 0:5, is contrasted with power spectra that �t the galaxy clustering data, one tilted(ns = 0:6;� = 0:5) and the other scale invariant with a modi�ed shape parameter(ns = 1;� = 0:25). Biasing must raise the spectra up (uniformly?) to �t into the hatchedwgg range and nonlinearities must raise it at k �> 0:2hMpc�1 to (roughly) match the heavysolid (
 = 1:8) line.



6small enough that they exert little in
uence on observed cosmic structures, but gravitationalpotential perturbations generate large angle CMB anisotropies. LSS (large scale structure),from � 100 h�1Mpc down to about 5 h�1Mpc: we infer that the evolution of the waves inthis band is su�ciently linear that �rst order perturbation calculations of the large scalestreaming of galaxies and the clustering of galaxies and clusters may be valid, incomparablysimpler than trying to correct for complex nonlinearities associated with dynamics and biasing.Fig.1. shows the wavebands probed by various large scale structure observations (large scalestreaming velocities LSSV [21], the angular correlation of galaxies wgg(�), the power spectrumand redshift space correlation function of galaxies as probed by the QDOT and other redshiftsurveys e.g., [22, 23, 25], the correlation function of clusters of galaxies �cc e.g., [26, 27, 28]).The best indicator for large scale power is the angular correlation function of galaxies [29, 30].CMB anisotropy experiments can be well characterized by �lters which act upon ak-space `power spectrum for �T=T 
uctuations' [31]. Filter functions in k-space are shown forthe COBE dmr (� 7� beam) experiment [32], the �rs (3:8� beam) balloon experiment [33], theUCSB sp91 (1:5� beam) `ACME-HEMT' South Pole experiments [34], the UCSB sp89 (0:5�beam) experiment [35] and the Caltech OVRO ov7 (1:80 beam) experiment [36]. The BigPlateSaskatchewan experiment [37] has a similar �lter to sp91, the balloon-borne MAX [38, 39] andMSAM [40] experiments have �lters which cover about the same range as sp89. WhiteDish[41] and a new OVRO (70 beam) experiment cover the region between sp89 and ov7. Ofmore direct observational relevance are the corresponding �lters in `-space shown in Fig.2.(b),showing experimental sensitivity to multipole components in the radiation anisotropy pattern.Thus, CMB anisotropy experiments cover the entire VLSS and LSS bands. Primaryanisotropies of the CMB are those one calculates from linear perturbation theory and which aretherefore the most important ones because they are easiest to interpret. Their power spectraare quite complex [31, 3], because they include e�ects associated with geometrical ripples in thepast light cone (Sachs-Wolfe e�ect), with the 
ow of electrons at photon decoupling, the degreeof photon compression at decoupling, and the damping associated with the width of decoupling:below � 5 h�1Mpc, the primary power is basically erased if hydrogen recombination is standard(SR line in Fig.1.); if there is an early injection of energy which ionizes the medium, photondecoupling would not have occurred until a lower (
B-dependent) redshift and would erase�T=T power on scales typically below the NR (no recombination) line shown.Below LSS lie wavebands for which gas physics will have been extremely important,if not dominant, in determining the nature of the objects we see and how they are clustered.Fluctuations are nonlinear in these regimes. The light long-dashed �lter curves at smaller scalesshow the bands probed by very small angle microwave background experiments, the VLA, theSCUBA array on the sub-mm telescope JCMT, and the OVRO mm-array. Although theirbeams are too small to see primary CMB anisotropies, they will provide invaluable probes ofsecondary anisotropies (those generated by nonlinear e�ects, including redshifted dust emissionfrom galaxies and Thomson scattering from nonlinear structures in the pregalactic medium).In a hierarchical model, nonlinearity at di�erent scales will occur at su�ciently di�er-ent epochs that I divide the \gastrophysical" realms into medium, small, very small and ultrasmall, bands ((MSS, SSS, VSSS, USSS), responsible for the construction of, respectively:clusters and groups (� 1014�15M�); bright galaxies (� 1011�12M�); dwarf galaxies and Ly-man alpha clouds (� 109�10M�); and the �rst gas clouds to collapse (� 106�7M�), whichmake the �rst stars. Of course, signi�cant gas dynamical processing may obscure the hier-archical relationship between object and primordial 
uctuation waveband. Further, dampingprocesses or tilted initial spectra may require some of the shorter distance structure to arisefrom fragmentation and other non-gravitational e�ects.`Observed' power spectra (actually their square roots) are shown as hatched regionsfor density 
uctuations inferred from COBE and for galaxy 
uctuations inferred from theAPM [29] and ROE [30] wgg data. The long wavelength hatched curve is the dmr-normalizedscale invariant spectrum (assuming an 
nr = 1 model, and including the current 10% dmr



7error on overall amplitude). The heavy curve extending the hatched wgg power into smallerdistances is the power corresponding to the well known �gg(r) = (r=r0gg)�
 3D correlationfunction form, where the old CfA1 redshift survey values have been taken, r0gg = 5:4 h�1Mpcand 
 = 1:8. Power spectra derived from the QDOT [22], IRAS 1.2 Jansky [23] and CfA2[25] redshift surveys are compatible with the range inferred from wgg when account is taken ofredshift space distortions and biasing o�sets between IRAS and optically identi�ed galaxies.As already noted, cluster-cluster correlations and galaxy-cluster cross correlations [28] alsoseem to be compatible with this inferred spectrum.The (linear) density 
uctuation power spectra shown in Fig.1. are for three (
nr = 1)models normalized to the COBE dmr data : a standard CDM model with an initially scale-invariant spectra ns = 1, one with the spectrum tilted to ns = 0:6, and an ns = 1 modelwhose shape is characterized by a parameter � = 0:25, whereas � = 0:5 for the standard CDMmodel. To �t the galaxy clustering data requires 0:15 �< � �< 0:3 or 0:2 �< ns �< 0:6 (see x 5. fordiscussion). The biasing factor bg is relied upon to move the curves up into the allowed wggband and nonlinearities to bend the shape upward to match the 1.8 law for k�1 < 5 h�1Mpc.Although this LSS `extra power' problem has been a subject of intense research on variationsin the scale-invariant minimal-CDM theme for many years (e.g., [20, 12]), we should bearin mind the great success inherent in the extrapolation over so many decades from COBEnormalization to large and small scale structure formation: it seems scale invariance cannot bewildly broken and non-minimality cannot be too extreme, even if the generation mechanismhas nothing to do with in
ation (with the isocurvature baryon model being one deviant case[42]).2. The Shape and Amplitude of the Primordial Post-In
ation Power SpectraDuring in
ation, the same zero point quantum 
uctuation phenomenon which leadsto the in
aton density perturbations also leads to statistically independent gravitational waveperturbations [43, 44]. The equations for the in
aton, isocons, and mPp16�h+;� are derived fromidentical scalar �eld actions, except the in
aton and isocons are coupled through a potentialV (�inf ; �is; : : :), while the gravity waves have no e�ective mass. Provided the e�ective massesof the scalars are small compared with H2, all respond in basically the same way, rapid oscilla-tion of the respective mode functions `inside the horizon' (k > Ha), almost freeze-out outside(k < Ha), with a power amplitude P1=2� (k; t) � H=(2�) essentially given by the Hawkingtemperature on the k = Ha boundary on time surfaces of uniform (Ha)�1, a result moti-vated by a WKB treatment of 
uctuation evolution inside the horizon. In stochastic in
ation,noise at the Hawking temperature radiates from short distances across the decreasing (Ha)�1boundary into a long wavelength background �eld. We [12, 9] con�rmed quantitatively thatthis simple picture, implicit in the early \new in
ation" calculations of density perturbations,agrees with detailed numerical simulations of 
uctuation generation. The in
aton 
uctuationstranslate into scalar perturbations in the metric, codi�ed in � ln a = (H=�)��, where � is thebackground momentum of the in
aton �eld �. Thus, the post-in
ation spectra areP1=2GW = p8 p4�mP H2� eut ; P1=2ln ajH = 1pq + 1 p4�mP H2� eus ; (13)The correction factors ut and us to `the H=(2�) at k = Ha WKB approximation' are inpractice nearly zero. How near is now of considerable interest because the COBE results havecreated a desire for calculational precision (x 2.1.).H(�) and q(�) are treated as functions of the in
aton �eld here, which naturally followsfrom the Hamilton-Jacobi formulation of the problem [9, 45]: the solution to the momentumconstraint equation, � = �m2P4� �@H@� �, is put into the energy constraint equation, turning it



