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I. INTRODUCTION AND BASIC PROPERTIES

We shall look back on this decade as a golden age for cosmic background radiation research, with signals unveiled
by very high precision spectrum and angular anisotropy experiments revealing much about how structure arose in
the Hubble patch in which we live. Although the theory was reasonably well developed before the observation of
anisotropy, much new work on all aspects of CMB theory and phenomenology has occurred, to better place the
new experimentation in a cosmological framework. Sample lecture notes and reviews giving earlier snapshots of the
state of the art in theory are [1-5,7,6]. Peebles’ book [8] covers some of the theoretical ground, the White et al.
[7] Annual Review article gives a shorter overview and extensive references, while Partridge [9] covers experimental
techniques. [10] gives a recent overview of cosmology and how the CMB fits in. These lectures will be about equally
divided among: the spectrum and what the remarkable lack of distortion tells us (section II, III); the observations
and phenomenology of anisotropies (section II); primary and secondary sources of anisotropy (section V); the coupled
Einstein-Boltzmann equations which describe the development of primary anisotropies (section VI), including a set
of Appendices providing much more detail about these equations and their solution; how the CMB results connect
with large scale structure results (section VII). Emphasis is on inflation-based models of cosmic structure formation.
What is not covered here is how topological defect theories of structure formation impact upon the CMB: for cosmic
strings see e.g., [280-282] and for texture defects see e.g., [283-286], and references therein.

In section II, I review the status of spectrum observations: although important historic work from the ground, in
balloons and in rockets shortward of a centimeter will now be a footnote to FIRAS, ground-based radio telescopes still
control the spectral constraints at the long wavelength end. The long-sustained assault on the mm-wave CMB peak
led to one strong distortion after another, each one stimulating a flurry of theoretical papers which, by now, have
largely sorted out the issues of how early energy release in the Universe would have been processed into observable
signals (section III). The photon transport is rather simple for spectral distortion calculations, homogeneous radiative
transfer, a warmup for the more complicated inhomogeneous transfer in random media required for the treatment of
CMB anisotropies. The source functions describing the predominant emission, absorption, and scattering processes
are given there (bremsstrahlung from Coulomb-scattered and Compton-scattered electrons, low energy Compton
scattering, and interactions with any primeval dust present). Of course, it is the secondary anisotropies that would
accompany these distortions that can give us insights into the structure at emission time. Primary anisotropies
(section VI) are those that we can calculate with linear perturbation theory. The primary goal of theoretical anisotropy
research is to work out detailed predictions within a given cosmic structure formation model of primary and secondary
anisotropies as a function of scale. Because of the linearity, primary anisotropies are the simplest to predict and offer
the least ambiguous glimpse of the underlying fluctuations that define the structure formation theory. With detailed
high precision observations, we expect to be able to use CMB anisotropies to measure various cosmological parameters
to high accuracy (section IV F). The nonlinearity inherent in secondary anisotropies makes those predictions more
ambiguous.

If energy is injected early enough in the Universe, it is just reprocessed by interaction with the plasma into a
Planck spectrum, albeit with a higher entropy than the starting state. We must rely on indirect arguments based on
primordial nucleosynthesis to constrain exactly when the entropy of our Hubble patch came into being, and this only
if it was injected later than a redshift of ten billion. The cosmic photosphere exists around a redshift of ten million
or so. With a FIRAS temperature of T, (now) = T, = 2.728 £ 0.004 K [12,11], the entropy per comoving volume is

: 3
s —E(an a1 148 % 10° em™? (1)
s VT e T '

The (mean) scale factor of the Universe is a, which I take to be normalized to be unity at the present time, so that
it is related to the redshift z by a = (1 + 2)!. I also invariably take the temperature to be in energy units, which
is equivalent to taking Boltzmann’s constant kg to be unity. Recall that 1 eV = 1.16 x 10* K. As well, 7 and c
are taken to be unity. Returning from these theorist units to the real world requires insertion of as many factors of
hic = 0.1973 eV pm as are necessary to take the energy factors into lengths, and once that is done, ¢ is inserted to
take the lengths to time. Recall that for a Planck distribution of photons, we have a comoving number and energy
density and a pressure

263
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where T',, = al’, = T..; numerically,

Ny =412 cm ™2 pys = 0.261 €V cm ™ ?, 2,h? =2.46 x 10°?, (3)



scaling as the appropriate power of (T, /2.728 K). The Hubble parameter is h = Hy/(100 km s+ Mpc ™).

Because the expansion of the Universe is adiabatic, the photon entropy per comoving volume is a conserved quantity.
If we suppose the entropy was generated early enough that neutrinos and eTe™ pairs would have been in thermo-
dynamic equilibrium with the photons (" > 1 MeV), then the annihilation of the eTe™ pairs into photons, when
the temperature was about a few hundred keV, would have increased the photon entropy from 14—18.,* to the s, we
observe. The comoving neutrino temperature would have remained that associated with the lower entropy level per
particle, aT, = (4/11)'/3aT,, i.e., 1.95 K. The total entropy, apart from the minor bits residing in the gas and stellar
radiation of our Universe, is fully determined by the single number 7', and the number of low mass neutrino degrees
of freedom:

74 43 3 . -3
Stots = Syx + Spx = Sys + g7 NVuSyx = 5554+ = 2.90 X 10” cm™ 7, (4)

for N, = 3 light neutrino generations, each contributing a left-handed particle and an antiparticle, but no right-handed
components. The associated energy density parameter for relativistic particles is Qeh? = (1 + £(4/11)%/3N,)Q,h?,
4.1 x 107° for N, = 3. The origin of s;.s, is, of course, a mystery, enshrouded by the cosmic photosphere. It used to
be considered to be a gift of the Planck era. In inflation models, our patch of the Universe was once in accelerated
expansion, during which any primordial temperature would have dropped to essentially zero. s, could then have
arisen only once deceleration began, for only then could coherent field energy have been able to dissipate into entropy.

It is usual to divide the entropy by another (partially) conserved quantity, the comoving baryon number density,
np. = 1.13 x 107°Q5h?, expressed in terms of the baryon density parameter (relative to the critical density) Qp.
After the identification of physical processes that could plausibly have led to the generation of baryon number from
a hot medium, it became usual to invert the large numbers

—1 2N\ —1
Stotx 10 QBh2 Seyx 10 Qph
— 256 x 1010 [ =B Sre 131 % 1010 (2BE
np. 20610 < 001 ) mp W0 Ter)

and try to explain why the baryon number is so tiny relative to the entropy through the extreme weakness of baryon-
violating interactions.

A nice way to picture CMB transport from the early Universe to the present is to consider when and where
various phenomena occurred on our past light cone, when defined by redshift, where defined by comoving distance to
that redshift. For concrete numbers, I shall take the example of a universe with a critical density in nonrelativistic
matter, ,, = 1, where 2,, has contributions from cold dark matter, baryons, etc. The cosmic photosphere is then
5924h~! Mpc away from us, very close to our “horizon”, = 2H61 = 6000h~! Mpc. (Of course, inflation could have
made the true event horizon much bigger; some process must have.) FIRAS gives stringent upper limits to distortions
of various types. For example, the photon chemical potential constraint strongly limits the energy output that occurred
just shortward of the cosmic photosphere (within about 200h~! kpc comoving distance from it). Barring early energy
input which escapes the COBE bounds, the photons decouple at a redshift ~ 1000, a distance 5796 h~! Mpc away,
128 h~! Mpc from the photosphere. The shell between the photosphere and this last scattering surface where the
Compton depth is unity defines an electron scattering “atmosphere”, quite thick to photons. In particular, when
helium recombines, the photons are very tightly coupled.

The theory of the hydrogen atom (section IIID) is so well known that we can be quite confident that we have the
physics of recombination well described. The essential ingredients were worked out immediately after the discovery of
the CMB, and the novel feature is the dominant role that the two-photon decay of the 2s state to the 1s state plays. The
width of the region over which decoupling takes place is only about 10h~! Mpc comoving distance (section IIID 2).
That the width is nonzero plays a fundamental role in defining how small the scale of anisotropies is that we can see.

The relation between angular scale and comoving distance at high redshifts is about d ~ 10082, /2yt Mpc (68/1°),
hence we might expect that fluctuations on scales below about 10" are affected: they are strongly damped below this
“coherence” angle and this will define which experiments are most useful to do if we wish to probe the moment when
the photons were first released to freely propagate from their point of origin to us, without much further modification,
apart from some gravitational redshifts, some lensing, and possibly some scattering from hot gas.

Even with the FIRAS limits, it is still quite possible that enough energy was injected either prior to recombination,
or sufficiently shortly after (above redshift ~ 150) so that the photons had their decoupling delayed (section IITE).
The decoupling position then moves forward to ~ 5570 h~! Mpc. The thickness of the region over which decoupling
would have taken place is more than an order of magnitude larger, ~ 200h~! Mpc comoving distance, corresponding
to a few degrees. Damping of anisotropies below a few degrees is the result, although nonlinear effects can lead to
interesting short distance signatures of such early reionization (section V C6).

Distortions of the background may occur before or after recombination. If it is Compton cooling of hot gas,
the spectral signature of the y-distortion to the background radiation has allowed very powerful FIRAS constraints



to be given on the Compton y-parameter which strongly rules out many models. If pregalactic dust, or dust in
primeval galaxies, exists, it will absorb higher frequency radiation (UV and optical) and down-shift it into the infrared,;
combined with the redshift, a sub-mm background is expected but, with FIRAS, is now quite strongly constrained
(section IIIB 7). Accompanying these secondary backgrounds are anisotropies that carry invaluable information about
the epochs that the relevant structures formed. Even if the angle-averaged distortions are well below the level that
absolute spectrum experiments like FIRAS probe, it is certain that these secondary anisotropies are accessible to
experiments: the question is only for what fraction of the sky do they rise above experimental noise and the primary
signal. A major goal of experimental/phenomenological anisotropy research is to design experiments and statistical
processing procedures that will allow the various primary, secondary and foreground contributions to anisotropy to
be separated (section IV). With the wealth of signals to be unveiled, we have a CMB future that “looks marvelous,
simply marvelous”.

II. SPECTRAL OBSERVATIONS AND CONSTRAINTS

We now know from COBE’s Far Infrared Absolute Spectrophotometer, FIRAS, that the CMB is well fit by a
blackbody with 7" = 2.728 & 0.004 K over the region from 5000 pm to 500 pum [12,11], a number compatible with the
COBRA rocket experiment of Gush et al. [15] covering the same band, and also with ground based measurements at
centimeter wavelengths — although there is still room for significant spectral distortion longward of 1 cm. Figure 1
gives a view of the current state of the data on thermodynamic temperature T(\) as a function of wavelength for
FIRAS and selected experiments described below.

Following the Penzias and Wilson [13] discovery, during the 60s and 70s there were a large number of radio
observations with coherent receivers that obtained T'(\) in the Rayleigh—Jeans (RJ) portion of the spectrum. These
results were reviewed by Weiss in 1980 [14], and a best fit temperature of 2.74 K was given, with a £0.08 K “one sigma”
error. Throughout the 80s, a Berkeley—Italian team [17], the White Mountain collaboration, made measurements at
many wavelengths, from 12 cm down to 0.33 cm, using corrugated horn antennas with 15° beamwidths switched from
sky to a 3.8 K “cold load” calibrator. And Johnson and Wilkinson [18] used a balloon to get a temperature estimate
at 1 cm.

Wavelengths longer than 10 cm are extremely difficult to explore, both because of large Galactic corrections that
must be made and because of contamination from man-made radio signals. For many years a rather heroic early
experiment by Howell and Shakeshaft in 1967 [16] was all that defined the constraints at long wavelengths. Recent
experiments at the relatively radio-quiet South Pole [19-22] have considerably improved the error bars. There are
hints of deviation from the FIRAS temperature extrapolated into the RJ regime but the corrections are large.