8into the `reduced Hamilton-Jacobi equation' relating H(�) to the potential V (�):H2 = H2SR1� (q + 1)=3 ; H2SR � 8�V3m2P ; i :e:; H2 = 8�3m2P h12�m2P4� @H@� �2 + V (�)i ; (14)withH(�) taking the role of the (reduced) action. (Eq.(14) has corrections dependent upon thespatial curvature, hence is valid only for the smoothly varying (long wavelength) background�eld, not the sub-(Ha)�1 
uctuating part.)The power spectrum ratio and the adiabatic scalar and tensor indices follow:(1 + q) = nt + 3nt + 1 = m2P4� h@ lnH@� i2 = e�(ut�us) 18 PGWPln ajH ; (15)nt + 32 = 1 + q�1 +Ct ; (16)ns � 12 = 1 + q�1 � q�1m2P4� @2 lnH@�2 +Cs = 1 + q�1 � q�1 sgn(@H=@�)p1 + q mPp4� dqd� +Cs :The accurate path to the spectral indices is to take logarithmic derivatives of full numericalcalculations, a la [12]. The stochastic in
ation technique [9] is to write eq.(13) as a function ofH, q and derivatives, and take a logarithmic derivative wrt Ha in place of k, the path adoptedhere and in [9, 2, 3, 5]. Eq.(16) shows that tilt mostly depends upon how far the accelerationis below the critical value of unity (but for q � �1, a substantial scalar tilt can come from thesecond term, yet no tensor tilt, as in x 2.4.). Here Ct;s are correction factors associated withderivatives of the ut;s, which I now discuss in x 2.1., but which the reader may wish to skipsince I �nd them to be small and thus drop them subsequently.2.1. Corrections to the Stochastic In
ation Calculation of Power Spectra and Their ShapesWe and others have often used the ut;s = 0; Ct;s = 0 approximation e.g., , [2, 3, 5],but [44, 15, 47, 48, 46, 49] have stressed the importance of higher order corrections. For thecase of uniform acceleration, the tensor and scalar equations can be solved analytically interms of Hankel functions and the asymptotic limit can be taken to determine the correctionfactors for the tensor [44] and scalar [15] modes:ut = ln�(12 � q�1) � q�1 ln(�2q) � 12 ln� ; (17)! u0t(1) (1 + q) + O(1 + q)2 ;� u0t(1)� �(1� ln 2) + 12 � ��1(1 + ��1=2 : : :)24 for large � � (12 � q�1) ;u0t(�q�1) � dutd(�q�1) = �(
 + ln2� 1) + h	(12 � q�1) �	(32) � ln(�q�1)i (18)� �(1� ln 2) + ��2(1 + ��1 + : : :)24 ; large � :Here 	(�) = d ln�=d� is the diGamma function, 2 � 
 � 2 ln 2 = 0:03649 at 3=2, where 
 isEuler's constant. The large � limit is surprisingly useful: at �q�1 = 1, it is only o� by 2% andquickly gets better. There are also weak corrections associated with acceleration changes andthe e�ective masses of the scalars, which [46] dealt with by assuming slow changes of thesequantities to exploit the uniform acceleration analytic solution, not strictly valid but useful toindicate the correction level. Following this path, and keeping the leading dq=d� term, whichis the only important one, we haveus � ut + (u0t(�q�1) + 1) m2P4� @2 lnH@�2 : (19)



9Thus the correction factors areCt = 2q�2u0t(�q�1) (1 + q) q�1m2P4� @2 lnH@�2 ; (20)Cs = Ct + sgn(@H=@�) (u0t(�q�1) + 1) (1 + q) 12 q�2 m3P(4�)3=2 @3 lnH@�3 : (21)For evaluations, substituting �0:3 for u0t(�q�1) provides enough accuracy (u0t(1) = �0:27,u0t(1) = �0:31). The key point in Ct is the (1+q) multiplier, which e�ectively suppresses thisterm relative to the @2 lnH=@�2 term of eq.(16): the ratio is 2q�2u0t(�q�1) (1+q) � �0:6(1+q).In x 5.2., we �nd the data suggests we restrict our attention to tilts �< 0:2, hence this ratiois below 7%. And when the @2 lnH=@�2 is most important in eq.(16) is when q � �1, asfor natural in
ation, x 2.4., and in this case, the Ct correction is exponentially suppressed.The @3 lnH=@�3 correction to ns has a less strong suppression factor, (1 + q)1=2, but e�ectiveenough. An advantage of the forms adopted here over those in [49] is that one is not restrictedto the (1 + q) � 0 regime. But, for the reasons given, I believe it is safe to drop them, whichI now do.2.2. Uniform Acceleration: Exponential Potentials and Extended In
ationA constant acceleration regime implies equal scalar and tensor tilts and power lawin
ation (a / tp): q + 1 = p�1 ; ns � 1 = nt + 3 = �2(p � 1)�1 : (22)Eqs.(14,15) implies an exponential potential, V = V0 exp[�p16�(q + 1) �=mP ]. Of course, qmust go negative for a viable model of in
ation. Nonetheless, over the observable k-range, theexponential approximation is often quite good, even when rather drastic potential surfaces areadopted to `design' spectra.Theories with f(�)R couplings, where R is the curvature, and with one or more dynam-ically important scalar �elds are a rich source of in
ation models. The classical Brans-Dicketheory has f = �2=(4!), where � is related to the dilaton. In [12], we considered the inducedgravity model, with � as the in
aton, and showed that if ! � 10�5 in the early universe, thecoupling of all �elds would be e�ectively weak and the observed density 
uctuation level wouldresult. However an arbitrary symmetry breaking potential was invoked to eventually pin �at � = mP=p4� to get the observed Newton gravitational `constant'. In extended in
ation[50], the in
aton is a separate degree of freedom from the dilaton. The deceleration in theconformally transformed frame is uniform, e.g., [51], with value q + 1 = 4=(2! + 3), hencens � 1 = nt + 3 = 8=(2! � 1). Thus another mechanism was required for reheating, bubblenucleation. However, to avoid an excessive CMB anisotropy due to large bubbles, the theoryneeded ! �< 18� 25 at the end of in
ation, yet to satisfy solar system tests ! �> 500 and hencean e�ective !-pinning or mP -pinning mechanism is required.With conformal transformations, the kinetic term can become nontrivial, making thestandard Hamilton-Jacobi derivation leading to eq.(15), which predicts q � �1, incorrect. Weexplore the implications of a q < �1 supercritical acceleration for the shape elsewhere [52],but for this paper I shall consider only cases for which �eld reparameterization can take thekinetic piece into the standard form, and for which eq.(15) is valid.2.3. Slowly Dropping Acceleration: Chaotic In
ation and Power law PotentialsPower law potentials of the form V (�) = �em4P (�=mP)2�=(2�) have the advantageover exponential laws that q � �1+(�=mP )�2�2=(4�) naturally passes through zero. Chaoticin
ation discussions [53] have typically focussed on simple potentials, in particular the powerlaw form with � taken to be 1 or 2. A characteristic of such potentials is that the range of values