One of the more remarkable aspects of the CMB story is that the population of rotational states of diatomic
molecules — found by optical observations of interstellar absorption lines in the spectrum of bright stars — can be
used to estimate CMB temperature. The first molecules discovered in interstellar space were CH and CN, found
using the spectrum of ¢ Ophiuchi. In 1941, McKellar inferred a 2.3 K excitation temperature to explain the relative
intensity ratios of the lines originating from the K = 0 and K = 1 levels in the 3883 A band of CN (frequency
difference (2640 pum) 1, just longward of the CMB peak). This observation was very well known to the astronomical
community, since it was given prominent play in the classic Herzberg text [23], although it was dismissed as having
“only a very restricted meaning”. Had Gamow or his students Alpher and Herman made the connection, how different
the development of cosmology might have been, but it was only in 1966, after the Penzias and Wilson discovery, that
the connection was made. In 1972, Thaddeus [24] reviewed the CN work and gave T'(2640 pm) = 2.78 £ 0.10 K for
¢ Ophiuchi, with much larger errors for other stellar spectra. In the 80s and 90s great improvements were made
using very high signal-to-noise spectra of ¢ Ophiuci; e.g., Meyer and Jura [25] got 2.73 £ 0.04 K at A = 0.264 cm
and 2.8 +£ 0.3 K at A = 0.132 cm, important at the time because it failed to confirm large reported excesses found
with other techniques. Of course, excitation temperatures are really only upper bounds on the CMB temperature,
since local contributions to the excitation, e.g., through collisions with electrons, might enhance the upper level’s
population. These frequencies overlap with those probed by FIRAS, and, within their much larger errors, agree with
FIRAS.

The assault on the CMB peak and into the Wein region by the experimentalists proved very difficult, with distortion
reports being the norm rather than the exception. In the 60s and early 70s there were rocket and balloon experiments
which reported significant post-peak excesses, but Muehlner and Weiss (1973, reviewed in Weiss [14]), using five broad
band filters, were able to show that these large excesses were not there. Around 1980, Woody and Richards [28] and
Gush [29] used Fourier transform spectroscopy to get the spectrum around the peak, and both reported large (but
qualitatively different) distortions, that cyanogen results and an experiment by Peterson, Richards and Timusk [30]
failed to confirm. In 1988, a Nagoya—Berkeley rocket experiment with 6 broad band filters (Matsumoto et al. [31])
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FIG. 1. Selected old and new data on CMB distortions in terms of thermodynamic temperature. The dotted point at 7 cm
is the original Penzias and Wilson (1965) result, the long-dashed point at 63 cm is from Howell and Shakeshaft (1966). The
situation in the Rayleigh—Jeans region was improved quite a bit with the White Mountain collaboration results (solid). Results
from Bersanelli (1995) at 21 cm and Staggs and Wilkinson (1995) at 19 cm are shown. The point with the small error bar at
A = 1.2 cm is that of Johnson and Wilkinson (1987). Cyanogen results are given at 2640 um (Roth et al. 1993, Crane 1989,
1995). The tiny error bars are from FIRAS (Fixsen et al. 1996). The inset gives a blowup of the region for FIRAS.



indicated a large excess energy content (about 20% of that in the CMB) that spurred much theoretical exploration of
energy injection.

The issue was forever settled, to a standing ovation, at the famous January 1990 AAS presentation by COBE team
leader John Mather of the perfect blackbody that 9 minutes of data taken shortly after the November 1989 launch
revealed, with T., = 2.735 £ 0.06 K, a result beautifully confirmed shortly after by the COBRA rocket experiment
[15], with T... = 2.736 £ 0.02 K.

Both experiments also used the elegant method of Fourier transform spectroscopy, with on-board reference black-
bodies to compare with the sky signal. FIRAS also had an auxiliary external calibrator blackbody which could be
moved in for further in-flight calibration. The FIRAS calibrators could range from 2 to 25 K in temperature, but when
the sky was being observed, temperatures near 2.7 K were chosen to nearly null the difference between the internal
and sky signals. FIRAS used polarizing Michelson interferometers, with mirrors that moved at constant velocity so
that path difference was proportional to time lag, to construct the correlation between sky and reference blackbody
as a function of time lag, an interferogram. FIRAS made two million of them. Fourier transform gives the power as a
function of frequency. A dichroic filter split the FIRAS signal into low and high frequency parts, < 500 and > 500 um
(with the best results from the low frequency 10* to 500 pum part).

With Fourier transform spectroscopy, determining the absolute temperature (which requires absolute calibration of
the reference blackbodies) cannot be done with nearly the same precision as determining the level of deviation from a
blackbody. The most complete analysis of the FIRAS data is [12], who used the full (all channels, nine months) low
frequency data set, whereas [11] concentrated on the last 6 weeks of the FIRAS experiment, for which calibrations
were frequent and the instruments were operating very stably. Models were needed for the dipole, determined from the
DMR experiment on COBE, and for the Galactic emission — modelled by G(¢,b)g(v), with the geometrical function
of Galactic longitude and latitude, G(¢,b), taken from the DIRBE 240 um map, and g(v) from the FIRAS data. This
is of course dominated by emission from the Galactic plane. There is evidence that the high b gas is colder than that
using g(v) determined in this way [48,49].

The dipole amplitude is 3.372 £ 0.007 mK (95% CL error bars), i.e., AT/T = 1.2 x 1073 = v/c, with v our velocity
relative to the CMB local rest frame. Although this is small, the precision of FIRAS was such that the difference
between the spectrum determined for a patch in the dipole direction and that from the opposite direction could
be taken. This should be proportional to the derivative of a blackbody, and indeed it is to a very high degree of
accuracy (an rms deviation consistent with the level of detector noise). From the 4-year DMR data, the derived
value is 3.353 &+ 0.024 mK [85,86], in good agreement with the FIRAS result. The DMR-derived direction in Galactic
coordinates (¢, b) is (264.26 £+ 0.33,48.22 + 0.13).

At the 95% confidence limits, the temperatures determined from the monopole spectrum and from the dipole
spectrum in [12] are:

monopole: T, = 2.728 £0.004 K (95% CL), (5)
dipole:  T,, =2.717+0.014 K, (2.725+0.020 K DMR). (6)

Thus the dipole temperature agrees to within the errors with the monopole temperature. The 0.004 K error should
be compared with the error bars on the monopole T'(\) shown in the inset of fig. 1.

The data was also used to place stringent constraints on distortions to the spectrum. We now turn to the implications
of these, but here just quote the values [12]:

Compton y-parameter: 7 < 1.5 x 107> (95% CL), (7)

chemical potential: Iy ]/Ty < 0.9 x107% (95% CL), (8)
E

general distortions: (500-5000 pm) < 0.00025 (10) . (9)

cmb

For the general distortions, the constraint on the fractional energy release over the waveband from 5000 to 500 um
follows from the FIRAS team result using the monopole spectrum that over this band the maximum 1-sigma intensity
deviation from a blackbody was < 0.012% of the peak brightness. The rms intensity deviation from a blackbody over
all channels in this range is even more stringent, 0.005%. (If a sub-mm background mimicked Galactic emission the
constraints would not be as severe. See section IIIF.)