10of � which correspond to all of the large scale structure that we observe is actually remarkablysmall: e.g., for � = 2, the region of the potential curve responsible for the structure betweenthe scale of galaxies and the scales up to our current Hubble length is just 4mP �< � �< 4:4mP[12]. Consequently, H(�) does not evolve by a large factor over the large scale structure regionand we therefore expect approximate uniformity of ns(k) and nt(k) over the narrow observablebands of k-space, and near-scale-invariance for both. Although this is usually quoted in theform of a logarithmic correction to the lnajH-spectrum, a power law approximation is quiteaccurate [2]:q + 1 � �=2NI(k) + �=3 ; ns(k) � 1� � + 1NI(k)� �=6 ; nt � �3 � �NI (k)� �=6 : (23)NI (k) is the number of e-foldings from the point at which wavenumber k `crosses the horizon'(when k = Ha) and the end of in
ation. For waves the size of our current Hubble length wehave the familiar NI (k) � 60, hence ns � 0:95; nt � 0:97 for � = 2 and ns � 0:97; nt � 0:98for � = 1 (massive scalar �eld case). Further, the observable scales are su�ciently far fromthe reheating scale that NI is relatively large over the observable range: e.g.,over the rangefrom our Hubble radius down to the galaxy scale, ns decreases by only about 0.01.2.4. Dropping from Nearly-Critical Acceleration: Natural In
ationIn natural in
ation [54, 2], the in
aton for the region of k-space that we can observeis identi�ed with a pseudo-Goldstone boson with a potential V = 2�4 sin2(�=(2f)). This issimilar to the axion, except that the symmetry breaking scale f is taken to be of order mPand the energy scale for the potential is taken to be of order the grand uni�ed scale, mGUT ,so that an e�ective weak coupling, �e = �4=(fmP )2 � (mGUT=mP )4 arises `naturally', givingthe required 10�13 for mGUT = 1016GeV. To obtain su�cient in
ation and a high enoughpost-in
ation reheat temperature for baryogenesis, f �> 0:3mP is required.To have a tilted spectrum and also get enough in
ation in our Hubble patch, �=fmust have started near the maximum at �, an in
ection point where q is nearly �1 [2]:q + 1 � (1 + m2P24�f2 ) exp � � m2P8�f2 NI(k)� � 0 ; (24)ns(k) � 1� m2P(8�f2) +O�q + 1� ; nt + 3 � O�q + 1� ; PGWPln ajH � O�q + 1� : (25)Thus, we can have a scalar tilt but tensor tilt and gravity wave power are both exponentially-suppressed.2.5. Rapid Acceleration Changes: Radically-Broken Scale InvarianceThe index can have complex k-dependent structure when the acceleration changesconsiderably over the k-band in question. According to eqs.(16), the post-in
ation gravita-tional wave spectrum will have power increasing with wavelength (the correction Ct seemsunlikely to modify this, although supercritical acceleration can), whereas artfully using the@p1 + q=@� term in the in
aton e�ective potential allows essentially any prescribed shape forthe adiabatic scalar spectrum.A priori, it seems unlikely that a marked change in the expansion rate or accelerationwould just happen to be in the narrow window of k-space accessible to our observations. How-ever, in �-space, this window is not very far from �end de�ning the acceleration/decelerationboundary, hence the q rise to zero must be reasonably rapid in �. Even so, for the modelsdescribed above, the rapid change does indeed occur only near the end, suggesting specialphysics might have to be built in.



11Rapid acceleration changes, if present, would seem to be more likely a consequence ofinteraction with other �eld degrees of freedom rather than a result of in
aton self-interaction.Thus, many of the toy models constructed to illustrate that radically broken scale invariance ispossible involved two scalars interacting with either simple polynomial potentials (with second,third and fourth order terms) [55, 12], or combinations of exponential potentials [47].Even with many scalar �elds being dynamically important, it is often possible to con-sider an e�ective single in
aton self-interacting through an e�ective single-in
aton potentialover the observable scales. This is because the �elds �rst settle into gorges on the potentialsurface, then follow the gorge downward towards the local minimum along a single �eld de-gree of freedom, �k, to be identi�ed with the in
aton. The other degrees of freedom, ~�?, are`isocurvature' degrees of freedom. Usually, the faces rising up from the gorge will be su�-ciently steep that the inevitable quantum noise that excites motion up the walls quickly fallsback, leaving no usable isocurvature imprint, e�ectively making those dimensions irrelevant(although curvature in the trough can lead to complications in the kinetic energy piece of thein
aton degree of freedom).Many models of double in
ation could be described this way, consisting of two periodsof in
ation with relatively constant H, one at highH, the other at lowH. These lead to nearlyscale invariant 
uctuations in the two associated regions of k-space, high amplitude, then low.The join must be accompanied by a large change in acceleration, hence in ns;t(k) over thecorresponding k-band: exactly how one crafts the transition determines the detailed form ofns;t(k). General variations of the e�ective single in
aton potential H(�), hence of V (�), allowwide latitude in what can be constructed. Since ns has a term / @p1 + q=@�, it tends to bemore susceptible to the variations than nt is, and therefore the adiabatic scalar spectra shouldexhibit sharper structural features.Models with two scalar �elds that do not allow an e�ective single in
aton approx-imation over the relevant band in k-space have also been used to construct power spectrawith mountains and valleys and also to generate non-Gaussian in
ation 
uctuations. Oftenthese involve an instability, with negative transverse components of the mass-squared matrix,@2V=@�i@�j, leading to an opening up of the gorge or its bifurcation. Tuning the location ofsuch a structure to the window on the potential surface we can access must be unpalatablyprecise [12].3. In
ation-Based CMB Power Spectra c.f. the Data3.1. Theoretical CMB Power SpectraFor a given in
ation model, perturbed Einstein-Boltzmann equations (e.g., [56, 31, 3])must be solved for each mode M present to get the temperature radiation pattern at ourlocation and at this time:(�T )(M)T0 (q̂; here; now) � �f (M)
T
@ �f
=@T
 = X̀m a(M)`m Y`m(q̂) ; (26)where �f
 is the unperturbed Planck distribution and �f (M)
 is the distribution function 
uc-tuation. If the post-in
ation 
uctuations are Gaussian-distributed, then so are the multipolecoe�cients a(M)`m , with amplitudes fully determined by just the angular power spectra C(M)` ,de�ned by C(M)` � `(` + 1)2� hja(M)`m j2i : (27)Sample theoretical C`'s are shown in Fig.2.(a). The \standard" adiabatic CDM model(
 = 1, ns = 1, h = 0:5, 
B = 0:05) with normal recombination illustrates the typicalform: the Sachs-Wolfe e�ect dominating at low `, followed by rises and falls in the �rst and



12subsequent Doppler peaks, with an overall decline due to destructive interference across thephoton decoupling surface. A similar CDM model, but with early reionization (at z > 200),shows the Doppler peaks are damped, a result of destructive interference from forward andbackward 
ows across the decoupling region, illustrating that the \short-wavelength" partof the density power spectrum can have a dramatic e�ect upon C`, since it determines howcopious UV production from early stars was. Lower redshifts of reionization still maintain aDoppler peak, but suppressed relative to the standard CDM case.A form often adopted to describe the low-` end is the \Sachs-Wolfe" power for scalarmetric perturbations [31]C` = 19 Z d lnkP�(k)j2̀(kRr) ; (28)� 19P�(R�1n ) �RrRn �1�ns ��` � 1�ns2 ��(` + 2)�(`)��`+ 2 + 1�ns2 � ��1� 1�ns2 ��(32 )��32 + 1�ns2 � ; (29)� 19P�(R�1n ) �RrRn �1�ns (` + 12 )ns�1 ��1� 1�ns2 ��(32 )��32 + 1�ns2 � (1 + "(`+ 12)2 + : : :) ;" = (1� ns)(11 + 6(1� ns) + (1� ns)2)24 :Here Rr is the comoving distance from us to the surface over which photons decouple fromthe baryons, about 5800 h�1Mpc away for a CDM cosmology, and Rn is a normalization scale.The analytic result in terms of Gamma functions holds if there are no deviations from thepower law form for the power spectrum of the gravitational potential P�, related to Pln ajHby P1=2ln ajH � (5=3)P1=2� . This predicts a 
at C` for ns = 1, obeying the pleasing formulaC1=2` = P1=2� =3 � P1=2ln ajH=5, relating �T=T to �=3. In fact, for a realistic model, there arecorrections to this formula from other anisotropy sources: in particular for the standard CDMmodel shown, there is a small rise over the multipoles that COBE probes, modelled by ane�ective index 1.15 if we use the eq.(29) form.The dotted C` in Fig.2.(a) also has a 
at initial spectrum, but has a large nonzerocosmological constant in order to have a high H0, in better accord with most observationaldeterminations. The speci�c model has 
� = 0:75, 
cdm = 0:22;
B = 0:03;H0 = 75, ns = 1.As one goes from ` = 2 to ` = 3 and above there is �rst a drop in C` [57], a consequence of thetime dependence of � which results in corrections to C1=2` � P1=2� =3.A major goal of CMB anisotropy research is to determine all of the ups and downsof the spectrum in detail. The `data points' of Fig.2.(a) are averages of the C`'s wrt `�lter'functions W`: hC`iW � I[C`W`]=I[W`] ; where I[f`] � X̀ (` + 12 )`(` + 1) f` (30)de�nes the \logarithmic integral" I[f`] of a function f`. The W` are taken to be those for aset of existing anisotropy experiments spanning the range 10� to 20 shown in Fig.2.(b): hC`iWthen characterizes the broad-band power that the experiment is sensitive to. The location in`-space is h`iW . The error bars are 10%, the best dmr can possibly do with the full 4 years ofdata, and ones that are actually quite reasonable for intermediate- and small-angle mappingexperiments. The observed data points for these experiments are shown in Fig.4. below.If the spectrum is tilted, gravitational waves will generally be present to induce atensor-mode spectrum, C(t)` to add to the adiabatic scalar spectrum C(s)` . The amplitude ofgravitational wave modes decays by directional dispersion as the modes re-enter the horizon,just as waves in any relativistic collisionless matter do. Before the gravitational waves dispersehowever, they in
uence the microwave background through the inhomogeneous redshifts theyinduce. The recognition of the potential importance of gravity waves for large angle microwave
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Fig. 2. (a) COBE-normalized temperature power spectra: for a standard ns = 1 CDM modelwith standard recombination, early reionization, a (dashed) tilted primordial spectrumwith ns = 0:95, with the gravity wave contribution shown, and a (dotted) high H0 modelwith � 6= 0. Bandpowers with 10% error bars are shown for the tilted and untilted CDMmodels. (b) Filter functions for current experiments.