III. SPECTRAL DISTORTION THEORY
A. Radiative transport in the expanding universe

The development of spectral distortions or angular anisotropies in the microwave background is described by
radiative transfer equations for the photon distribution function, which are coupled to Einstein’s equations for the
gravitational field and to the hydrodynamic and transport equations for the other types of matter present. The
photon distribution function for the total intensity, f;(¢, g, %, 7) is a dimensionless general relativistic invariant giving
the average photon occupation number as a function of the photon momentum ¢/, I = 1,2,3, with magnitude ¢
and direction vector ¢, in the neighborhood of the spatial point z%, i = 1,2, 3, at time 7. Not only is f; a general
relativistic scalar under the change of the spacetime coordinates (x%,7), it also remains invariant under change of the
3-momentum coordinates ¢. Apart from f;, there are three other photon distribution functions needed to describe
the state of polarization: f;, fu, fv, fg, correspond to the four Stokes parameters I,U,V, Q.

Because physical momentum p redshifts as the Universe expands, the comoving momentum, ¢ = a(t)p is a better
choice than p. The comoving photon energy gc and comoving wavelength A are therefore related to the physical
frequency v, physical energy w = hv, and wavelength A, by

2rhe __,\2mhe
gc=— = a(t)w = a(t) N

(10)

Thus, if A¢ is the wavelength at emission at time ¢, A is the observed wavelength at ¢ in the absence of frequency shifts
beyond that from cosmological expansion. A Planck distribution function is of form fp; = [exp(¢/T%+) — 1]7*, where
T, = aly is the (comoving) photon temperature. We denote the Planckian with the observed CMB temperature
T.. =2.728 K by

q 5273 pm 2.728 K v
= =1.76————. 11
T.. A T.. 100 GHz (11)

fe=(e® =171

The dimensionless x remains constant as the universe expands. Instead of the distribution function, it is often
convenient to work with a generalized (comoving) thermodynamic temperature,

Tolg, g2y m) = g/ In(ft +1). (12)
We are interested in the fluctuations in f; and T},
AT (Tt* - Tc>.<)
Af = fo— fe, Atz<—> =" (13)
T/, T..

These will generally store both distortion and anisotropy information and may often be nonlinear. Let us denote
the spatial averages of f; and A; at a given time by f; = f. + Af; and A, and the spatial fluctuation in f; by
ofe =Afi —Afe.

The specific intensity I, historically used by astronomers to describe radiative transfer is related to the distribution
function by

. h
IV(”?valvt)=27r_2V32ft7 (14)
C

with the 2 coming from the two photon polarizations. The energy per unit 3-volume radiated into solid angle df2; in
the frequency interval v to v +dv is I, dvd€;. For a generally inhomogeneous spacetime, both the 3-volume and the
momentum (hence v) can be transformed by a coordinate (gauge) transformation, which is why invariant distribution
functions are far preferable to work with.

For spectral distortions, and for anisotropies that arise from secondary processes such as Compton cooling of hot
gas in clusters and emission from point sources, the following form of the transfer equation is sufficient:

| vq-vr=asinl. (15)
T lq

where S is the source function describing the difference between the rate at which photons are being added to the
momentum volume d®q/(27)?, and the rate at which they are being removed. Instead of “cosmic time”, it is more
convenient to use conformal time dr = dt/a and comoving space coordinates x* in the transfer equation. In terms of
(AT/T);, the transfer equation takes the form



R AT R _ aS[f] (1+ A)?
+q'v] (_) 9,007 = T A R A+ o 4 AR

(16)

The solution of the transfer equation for a source at position ry emitting in a burst at time 75, hence with &
O(1 — 75)0(r —rs), is the Green function at time 7y and position ro:

~1
[82 + qA : V:| = 19(7-0 - Ts)5(3) (I‘O —I's — qA(TO - Ts)) ’ (17)
T

where ¢ is the Heaviside unit function, 0 for 7 < 7, 1 otherwise. It describes the free-streaming of the radiation along
the line-of-sight to the source, with ¢ kept constant over the look-back. It can be used to map the radiation pattern
from a time just after all emissions, absorptions and scatterings have become negligible (so S = 0) to the present. If
there is a contribution —al', f; of uniform absorbers in aS as well, then the Green function is

a _ —1
9 L. al’,
{87 +q¢-V+a }
— e*Cu(TU|Ts) 19(7-0 _ 75)6(3) (I‘o —Trg — (1(7—0 - Ts)) ) (18)

where the absorption depth for the process I', is

Calrolms) = / a(r)Tu(7) dr . (19)

£

With inhomogeneous absorbers, the Green function naturally depends on the absorption depth along the line-of-sight.
In the tight coupling limit valid in the early universe, sources and sinks in S approximately balance, so S = 0, but
the solutions then are an equilibrium, with a small perturbation describing diffusion and viscous coupling of the photon
fluid to other matter present. As usual with radiative transport, most of the complications arise in the transition from
tight coupling to free streaming. If the spatial fluctuation §f = f; — f; is small enough so that the spatial average of
aS[f:] can be replaced by aS|[f;] to zeroth order, then f; obeys the zeroth-order (background) transfer equation,

of:/or = aS[fi]- (20)

In both the tight coupling and free streaming regimes, any form-invariant function of ¢ is a solution, in particular
a Planckian with T}, constant, or a Bose-Einstein distribution (exp[q/Ti. + a] — 1)~! with the chemical potential

parameter o = —pu/T} constant as well. If the distortion and/or anisotropy fluctuation Af; is small compared with
f¢, then
af. AT AT re®
AfymTo——=zf.(1 ¢) —, (1 )= —. 21

We typically use this transformation to go from distribution function to temperature fluctuation, although it is
sometimes not a good approximation, e.g., in the Wien region with dust emission sources, since f. drops so rapidly.

The full treatment of the transport theory with gravitational redshift and lensing effects and polarization effects
is developed in Appendix B, and discussed in section VIE. The transport operator, the left-hand side of eq. (15), is
augmented by a term that depends upon the connection coefficients of the spacetime metric, —¢~'T%, ;¢%¢° 0f /0q".
The Green function describing free-streaming from a source is a delta function along the photon’s geodesic path. The
bending of ¢ is essentially a lensing effect, a nonlinear correction involving a product of the perturbed metric and A f;.
The gravitational frequency shift as the photon climbs into and out of local pockets of curvature is very important
in linear theory, the Sachs—Wolfe effect [32]. It is legitimate to take the Sachs—Wolfe term to the right-hand side and
treat it as a source. If we write the metric as ds? = a%(1ap + hap) dz¥dz”, with n.s = diag(—1,1,1,1),! where hag
is the metric fluctuation, then the effective G in linear perturbation theory (from eq. (B19)) is

'The MTW [195] sign conventions and the summation convention are used. Mean curvature is ignored here but is discussed
in Appendix B.
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Gisw = —3hi;@'@ + £G'0ihoo + G4/ Diho; . (22)

It is usual in perturbation theory to simplify this by adopting a coordinate system in which h;p = 0 — called a time-
orthogonal gauge choice. Also, by means of a change of the momentum variable in f;, one can modify this form. For
example At —hoo has gtsw = ——h”q q — —hoo

Linear perturbatlons in the expanding universe can be separated into scalar, vector and tensor modes, which are
mutually independent. For a flat universe, we can Fourier transform the transport equation. If k is the comoving
wavevector and we choose the 3-axis to be k, then tensor modes involve the two (transverse traceless) gravitational
wave polarization modes, h(r4) = (ki1 — h22)/2 and h(py) = hia, vector modes describing vorticity? involve hi3, hos
(and ho1, ho2), and scalar modes involve

h—h ’
=—1lhy, o= T“, where h = 0Yh,;, (23)
h — 3h33 hos -
=" v, =—1—, ¥, =9, . 24
1/) pTe , lak +a1/) ( )

The tensor modes are invariant under coordinate changes, whereas the scalar mode potentials defined by eq. (24)
do change, i.e., are gauge dependent. For scalar perturbations, the Einstein equations and the various transport
equations only involve v, ¢ and ¥, and the perturbations to the various matter densities and velocity potentials, as
well as to the distribution functions; further, v, ¢ and ¥, only depend upon the choice of time surfaces upon which
they are measured, not on changes of spatial coordinates on the hypersurfaces. The time can be chosen to make some
linear combination of the three vanish. The two standard choices that have been used in the computation of radiative
transport in linear perturbation theory are the synchronous gauge, for which v = 0 (and ¥,,=0), and the longitudinal
gauge, for which ¢ = 0 (and ¥,=0).t

In terms of these metric variables,

Gl = —ig-kv—¢—(G-kK)?atyu,,
(T{+, P i
Gisw "V === (@ B $hrr - (25)
The source function for Compton scattering when energy transfers are important is described in the next section, and
the source function Gic in the low energy Thomson scattering limit including polarization and angular anisotropy

effects in the scattering is derived in detail in Appendix C. The dominant terms for scalar (S) and tensor (I') modes
do not depend upon these complications:

gts) =-n aTd(A(S) - Agos) —-q- VSB,S)) + (anisotropy , polarization),
gtT“ P = _popan T 4 (anisotropy, polarization), (26)

where n. is the electron density, o7 is the Thomson cross section and A§§ ) is the angle-averaged temperature fluctu-

ation.

B. Source functions for spectral distortions

Provided the temperature of the universe is well below m.c? where ete™ pairs recombine, only a small number
of processes have to be included to adequately describe the photon transport. In the following expressions, p, is
the photon energy density, np is the baryon number density, ep is the energy per baryon in gas, Y. = n./np is
the electron fraction per baryon, T, and T, are the electron and photon temperatures (in energy units), z. = w/T,,

2The vector parts of the vector parts, h(()‘i/) and w; of hg./) = k;w; + kjw;, are curls of vectors.

!Many different notations are used for the perturbation variables {v,y,¢,¥,,¥o}; e.g., Bardeen (1980): {A, Hp +
%HT, —k 2Hr, k™ 'aB, k:ild(B — k7'Hy)} [170,172); Bardeen (1988): {o, @, —v,—aB, —x} [177]; Mukhanov et al.
{¢,—,—E,aB,a(B — E)} [175]. In [2,4,88,134,194,214,215], we used a (+,—, —, —) metric signature, hence h, h3z are of
opposite signs to those given here. I use 1) because it is basically the displacement potential familiar from use in the Zeldovich

PP g g y P p
approximation, ¥,, and ¥, because they are velocity potentials for the 4-velocity and shear of observers following the flow of
time.

11



op = (87/3)a?/m? is the Thomson cross section, m. and my are the electron and nucleon masses, and « is the fine
structure constant. The energy rates are those appropriate to near-equilibrium transfer from photons to plasma. All
source functions and the photon energy w are given in the reference frame in which the electrons are at rest (the
comoving-baryon gauge).

1. Compton scattering and the Kompaneets source term

For the nonrelativistic electrons appropriate to the period after pair recombination, Compton scattering is primarily
Thomson scattering, a conservative scattering process in which the outgoing photon energy ' equals that of the
incoming one w, so momentum but not energy is transferred. The associated source function can describe the
development of anisotropy, but will give rise to no spectral distortion. For this source function to vanish, it is
necessary that the radiation field be isotropic in the comoving frame of the electrons.

The general structure of the source function for ve — e scattering is

S[fita) = > R(q' = @) f(d)(1+ f(q) — R(a = o) f(@) (1 + f(d)).

The first term describes stimulated emission, of photons in momentum state q, the second describes stimulated
absorption. Here R is the scattering kernel, which is related to the Klein—Nishina cross section averaged over the
thermal electron distribution, n.(dox N /[(27)3d?q]). If the electrons are in thermal equilibrium at temperature 7., R
obeys the detailed balance relation

R(q — q') = R(q' — q) e/ Tx,

The source function for scattering vanishes if f~! + 1 is proportional to e*/?« | that is if the distribution function is a
Bose—Einstein one,

fee =lexp(w/Te+a) -1, a=-p,/T.. (27)

The photon chemical potential u. enters because photon number is a conserved quantity in Compton scattering.