14background 
uctuations has a long history, e.g., [43, 44] and generated a tremendous post-COBE burst of excitement, and papers e.g., [61, 47, 48, 62, 2], especially when the sensitivityto tilt was realized that meant the dmr-signal could even be largely tensor-induced. I shallparameterize the relative magnitudes of scalar and tensor by the ratio of the broad-band powersassociated with the dmr-beam's �lter:~rts � hC(t)` idmrhC(s)` idmr � 1:5PGW=Pln ajH � 6 nt + 3(nt + 1)=2 : (31)This ratio has no simple analytic result and its value is dependent upon the details of thecosmology being considered. The 1:5 numerical result holds for small deviations from scaleinvariance, ns � nt, and for CDM-like models. (In [3, 5], we used instead C(t)2 =C(s)2 � 1:2~rts tocharacterize the relative magnitudes.)In Fig.2.(a), the dashed line shows a standard CDMmodel, but with a chaotic-in
ationinspired ns = 0:95 tilt, along with a ~rts � 0:3 gravity wave contribution (eq.(31) with nt = ns),contributing the lower dashed line to the total [3]. Although C(t)` has a 
at part at low ` justas C(s)` does for this nearly scale invariant model, there is about a 20% drop from ` = 2 to` = 3, and there is no Doppler peak, only a rapid decline at ` �> 50.To get a visual impression of what the spectral structure means, Fig.3. shows what thesky looks like on a few resolution scales for the standard ns = 1 CDM model: on the COBEbeamscale (Gaussian �ltering `s = 19), the nearly scale invariant form; on the half-degree scale(`s = 269), where the standard recombination spectrum is a maximum; with no smoothing atall, with the shapes de�ned entirely by the destructive interference that occurred across thephoton decoupling region. For early-reionization, the shapes in the 60� NR map are also thenaturally occurring ones, since there is no power left at `s � 269 to arti�cially �lter.3.2. How Accurately Can The Spectra Be Measured?In [5], we showed that for small variations about the CDM model, the height of the�rst Doppler peak relative to the dmr band-power is (within � 15%)C`��maxhC`idmr � 5 e�3:6(1�~ns) ; ~ns � ns� ln(1+~rts)=3:6�0:5[(1�
�) 12 h� 12 ]��1 + zR200 �3=2 ; (32)where 
B = 0:0125h�2 has been �xed at the standard BBN value. Here zR is the reionizationredshift and must be �< 150 to have a local maximum. For example, a model with no gravitywave contribution (as natural in
ation would predict) but ns � 0:88 has a spectrum thatis almost degenerate with the ns = 0:95, ~rts = 0:3 spectrum, so much so that it will beextremely di�cult to tell them apart. More generally, we argued that the precision required toseparately determine ns; ~rts;
�; : : : is too high for likely experiments, but ~ns can determinedaccurately. (An exception is 
Bh2, which the relative heights of the Doppler peaks are sensitiveto.) To separate the various contributions to ~ns requires other cosmological experiments,e.g.,measuring the scalar perturbation shape through galaxy-galaxy power spectra (x 5.1.)and amplitude through cluster abundances or streaming velocities (x 5.2.); and, in some happyfuture, determining H0 de�nitively.We now discuss the experiments in more detail, �rst in an idealized way to show whatis needed for achieving even the 10% error bars shown on the band-powers in Fig.2.(a). Thesignal (�T=T )p from the pth pixel of a CMB anisotropy experiment can be expressed in termsof linear �lters Fp;`m acting on the a`m: ��T=T �p = Plm Fp;`ma`m. The Fp;`m encodesthe experimental beam and the switching strategy that de�nes the temperature di�erence, theformer �ltering high `, the latter low `. The pixel-pixel correlation function of the temperaturedi�erences can be expressed in terms of a quadratic Npix�Npix �lter matrix Wpp0 ;` acting on
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Fig. 3. How a CDM model normalized to COBE varies with resolution. The contours beginat 109�K in the half-degree smoothing cases, 54:5�K in the no-smoothing case, 27:3�Kin the all-sky aito� projection map. SR denotes standard recombination, NR denotes veryearly reionization, so there is no Doppler peak. The hills and valleys in the 5� SR map arenaturally smooth: mapping them will give a direct probe of the physics of how the photondecoupling region at redshift � 1000 damped the primary signal.



16CT`: CTpp0 � h��TT �p��TT �p0i = IhWpp0 ;`CT`i ; Wpp0;` � 4�2` + 1Xlm Fp;`mF�p0;`m ; (33)�2T [W ] � ��TT �2rms � 1Npix NpixXp=1 CTpp � IhW `CT`i ; W ` � 1Npix NpixXp=1 Wpp;` : (34)The trace W ` de�nes the average �lters [58, 59, 60] shown in Fig.2.(b), which determinethe rms anisotropies �T [W ]. Typically we will be given the anisotropy data in the form(�T=T )p ��Dp, where �Dp is the variance about the mean for the measurements. In general,there may be pixel-pixel correlations in the noise, de�ning a correlation matrix CDpp0 witho�-diagonal components as well as the diagonal �2Dp.In the simplest experiment that can be imagined, we would have CDpp0 = �2D�pp0 andthe pixels su�ciently separated on the sky that only W ` is an e�ective probe of C`; i.e., thatCTpp0 � �2T �pp0 . hC`iB;th � �2T=I(W `) is the quantity we wish to estimate. For large Npix,the 1-sigma uncertainty in the experimental value of the band-power is [5, 6, 7]hC`iB;obs = hC`iB;maxL �q2=Npix hhC`iB;maxL + �2D=I[W `]i ; (35)hC`iB;maxL = hC`iB;th �q1=Npix hhC`iB;th + �2D=I[W `]i : (36)An experimental noise �D below 10�5 is standard now, and a few times 10�6 is soon achievable;hence, if systematic errors and unwanted signals can be eliminated, the 1-sigma relative uncer-tainty in hC`iB will be from cosmic-variance alone,p2=ND, falling below 10% for Npix = 200,i.e., a mapping experiment. For large Npix, the observed maximum likelihood will 
uctuatefrom hC`iB;th, the quantity we want, according to eq.(36), but the error bars of eq.(35) includethese realization-to-realization 
uctuations (thus p2 appears, not 1). If there were full-skycoverage and errors from cosmic variance alone, the fractional error in the hC`iW goes as� h`i�1 [7]: so tiny for intermediate and small angle experiments that it would appear thateven extremely subtle di�erences in the spectra could in principle be determined at high `.Now I shall discuss how we are doing so far in practice.3.2.1. Current Status: Experimental Broad-Band PowersTo determine band-powers for an experiment [4, 7], I construct a local model of C`,assumed to be valid over the scale of the experiment's average �lter W `:CB` = hC`iB (` + 12 )2+n�T I[W `]=I[W`(` + 12 )2+n�T ] ; n�T � ns � 3 : (37)The local \spectral colour index", n�T , is similar to the nD of eq.(4), except for 2D, not 3D.The form di�ers very little from that in eq.(29): for small `, n�T is related to ns as shown, butwith ns now interpreted as a phenomenological rather than a primordial index. Thus ns = 3corresponds to white noise in �T . To get the band-power, I use eq.(37) with n�T = �2,i.e., scale-invariant over the band, but check that the result is robust to variations in n�T .This is true for all intermediate and small angle experiments to date, and as we shall see, evenholds true for dmr and �rs, which have such a large coverage in `-space that they can alsobe used to determine the index n�T . The amplitude hC`i1=2B can be determined by whateverstatistical method we are most enamoured with, whether Bayesian as I prefer, or frequentist.There are so many detections now that I split Fig.4. into two panels for clarity, theupper giving the overview, the lower focusing on the crucial �rst Doppler peak region. These�gures have been evolving rapidly since I introduced them [4, 7]. Data points either denotethe maximum likelihood values for the band-power and the error bars give the 16% and 84%
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Fig. 4. Band-power estimates for the vintage Spring 1994 data, decribed in detail in the text.The lower panel is a closeup of the Doppler peak region.



18Bayesian probability values (corresponding to �1� if the probability distributions were Gaus-sian) or are my translations of the averages and errors given by the experimental groups to thislanguage. Upper and lower triangles denote 95% con�dence limits unless otherwise stated. See[7] for details. The horizontal location is at h`iW and the horizontal error bars denote where the�lters have fallen to e�0:5 of the maximum (with Fig.2.(b) providing a more complete represen-tation of sensitivity as a function of `). Only wavelength-independent Gaussian anisotropies in�T=T are assumed to be contributing to the signals, but non-primary sources (e.g.,dust, syn-chrotron) may contribute to these C`'s (as can unknown systematic errors of course). Cleaning�T=T observations has been done to some extent in most of these cases, and will be the key tothe ultimate accuracy that we can achieve in spectrum determination - not theoretical cosmicvariance. Generally the underlying primary C` will be lower than the values shown, but it canbe higher because of `destructive interference' among component signals.Proceeding from small `, the ` = 2 power uses the �rst year 53GHz quadrupole valueswith a Galactic cut bGcut = 20� [4]. The value for the combined �rst and second year datawill be even lower [63], but it is also the multipole most likely to have a residual Galacticsignal contaminating it, possibly destructively. The solid dmr point with the tiny error baris my translation of the combined �rst and second year result [63], while the open dmr pointfor the �rst year data and the �rs point are my band-powers, from refs.[4, 7] and x 4.. TheTenerife point uses the data for the limited region of the sky they probed at both 15 and 33GHz. Remarkably, in view of the relatively low frequency, the band-power for their data at15 GHz only, which covered a much larger region of the sky, agrees. We now come to theconfused region from two degrees to half a degree, which can be better seen in the lower panel.Two sp91 band-powers are shown, for a 9 point scan and a 13 point scan [34]. All 4 channelswere simultaneously analyzed [4]. The o�sets are for clarity. The BigPlate result [37], bp,is slightly higher. New sp94 results apparently also have detections at a little higher leveland there will also shortly be a new bp result, both with more extended frequency coverage.Python [65], py, has wide coverage in `-space, but has only the single 90 GHz frequency sosignal cleaning cannot be done. Argo [66], ar, is next. The next 3 results are for 3 scans fromthe fourth 
ight of the MAX balloon-borne experiment [39], M4, the open squares for the IotaDraconis scan and the Sigma Hercules scan, the solid point for a GUM scan. Because the�lters changed with frequency, the points are placed at the average over all MAX4 �lters. Thetwo solid data points are for the third MAX 
ight [38], the upper for a GUM scan, the lowerfor a Mu Pegasus scan (which had a strong dust signal removed). The GUM point also showsthe Bayesian 1� sigma error bar. The dotted lines ending in triangles denote the 90% limitsfor the MSAM [40] single (g2) and double (g3) di�erence con�gurations for all of their data,although there are some worries that half of their data was contaminated by non-Gaussiansources, which, when excluded, lowers the band-powers somewhat. The next three give upperlimits, but no detection. The open triangle is the 95% credible limit for the sp89 9 point scan[35, 60]. Switching back to the upper panel, the 95% limit from the m = 2 mode analysisof the WhiteDish experiment [41] is wd2. There is a hint of a detection in the m = 1 modeanalysis. The ovro 7 point upper limit [36] is last. New ovro experiments with signi�cantlyhigher sensitivity for this �lter and for the ovro22 one in Fig.2.(b) also have results that willsoon be available, once the detections have been cleaned of radio sources.In the future we will be able to strongly select the preferred theories by simultaneouslyanalyzing experiments like these. Although we have already tried this, e.g., for sp89 andov7 [60] and for dmr, sp91, sp89 and ov7 [3], for the time being I believe it can be quitemisleading because we cannot be con�dent yet that the data has been properly cleaned ofsecondary backgrounds, foregrounds and instrumental systematics to reveal the underlyingprimary anisotropies. Until then, band-power �gures such as Fig.4. should be our guide tothe evolving progress towards a primary C` spectrum, and the theory of 
uctuation generationunderlying it.



194. DMR and FIRSIn this section, I describe some Bayesian results on the �rs and �rst year dmr mapswhich use all aspects of the maps simultaneously and so are highly sensitive to all componentsin it. Since we wish to extract only the primary signals, �ltering unwanted residual signals isessential, but there is some danger in doing so. I compare my un�ltered and �ltered resultswith those obtained by the dmr and �rs teams, whose techniques also employ �ltering of onesort or another.4.1. Signal-to-noise Eigenmodes for MapsA full Bayesian analysis of maps requires frequent inversion and determinant evalua-tions of Npix�Npix correlation matrices, the sum of all CTpp0 in the theoretical modelling plusthe pixel-pixel observational error matrix CDpp0 . To facilitate this, I expand the pixel values(�T=T )p into a basis of \signal-to-noise" eigenmodes for the maps in which the transformednoise and transformed (wanted) theoretical signal we are testing for do not have mode-modecorrelations, i.e.,which are orthogonal. This can always be done, no matter what the experi-ment. Complications are associated with the removal of averages, dipoles etc. and the existenceof secondary signals in the data, both of which do couple the modes. A model for the variouscontributions that make up the observed data is then�k = NpixXp=1 (RC�1=2D )kp(�T=T )p = sk + (1 + r)nk + ck + resk ; k = 1; : : : ; Npix ;(38)hnknk0i = �kk0 ; hsksk0i = ETRk�kk0 = �RC�1=2D CTC�1=2D Ry�kk0 ;hreskresk0i = Rkk0 ; hckck0i = Kkk0 : (39)Because the transformation C�1=2D CTC�1=2D has dimension (theory variance=pixel error2), Icall the ETR;k S=N -eigenvalues. I sort the modes in order of decreasing ETR;k, so low k-modesprobe the theory in question best.Because there are an equal number of eigenmodes as pixels, this new expansion is acomplete (un�ltered) representation of the map. With uniform weighting and all-sky coverage,the eigenmodes are just the independent Re(a`m) and Im(a`m), with the lowest ` having thehighest ETR;k, hence k � (` + 1)2. With Galactic cuts followed by dipole removals, andespecially with inhomogeneous pixel coverage { a bigger issue for �rs, but important for dmrtoo { they are complicated and theory-dependent. However, the high S=N -modes are indeedthe ones that involve large scale pixel linear combinations, while the low S=N -modes typicallyinvolve positive and negative contributions from nearby pixels that are not sensitive to largescale structure in the maps, but are quite sensitive to physics inside the beam, whether fromsystematic e�ects or true white noise on the sky. This suggests this can be an ideal set for�ltering. Filtering using S=N -modes has a long history in signal processing where it is calledthe Karhunen-Loeve method [67].There is an arbitrary average and dipole that can be added to the maps, ck, which Itake to be described by a Gaussian with very wide width, i.e.,a uniform prior probability. InS=N -space, this contribution has o�-diagonal correlations which a�ects small k. The residualsare modelled by an excess pixel noise with an ampli�cation factor r, which soaks up a signi�cantpart of the excess I observe in the data, and an unknown component denoted by resk. Of coursewithout identifying it, we do not know its correlation matrix R, but the data itself can tell ussomething about its structure.The sum of j�kj2 over bands in S=N -space de�nes a S=N power spectrum which iseasy to interpret because the modes are basically independent of each other, but have thedisadvantage of depending upon the theory being tested for. In [7], I showed how dmr and