For homogeneous transfer, R(q — q') = Ryp(w — w') is a function only of the energies in and out. In the Thomson
(very heavy electron) limit, Ry x d(w — w'), hence S[f] — 0: inhomogeneity is needed to have nonzero sources for
Thomson scattering. In the next order in m !, small energy transfers Aw = w — w' do occur. Let us introduce a
redistribution probability ¢(w — w'), defined by

_ 1 (w)? : du’
dlw—w) = neUTRo(w = w') = with / — dlw—w)=1.

It is sharply peaked, concentrated near Aw ~ 0, with deviations of order m_!, as described by moments taken with

respect to ¢:
2
<%> gl _ @ <<&> > _o Ll (28)
w é me me W é me

describing both a net upward drift in the scatters if the photon energy is smaller than 47, /m. (i.e., the electrons on
average Compton-cool) and a random walk of the photon energy about the net drift.

To derive the Kompaneets form [33] for S, one relies on the peaked nature of ¢ to “punch out” the distribution
function at w, using the Taylor expansion in Aw of f(w') and of the detailed balance relation:

T. 1 00, of
= neore ——s — 7.2 + f(1 . 2
Slfl = mare 7y oot (T30 4 £+ 1) (20)
The following properties can be readily verified: (1) no photons are created or destroyed (% [w?dwSk[f] = 0); (2)
Sk[f] vanishes only if f is of the Bose-Einstein form (since [f(1 + f)]~'df = —d(w/T.)); (3) The rate per unit volume
at which photons are heated, dp,/dt, is the negative of the Compton cooling rate per unit volume of the electrons,

np(dep/dt):

deg dp~ /w2dw dneor
— —_ = | — = S e ~ Te — T 5 30
[ " dt]K {dt];{ 72 wolfd ™ = ) (30)
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where the last term assumes f; = fp;, the Planck function. Thus the electron temperature is driven by Compton
cooling towards the photon temperature.

If Compton scattering dominates energy redistribution, but it is not so strong as to shape a Bose—Einstein “kinetic
equilibrium” distribution, a y-distortion spectrum is the solution to the Kompaneets equation. For small distortions
of the distribution function, A f; < f., we have

Ok = —ZaneoTw Y (r), Yr(r)=2- z (e’ +1)

M 2 (er —1)° (31)

The solution of the radiative transfer equation can therefore be written in terms of the Compton y-parameter (along
a line-of-sight from the current (conformal) time 7o back to time 7):

<£>K = oyur(z), y= / adrnpop Le = Te) (32)

T M

In terms of the Thomson scattering (optical) depth,
T0
Ce(molm) = / npY.oracdr, (33)

this is (co(mo|7)(Te — T¢)/me. For a fully ionized medium with free electron abundance Y. per baryon , (¢ =~
0.0465YeQB,gashQ;3/2(1 + 2)3/2 for z > 1. There is another useful solution to the Kompaneets equation given
by Zeldovich and Sunyaev [34] which is valid for larger y than the perturbation expansion allows, but with the

restriction that the electron temperature is well in excess of T',, which eq. (32) does not require:

1 < d¢ 1 (By —Inx +1n¢)?
10~ 7 [, ¢ [ o] e [

In either case, the asymptotic Rayleigh—Jeans temperature is related to the unperturbed photon temperature by
Try = e72¥ T, and the total energy is p, = €*¥pcp. The FIRAS constraint eq. (7) implies that energy injected into
the medium (below a redshift z, ~ 10° defined below) which Compton-cooled can be at most

6ECompton cool

i3 =4y <6.0x107° (95% CL). (34)
cmb

The spectral signature of this y-distortion is uniquely characteristic: —2y on the Rayleigh Jeans side, zy on the far
Wein side, passing through zero at = 3.83, as shown in fig. 2 for y = 0.001. A Bose—Einstein curve with a = 0.0057
is also shown. Both correspond to 0.4% energy injections relative to the CMB. (For a few years in the late eighties
there was a flurry of activity as theoreticians tried to come to grips with a y = 0.016 distortion reported by Matsumoto
et al. [31].)

2. Bremsstrahlung

The source function for free—free emission and absorption from ionized hydrogen and helium is
Sff[ft] = _F%(Aft - (feq = fe)), feq = (e — 1)71v (35)
s =Tp(l—e"), z.=w/T.,

oryi2 mo\ M2 Te
R € B

V3 {2.25

Gaunt factor: g(z.) =1, z,>1; ~-—lIn

], Te < 1.
™

Le

Since the rate at which photons are emitted into the energy interval w to w + dw by free—free processes, dn./dt ~
(w2 dw /7 )T (feq — fe), = dw/w at low w, bremsstrahlung is very efficient at filling in an equilibrium Planck distri-
bution (with zero chemical potential) at low energies. Although it is also not inefficient at high energies, Compton
scattering dominates.

13



2.76

_.74 —

T(°K)

_2.72 —

2.’? |IIIIII | | |IIIIII |
104 1000

A(um)

FIG. 2. Sample types of spectral distortions are compared with the FIRAS data (Fixsen et al. 1996). SZ.004 is a y-distortion
with y = 0.001, BE.004 is a Bose—Einstein distortion with o = 0.0057, du.04 is a model with ordinary dust grains with abundance
1075 reprocessing injected energy which was taken to be 4% of that in the CMB between redshifts 50 and 25. Two models
mimicking the effect of an optically thin abundance of needle-like grains (whiskers) acting over the same redshift, with 40%
and 4% of the CMB energy injected, are also shown.
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It is convenient to characterize the strength of bremsstrahlung by a parameter y;; analogous to the Compton
y-parameter:

Yrf = /dt [F5x3](1 — Tc/Te). (36)

The approximate constancy of I'(z)z3 has been exploited in this formula. The current 20 limit on this parameter is
yrr < 1.9 x 1075 [19]. The total energy input relative to the CMB for T, > T, and over the long wavelength range
up to say A =2 cm is

6Ebremss Te*
——  (tot) =15
Ecmb ( © ) v <TC*> 7
6Ebremss -5 .
T(A>2cm)z15yffx§7x10 ,  with x=0.26. (37)
cmb

This can be used to constrain reionized models, with the caveat that y;; o ngTe_l/ ? is dominated by dense regions
and so is very sensitive to clumping in the medium.
The source for the temperature fluctuations can be written

_dyyy glae) (67 —e™) (" — 1)
remss — 9 = 38
Gy a— (@), Ypp(e) = =5 7— T, . (38)
The signature of bremsstrahlung in the thermodynamic temperature is
AT
<T> =yrr(¥ss), WYrp 2T In(2.35/7) for @ <1 (39)
bremss

Thus for low frequencies, the thermodynamic temperature follows a v=2 law. (For large x, but x. small (T, > T.),
VYrr~ a*e” In(2.35/x,), so the slope eventually turns positive.)