20 Table 1: hC`i1=2dmr=10�5 as a function of dmr map (n�T + 3 = 1)53a+b 53a+b(7�) 53a�b 90a+b 90a�b 31a+b �rs1.03�.15 0.99�.14 0.30�.30 1.08�.21 0.00�.30 0.89�.35 1.09�.26Table 2: hC`i1=2dmr;firs=10�5 as a function of ns � n�T + 33.0 2.5 2.0 1.5 1.0 0.5 0.0dmr53a+b1.10�.10 1.07�.11 1.05�.12 1.02�.14 1.03�.15 1.05�.19 1.07�.22�rs1.38�.26 1.33�.25 1.24�.25 1.15�.26 1.09�.26 1.05�.29 1.04�.32Table 3: hC`i1=2dmr;firs=10�5 as a function of kcut162 142 132 102 72 52 42dmr53a+b, n�T + 3 = 11.03�.15 1.02�.15 1.02�.15 0.94�.14 0.85�.14 0.87�.18 0.98�.24dmr53a+b, n�T + 3 = 21.06�.12 1.05�.12 1.05�.12 0.97�.12 1.02�.15 1.05�.21 1.21�.29�rs, n�T + 3 = 11.11�.27 1.07�.26 1.05�.26 1.00�.24 0.99�.25 0.89�.26 1.01�.32�rs, n�T + 3 = 21.27�.24 1.21�.23 1.17�.23 1.08�.23 1.12�.27 1.14�.32 1.14�.38Table 4: hC`i1=2dmr;firs=10�5 from the dmr and �rs teamsdmr1: S92 dmr1: W94 dmr2: B94 dmr2: B94 (n�T + 3 = 1:59) �rs: G940.97�.28 0.97�.16 1.00�.10 1.02+:43�:27 1.08�0.3�rs spectra for both n�T + 3 = 1 and 2 reveal excess power at low S=N (high k) in the data,which neither beam-�ltered theory can account for. Adding the constant r 6= 0 pixel noiseenhancement is quite a good model for the excess S=N power at the high k end of the �rsdata, and not as good a model for the dmr 53a+b GHz data, but for dmr the map-dependentpreferred r is signi�cantly smaller than for �rs. For both S=N power spectra, there is an excessat k about 142 that the power law theories cannot account for, and that plagues the statisticalanalysis of n�T . The nature of the modes and of the residual can also be probed by testingfor its angular structure with correlation functions for S=N -�ltered maps with high pass andlow pass �lters (as described in Fig.7.).The �rst step in the Bayesian method is the construction of a joint likelihood functionin hC`i1=2dmr;firs , n�T and r. For given n�T , these reveal a strong maximum in hC`i1=2dmr;firs .Integrating over r (marginalizing it) allows one to construct n�T -hC`i1=2dmr;firs contour maps.Results for the 50% Bayesian probability value of hC`idmr , with `one-sigma' error bars de-termined by using the 84% and 16% Bayesian values are given in Tables 1-3: Table 1 givesband-powers for �xed n�T +3 = 1 for various map combinations, which show very good agree-ment between the 53, 90 and 31 GHz dmr a+b maps and the �rs map, and with no discernablesignal in the dmr a�b maps; Table 2 shows that the derived band-power is very insensitiveto the index n�T ; Table 3 shows (for n�T + 3 = 1 and 2) that the derived band-power isremarkably insensitive to the signal-to-noise cut. kcut gives the number of modes kept, to becompared with 928 modes for the dmr maps (5.2� pixel size chosen, Galactic latitude cut of25�) and 1070 for the �rs map (2.6� pixel size chosen). In Table 4, I compare my results withthe original �rst year dmr number [32], a later update [68], the new result using the combined�rst and second year data [63], derived for n�T + 3 = 1 and also for the most probable index,and the recent �rs team result using the correlation function [69].



21Table 5: n�T + 3 for dmr53a+b and �rsdmr dmr(7�) dmr(no Q) dmr, k � (14)2 dmr, k � (13)2 �rs2:0+0:4;+0:7�0:4;�1:0 1:7+0:4;+0:7�0:4;�0:9 1:8+0:5;+0:8�0:5;�1:1 1:5+0:6;+1:4�0:7;�1:0 1:0+1:1;+1:6�0:7;�1:0 1:8+0:6;+0:9�0:8;�1:3Table 6: n�T + 3 dmr Team, First Year, and �rs Teamdmr1: S92(CF) dmr1: W94(PS) �rs(CF)1:15+0:45�0:65 1:69+0:45�0:52 1:0+0:4�0:5Table 7: n�T + 3 dmr Team, Second Year Indicesdmr2: B94(CF) dmr2: W94(PS,3-19) dmr2: W94(PS,3-30) dmr2: G94 (3-30�l)1:59+0:49�0:55 1:46+0:39�0:44 1:25+0:4�0:45 1:10+0:32�0:32I conclude that the band-power is very robust and well determined, at nearly the samelevel for all of the dmr maps and for the �rs map, and largely independent of ns. By contrast,the quadrupole power C2 (or equivalently Qrms;PS = 2:726Kp(5=12)C2) varies considerably,being related to the band-power byC2 = 10�10�Qrms;PS17:6�K �2 � hC`idmr e��(ns�1)(1+0:3(ns�1)); �dmr = 0:73; �firs = 1:1:(40)The anisotropy colour index n�T = ns�3 is another story. Integrating over hC`i1=2dmr;firsas well as r gives the probability distribution for n�T . Table 5 gives colour indices fordmr53a+b, both un�ltered and with kcut in the region where the S=N power spectrum re-veals the excess that single n�T laws can't explain. Maximum likelihood values with Bayesian1-sigma and 2-sigma errors are shown: the index is determined with signi�cantly less precisionthan the band powers are. The k � (16)2 result is similar to the un�ltered result. As expected,sharp S=N -�ltering does lower the index as the residual seen in the S=N power spectra plotsin [7] is chopped o�. The signal-to-noise for modes with k � 132 is below 0:3, whereas thelowest 50 dmr and 20 �rs modes have signal-to-noise in excess of unity. The non-diagonalpart of CD does not change the Bayesian 50% value in Table 1, and increases the most likelyband-power by 1.6%. The calculations used the dmr beam and digitization and pixelizationcorrections advocated in [70]. To check that a faulty beam is not the problem, I tried a smaller7� beam with no pixelization corrections, which lowers the value by 0.3. (The correspondingband power is listed in Table 1). The relatively low value of the quadrupole in Fig.4. sug-gests that it may be pulling the result down. Adding an arbitrary quadrupole in the sameway as for the average and dipole lowers the un�ltered index to the `no Q' value. (For thiscase, the band-power marginalized over n�T is 1.06�.13, the same as the 1.05�.12 numberwith the quadrupole.) A physical n�T = 0 white noise source as well as a long wavelengthn�T � �2 might help explain the slope, but hasn't been explored, although allowing r to 
oatas a function of cut mimics the e�ect: that strategy robs the scale-invariant band-power by� 20% to feed an increased r [7]. Tables 6 and 7 give various results obtained by the dmr and�rs teams, using correlation function (CF) analysis (S29 [32], B94 [63] and �rs [69]), quadraticpower spectrum estimation (PS, W94 [71], with index determination over the ` range shown)and using a linear multipole �ltering method (G94 [72]).4.2. Sharp S=N -�ltering and Wiener-�ltering of MapsI have found sharp S=N -�ltering preferable to smooth S=N -�ltering for statisticalanalysis, but some examples of the statistical use of smooth S=N -�ltering were given in [4, 7].One immediate byproduct of the S=N eigenmode expansion is optimal or Wiener �ltering,very useful for constructing maps cleaned of noise (Figs.5.,6.) to show robustness of structurefrom map to map. In Ref. [73], Bunn et al.have independently applied Wiener �ltering, to



22the `reduced galaxy' dmr map, a linear combination of the 3 frequency maps. Because theWiener �lter changes with both n�T and hC`idmr;firs , I have not found it to be useful for thestatistical analysis of either band-power or spectrum-colour.Given observations ��k, the mean value and variance matrix of the desired signal skare (see e.g.,Appendix C of [19])hskj��i = Xk0 nETR�ETR + (1 + r)2 +R+ K��1okk0 ��k0 (41)h�sk�sk0 j��i = nETR�ETR + (1 + r)2 +R +K��1�(1 + r)2 +R +K�okk0 : (42)The mean �eld hskj��i is the maximum entropy solution. The operator multiplying ��k is theWiener �lter. With no constraints and no extra residual, it is just ETR;k=((1 + r)2 + ETR;k).The 
uctuation of the signal about the mean is �sk = sk � hskj��i, a realization of which isfound by multiplying a vector of Npix independent Gaussian random numbers by the squareroot of the variance matrix (�ETR;k=((1 + r)2 + ETR;k)�1=2(1 + r) with no constraints).The Wiener �lter depends upon the overall amplitude we think the theory signal has,parameterized by hC`idmr;firs . I use the maximum likelihood values of hC`idmr;firs in thefollowing. When the noise is large, as it is for these maps, it is the higher ` power that ispreferentially removed by optimal �ltering. Thus the theoretical 
uctuation �sk would haveto be added to the Wiener-�ltered maps of Figs.5.,6. to have a realistic picture of the sky giventhe data and the theory. That is the maps are too smooth, and more so for the noisier 90GHz map than the 53 GHz map. Still it is very encouraging that the same large scale contourfeatures persist in both maps. In the even noisier 31 GHz map, only a hint of the featurespersist visually because the S=N �ltering is so strong, but it is evident in the correlationfunction (Fig. 8.).The distinguishing feature of the �ltering procedures used here and in [72] is thatthey act linearly on the pixel amplitudes. Although using combinations, (�T=T )p(�T=T )p0 ,of pixel pairs is more complicated for statistical analysis, very useful forms of �ltering becomestraightforward with these quadratic statistics. The correlation function is the classic example.The pixel-error enhancement model for the residual (parameter r) only contributes to the zeroangle bin of the correlation function. The excess residual (beyond pixel-enhancement) residesbetween k about 162 to 132. Fig. 7.(a) shows the dmr correlation function for modes aboveand below these values. Outside of the � �fwhm beamsize, C(�) is nearly zero for the low S=Nmodes and is nearly the same as C(�) with no cut for the high S=N modes. The same storybasically holds true for �rs, as can be seen in (d), except the deviation extends to � 2�fwhm .(Note that what is uncorrelated in the full map should have some residual extended correlationin the �ltered map). The other panels show the correlation function for a map realization ofpure signal (b,e) and pure noise (c,f). For the pure noise simulation, the cut does matter,while for the pure theory simulation, ETRk is so small above 162 that it doesn't. I concludefrom this that because C(�) �lters small-angle systematic (or physical) e�ects (if the �rst fewangular bins are downweighted), n�T determined this way provides a good indicator of theangular colour of the large-angle sky. Although bins within �fwhm are usually included, theyare not overly weighted relative to larger angle bins.In Fig.(8.), I contrast the highly noisy correlation functions (showing the error bars)for the un�ltered maps with C(�) obtained for the Wiener-�ltered maps. They reveal a num-ber of remarkable points: (1) the optimally �ltered correlation functions are e�ectively n�T -independent (shown are the n�T + 3 = 1; 2 cases for dmr53a+b and �rs in (a) and (c)). Ofcourse this does not address how statistically signi�cant the optimally-�ltered correlation func-tion is for a given value of n�T . (2) The optimally �ltered a-b dmr maps have zero C(�). (3)The optimally-�ltered a+b dmr C(�)'s shown in (f) on an expanded scale agree rather nicely.This is especially gratifying for the very noisy 31a+b map. The depth of the negative trough
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Fig. 5. (a) shows a 100� diameter map centred on the North Galactic Pole of the fulldmr 53a+b data, while (b) shows it after the Wiener-�ltering, assuming a n�T + 3 = 1C` spectrum. (c) and (d) show the same for the 90a+b GHz data. The contours are�20n�K; n � 1 for (a,c), �10n�K for (b,d). Positive contours are heavier than negativeones.
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Fig. 6. (a,b,d) are the South Galactic Pole versions of Fig.5. (c) shows the Wiener-�ltered53a+b map with n�T + 3 = 2 is very similar in structure to (b) with n�T + 3 = 1.
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Fig. 7. Correlation functions for dmr (a-c) and �rs (d-f) maps. (a,d) shows the correlationfunction for the data with k � (16)2 (closed triangles) and k � (16)2 (open circles and nearlyzero, except within the beam). The �'s denote no cut, and for (a) the short horizontal linesdenote k � (13)2. (b,e) are two simulated noiseless skies for n�T + 3 = 1 (open circles)and 2 (closed squares), with the same random number seeds. The k � (16)2 correlation isidentical, while the k � (16)2 one has no correlation. (c,f) shows the correlation functionfor pure noise (�'s: no cut; solid triangles: k � (16)2; open circles: k � (16)2).
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Fig. 8. Correlation functions for un�ltered maps (open circles, dotted error bars) are comparedwith those for the Wiener-�ltered maps (open squares for n�T + 3 = 1) in (a)-(e). (a) and(c) also show n�T+3 = 2 correlations (solid triangles). Maximum likelihood amplitudes forthe band power were chosen in each case. (f) compares the dmrWiener-�ltered correlationsdirectly: 53 (open square), 90 (closed triangle), 31 (closed circle). The high noise maps areof course more �ltered than the low.



27at � 50� damps with increasing map noise, consistent with Wiener-�ltering getting rid of thehigher ` contributions. The next step is to apply the S=N eigenmode method to the combined�rst and second year dmr data. This should be better behaved statistically, although [72]point to a continuing problem in the dmr53a+b map for 14 �< ` �< 19 modes, just where I havefound anomalies that cannot be �t by a simple power law that are largely responsible for thesteep indices.5. Large Scale Structure Constraints5.1. Parameterizing the Shape of the Density Power SpectrumShape constraints derived from large scale structure observations rely on the assump-tion of a uniform biasing and linearity on large scales, with di�erent biasing parameters forthe di�erent objects observed. If so, the galaxy-galaxy and cluster-cluster power spectra andcorrelation functions directly reveal the underlying linear density power spectrum, P�(k). Itis useful to discuss these observations in terms of physically-motivated parameters that de�nethe curvature of P�(k), the initial scalar spectral index ns(k) and the scale of the horizon atredshift 
nr=
er when the density in nonrelativistic matter, 
nr�a�3, equals that in relativisticmatter, 
er�a�4,k�1Heq = 5 ��1 h�1Mpc ; � = 
nr h [
er=(1:69