3. Double Compton scattering

In Compton scattering, the electron can shake off a soft photon, ye — «ve + 7, basically a bremsstrahlung process
with a form very similar to that for free—free emission. In particular, there is a logarithmic divergence in the number
of low energy photons emitted. The source functions for this Double Compton scattering were derived in [2] using
the cross sections given by Gould [35]. These revealed a different dependence on photon energy than bremsstrahlung
at high energies:

SDC[f] = _FIDC(f - feq) ) Flpc = FDC(]. — €_Ie) R

r 1673 T.\* gpc(z.)
= —— Qne - - 3
DO = = or 23

€

gpc(x) = % 200 F) 1+ fly — )yt dy {W] :
wF2(w) =3(1-w) [1 +(1—w)* + % +w* + w?(1 —w)z].

(40)

For small w, [wF(w)/2] — 1. Burigana et al. [36] fit gpc(x.) by exp(—z./2), valid for x. < 1, an improvement
(in the cosmologically-relevant regime) over a more complicated approximation I gave in [2]. The net effect is that
the Double Compton process is usually subdominant to free—free emission for cosmologically interesting parameters
unless Qph? is quite low.
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4. Rayleigh scattering

Photon scattering from neutral hydrogen and helium has an identical source function to that for Thomson scat-
tering, but with a frequency dependence given by the fourth power law. For hydrogen, the ratio of the rates
~ (nmr/Ye)(w/wa)?t, where w, = 10.2 eV is the Lyman « transition energy. For typical photon energies at re-
combination (z = 1000) this is small, 2 x 10~°ny;/n., and it declines precipitously as the radiation temperature
drops, so is never significant. Although helium is neutral above z = 1000, Thomson scattering dominates even in the
very tightly coupled regime.

5. Line radiation

Lines formed during the recombination of helium when the temperature is a few eV and of hydrogen at ~ 1/4 eV
are either too weak to be easily observable, or are buried in the background associated with interstellar dust emission
[37]. Such processes play a very important role in the recombination process itself of course, and this is discussed
later.

6. Synchrotron

Since synchrotron emission requires both magnetic fields and energetic electrons to have been generated, it seems
unlikely that a synchrotron background from high redshift will generate a measurable distortion. However, at radio
frequencies the anisotropy from extragalactic radio sources and Galactic emission is significant and will contaminate
anisotropies from other signals. Fortunately the spectral signature is sufficiently different from primary anisotropies
that with enough frequency coverage this component could be isolated. The synchrotron intensity is parameterized
by a power law index ps: I, ~ v~ P<. For extragalactic radio sources, ps ~ 0.5 is the conventional value, but from deep
VLA counts there is evidence for a flatter population of sources [38]; how flat and how abundant in the frequency
range of interest for anisotropy observations is currently not well known. For Galactic sources, one has p; ~ 0.3-0.7 at
low frequencies; e.g., using maps at 408 MHz [39], 1.4 GHz [40], and 2 GHz [22] gives ps ~ 0.6 for moderate Galactic
latitudes. One expects the index to steepen at higher frequency, and there are indications that around 15 GHz, ps ~ 1
may be more appropriate [103]. In any case, (small) spatial variations in p, are both expected and observed. The
thermodynamic temperature is

AT 1 (eF 1)
<T> syneh X wsynch ) wsynch = W 7 ) (4]—)

going as v~ (7<) for low frequencies, an even steeper law than the bremsstrahlung v—2 .

7. Dust grains

Radiation from heated primeval dust at high redshift would naturally reside at submillimeter wavelengths, with
the energy density peaking at several hundred microns (e.g., BCH2 [42] and references therein); e.g., with 30 K dust
typical of starburst galaxies, the dust temperature would only be a factor of two above the CMB at redshift 5. Of
course Galactic sources abound to obscure cosmological signals: dust at 20 K and possibly cold dust (~ 5 K) at high
Galactic latitude [43]. The dust source function for emission/absorption is

Sdust = Pa (feq - fc) - FaAfa (42)
J= (=17 wa= o Af=f—fo, fe=(e D7
d

(43)
r o P Ae _1A
o= "— d(Ae) - (44)

 pia \27c

There is also a dust scattering source term. Here f., is the equilibrium distribution function for dust in thermal
equilibrium at a (single) temperature Ty (obtained by balancing the energy absorbed from the local radiation field to
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the energy emitted — usually). p, is the mass density of grains, p;q is their internal density (=~ 3 g cm™3), and the
parameterizing function A, depends upon the photon energy w = 27 /A, and grain properties. In BCH2, we adopted a
three parameter form («g, Aq100,74), only two of which were needed at the infrared emission wavelengths of relevance
for CMB observations, an amplitude Agi00 at 100 um and a slope:

Ag(Ne,2) = Agroo(100 pm /)=t (45)

where Agip0 = A4(100 pm). For almost all types of grains and plausible conditions, the absorption part —I,Af
of eq. (42) is of relevance only in the UV and visible. However, the large contribution of the unperturbed cosmic
background itself must be included as an absorption component —I',, f. that partly counteracts the emission component
[y feq at long wavelengths. The source function for the thermodynamic temperature is therefore

Gaust = Ka*=4 ﬂAdloowdust , (46)

id

(e7%1 —e™%) (e* — 1)

us = ad b 47
nle) = a7 ST (47)
where K is a constant, hence the shape of the thermodynamic temperature spectral form is
AT T, —T.
(T) " X Ygust , =z (dTC) for z<1. (48)