)]�1=2 : (43)In [1], we adopted the now-widely-used functional form:P�(k) / k3+ns(k)n1 + [ak + (bk)3=2 + (ck)2]�o�2=� ; (44)(a; b; c) = (6:4; 3:0; 1:7)��1h�1Mpc ; � = 1:13 :For � = 0:5, this accurately �ts the linear power-spectrum of the standard CDM model with
nr = 1, h = 0:5 and 
B � 0:05 [56]. The oft-used 
B ! 0 form given in [19], Appendix G,is best �t by � = 0:53.To �t the APM angular correlation function using a power spectrum for galaxiesdescribed by eq.(44) requires 0:15 �< � �< 0:3 [1] for ns = 1 and 0:2 �< ns �< 0:6 for � = 0:53[2, 74]. A recent estimate of � using power spectra from redshift surveys as well as from theAPM data suggests � � 0:25 �ts best [75]. Fig.1. compares the COBE-normalized ns = 1;� =0:5 linear density power spectrum with an ns = 1;� = 0:25 and an ns = 0:6;� = 0:5 spectrum.To lower � into the 0.15 to 0.3 range one can: lower h; lower 
nr; or raise 
er(= 1:69

 with the canonical three massless neutrino species present). Low density CDMmodels in a spatially 
at universe (i.e. with � > 0) lower 
nr to 1� 
�. CDM models withdecaying neutrinos raise 
er [20, 76]: � � 1:08
nrh(1 + 0:96(m��d=kev yr)2=3)�1=2 where m�is the neutrino mass and �d is its lifetime. Decaying neutrino models have the added featureof a bump in the power at subgalactic scales to ensure early galaxy formation, a consequenceof the large e�ective 
nr of the neutrinos before they decayed.Generally, more scales are needed to characterize the spectrum than just kHeq, e.g., thefree-streaming scale for light neutrinos. In Hot/Cold hybrid models, there is a stable light neu-trino of mass m� contributing a density 
� = 0:3(m�=7:2 ev)(2h)�2, combining with the CDMand baryon densities to make a total 
nr = 1. A �-shape is not a very accurate representationof the entire spectrum, dropping from about 0.5 for small k to � � 0:22(
�=0:3)�1=2 over theband 0.04-2 h�1Mpc of relevance to wgg(�) calculations [20, 77].To lower ns, one can invoke one of the in
ation models of x 2. utilizing a decelerationparameter q � �(ns+ 1)=2 or, for natural in
ation, the curvature in lnH away from the peakof the potential, m2P4� @2 lnH=@�2 � (ns � 1)=2.Fig. 9. shows n�;eff � d lnP�(k)=d lnk for the models we have been discussing andcompares it with the indications from observation, the 0:15 �< � �< 0:3 `box' extending from



28k�1 = 100 h�1Mpc downward into the nonlinear region (indicated roughly by the intersectionof the 
 = 1:8 line with `box'.) Within the `box', the preferred 0.25 value is also drawn. It canbe seen that the e�ective index function for the standard CDM model is well outside of thebox. So also are the hot/cold hybrid models shown (with a 2.4 and 7.2 ev �), although thewgg(�) doesn't look too bad. The model with ns tilted to 0.5 falls within the `box', as doesa model with the lesser tilt, 0.7, but with H0 lowered as well, to 40. Of course, any ns = 1�-model with � � 0:25, such as one with a nonzero cosmological constant or a decaying � alsofalls within the box. The large circle shows the rough value for the slope indicated by the X-ray temperature distribution function of clusters and the smaller one, by the X-ray luminositydistribution function, although much can go wrong in the interpretation of the latter [78].As we have seen, for in
ation models we expect that there will be some tilt, so probablywe can relax the � requirement. It is interesting to see what we would have to do to mimic a� = 0:2 shape with an initial spectral index variation if we were to assume a standard CDMmodel. The dotted ns(k) curve in Fig. 9. shows that radically-broken scale invariance is neededthat changes the tilt from �> 0:9 beyond � 200 h�1Mpc to � 0:5 at � 20 h�1Mpc.5.2. Relating the Cluster-amplitude �8 and the dmr Band-powerApart from the shape parameters for P�(k), there is also an overall amplitude parame-ter, which we now take to be hC(s)` idmr = hC`idmr=(1+~rts), eq.(31). Pre-COBE it was taken tobe �8, the rms (linear) mass density 
uctuations on the scale of 8 h�1Mpc, which translates tothe mass of a rich cluster, 1:2� 1015
nr ((2h)�1M�: the number of rich clusters is extremelysensitive to the value of �8. Cluster X-ray data implies 0:6 �< �8 �< 0:8 for CDM-like 
nr = 1theories ([78], and references therein). We shall consider 0.7 as the target number and valuesbelow 0.5 as unacceptable. A higher value is better for 
� 6= 0 [1, 79].The relation between �8 and the dmr band-power is4�� law : �8 � 1:2 hC`i1=2dmr(1 + ~rts)1=210�5 
�0:77nr (2(� � 0:03)) e�2:63(1�ns) ; (45)hot=cold : �8 � 1:1 hC`i1=2dmr(1 + ~rts)1=210�5 (1 + 0:55(
�=0:3)1=2)�1 e�2:63(1�ns) : (46)This shows that for the observed band-power, the ns = 1 CDM model gives �8 toohigh, 1:1, but this is a sensitive function of ns, dropping to 0.5 at ns = 0:82 with the standardgravity wave contribution or at ns = 0:7 if there is no gravity wave contribution. For thedecaying neutrino model with ns = 1, to have �8 > 0:5, we need � > 0:25 or m��d < 7:5 kevyr.For the hot/cold hybrid model, we need 
� � 0:37 for �8 = 0:7. See also ref.[80].Another way to constrain the amplitude of the power spectrum is from the redshiftof galaxy formation. We do not know this, but it cannot be too low or we would get toofew z � 4 quasars and too little neutral gas compared with that inferred using the dampedLyman alpha systems seen in the spectra of quasars. This suggests 2 �< �0:5 �< 5 or so, where�0:5 is the analogue of �8 but at a Galactic mass scale rather than a cluster mass scale. Thisis the Achille's heel of hot/cold hybrid models [20, 80]. It also leads to serious constraintson ns for � = 0:5: in [2], we showed that a fairly conservative estimate of the redshift ofgalaxy formation was zgf � 1:3�0:5 � 1, and that �0:5 � 6:2�8e�(1�ns) for � = 0:5, leadingto ns > 0:76 with gravity waves, ns > 0:63 without. With � < 0:5, the restrictions on theprimordial spectral index from galaxy and cluster formation are even more severe. That is,only a little tilt is allowed.4 These �ts were made in ns with � �xed at 0.5, and in � with ns �xed at 1, hence will be rough when bothvary sign�cantly from these standard values.
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Fig. 9. n�;eff (k) as a function of scale. The 0:15 �< � �< 0:3 box is the target shape which onecan get by adjusting cosmological parameters to ensure k�1Heq � 15�30 h�1Mpc for ns = 1or by having ns � 0:5 over the region of large scale clustering observations for � = 0:5.



30 The free-streaming velocities of galaxies allow another estimate of the amplitude. Forthe �-laws, the large scale rms bulk 
ows over 40 and 60 h�1Mpc in km s�1 are�v(40 h�1Mpc)=�8 = 317(2�)�0:72
0:56nr [1+0:348�0:572] e1:06(1�ns) c:f : 388 [1� 0:17] ; (47)�v(60 h�1Mpc)=�8 = 252(2�)�0:79
0:56nr [1+0:348�0:572] e1:19(1�ns) c:f : 327 [1� 0:25] : (48)The comparisons are to the `POTENT' estimates from the data [21]. The �1� range islarge because of the `cosmic variance' expected in the measurement of a single bulk streamingvelocity, but even so, the constraints in � � 
nr � ns space are notable. For example, the� = 0:5 model needs ns > 0:89 with the typical gravity wave contribution and > 0:72 withnone [2]; i.e., in spite of the fact that tilted spectra have more large scale power, hence fora given �8 would have larger scale 
ows, the normalization to dmr implies just the opposite,that the index must be very nearly scale invariant. In [1], we used a di�erent version of thevelocity constraint with (formally) lower error bars: �8 � 1:0� 0:24 
�0:56nr (2�)0:2 for ns = 1(derived by relating redshift survey results to streaming velocities [22], but with the simplifyingassumption of a linear ampli�cation bias � ��18 for galaxies). This gives a �8 incompatibitywith the COBE-estimated value for ns = 1 � > 0 models with � � 0:25. The peculiarvelocity data relies on having spatially-independent and accurate distance indicators (e.g., theempirical Tully-Fisher relation between luminosity and rotation velocity in spiral galaxies).How seriously we take these constraints depends upon how reliable we think the indicators are{ a subject of much debate.If the shape of the density power spectrum over the LSS band is now considered to beknown, then this restricts the range of in
ation and dark matter models considerably, especiallywhen combined with the COBE anisotropy level. Whether the solution is a simple varianton the CDM+in
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