For o4 € 1,2 > 1, Ygues = x4 2%,

Of course the dust population will be a mix of grains of differing composition, size, shape and temperature.
Unravelling the components making up “conventional” Galactic dust remains a hotly debated subject, nicely reviewed
in [50]. An example of a recently proposed mix to explain all of the data from the UV to the sub-mm [44] is: most of
the mass in “usual” ~ 0.01-0.1 pm silicate grains, with an added carbon-dominated coating and separate amorphous
carbon and graphite grains; ~ 6% of the mass in very small (~ 10 A) carbon-dominated grains; and ~ 6% in ~ 10—
100 A polycyclic aromatic hydrocarbon molecules (PAHs), of which “bucky-balls” are an example. Dust which is
porous and fractal [52], consisting of large random aggregates of small grains, and grains which are triaxial, possibly
with extreme elongations (needles or whiskers), are also proposed constituents of the Galactic mix. For spherical
amorphous carbon, graphite and silicate grains, Ag100 ~ 0.3. The slope a4 depends upon the mix of grains and their
shapes. On broad theoretical grounds, one expects ay = 2 for large A. If the FIRAS sub-mm to mm emission is fit to
a single temperature dust model, ag = 1.65 (and Ty = 23 K) are obtained [43]; similar slopes are inferred from other
CMB experiments, while earlier data over the 100-1300 pum range gave ay ~ 1-2, with the steeper slopes inferred for
star forming regions and molecular clouds, and the shallower ones inferred for the Galactic center, dust forming stars
and compact HII regions. Forcing ay to be exactly 2, but allowing two dust temperatures, gives a better fit to FIRAS
[43,47], with the 20 K dust augmented by a 5 K component. A cold component persists at high Galactic latitude,
which could be Galactic [48] or due to redshifted extragalactic sources [49]. The dust temperatures associated with
most of the Galactic IR luminosity, from diffuse HI clouds, and also from molecular clouds, are around 20 K, with
warmer 30 K dust in lower density HII regions, which do not contribute much luminosity. In starburst galaxies, 30 K
dust dominates.

The dust absorption law at short wavelengths is also of concern because it determines how efficiently stellar and other
radiation is absorbed to be re-emitted in the infrared. If the absorption cross section was geometrical, 72, where ry is
the grain radius, then A; = 0.75\./(27r4) and T',, is approximately constant — a rough guide, but for realistic materials
Ay is broadly frequency independent at intermediate wavelengths with resonance features superposed. Galactic dust
is observed to have A4 = 0.8 at A = 0.1 um, rising from the visual to the UV (until -0.1 pm), probably due to
very small grains, with a strong resonant feature at A =~ 0.22 um associated with graphite. There is a strong broad
resonance at A = 10 um, attributed to silicates in an amorphous or disordered state, another silicate feature at 19 pm,
and a resonance feature around 3 pm, attributed to carbonaceous grains or coating on the silicates [44]. Dust grains
in molecular clouds exhibit more resonances. The size distribution of grains can be derived from Galactic extinction
data only with specific assumptions about the nature of the dust; e.g., [51] apply the 0.1-5 pm extinction data to
spherical grain models and obtain dng/drq ~ 17" exp[—74/0.14 pm] for silicates and ~ r};*® exp[—r4/0.28 pm] for
graphite and/or amorphous carbon — not far off the oft-used MRN law dng/dry ~ r;*° [46].

The usual way to make predictions about dust emission in the extragalactic, protogalactic and pregalactic realms
is to assume the dust is similar to Galactic dust — as it is currently envisaged. For emission redshifts below about 10,
resonances would not appear in the 5000-500 um FIRAS band but pregalactic dust emission at z ~ 50-100 would
bring broadened resonance features into the FIRAS band to aid in emission epoch determination — if distortions had
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been found. Complicating the constraints that one can impose from the FIRAS limits on high redshift emission is
the freedom one has with dust models. In particular, fractal grains would have large effective sizes which would lower
the effective ay in the far infrared and thereby increase A4(\); it could easily be by more than an order of magnitude
over the conventional dust value. A much more radical absorption rate would result if grains were long conducting
needles, basically little antennae for which A, could be thousands of times bigger than the conventional value at long
wavelengths. The cosmological importance of these whiskers was suggested by Layzer and Hively [53], and the subject
has been developed by Rana [56], Hoyle [54], Wright [57], and is the mainstay of the attempts by Hoyle, Burbidge
and Narlikar [55] to create a viable neo-steady-state model.

In the limit in which the photon wavelength is large compared with the scale r4 of the grain (volume = (47/3)r3),
Aqg can be written in terms of the trace of the (electric) polarizability tensor, ag;, of the grain (which can be treated
as a coherent unit in this limit): A4 = 4% > S[as;], where § denotes imaginary part. For example, for homogeneous
ellipsoidal grains with a complex isotropic dielectric tensor e(w)d;;,

1< ew)—1
Ad = \S‘[.Ad], .Ad = g ]Zl % (fOI' wrg K ].) (49)
The sum is over the axes of the grains, and the L; are “depolarizing factors”, functions of the axis ratios for ellipsoidal
grains. The L; sum to unity. Setting all L; = 1/3 gives the classical Mie expression for spherical grains; it is used
together with laboratory data on €(w) to estimate Ag.

For conductors at IR wavelengths, the dielectric function is of form e(w) ~ €4 + i20:A, where €4 is the static (real)
dielectric constant and o, is the conductivity. For iron grains, (20.)~! ~ 0.015 um, and for carbon (graphite) grains,
it is = 0.6 pum. For needle-like grains L; is 1/2 in the transverse directions and nearly vanishes along the needle.
For example, assuming a prolate ellipsoid with semi-minor axis b; much smaller than the semi-major axis a4, the

depolarizing factor along the needle is L = (bag/aﬂg)2 In (aq/bq), hence eq. (49) gives
1 20\ 20\

d~ g

3T+ @200 Tt ea)? + @oon?)

(50)

o< A until A exceeds Lr(Zoc)’l, which could be in the centimeter range if a,/bgq could be above a thousand. Thus,

agq ~ 0, perhaps rising to 2 only beyond the FIRAS range. Formation scenarios that could lead to such elongated
grains have been proposed but there is no evidence that they are produced in nature. Wright et al. [58] argue that the
FIRAS data implies such a good blackbody that a large optical depth to needles is needed in a whisker-impregnated
steady state model, and this would mask high redshift objects (we have also seen the SZ effect in a cluster at z = 0.55,
section V C4). Although it seems improbable that the entire CMB could be just dust-emitted radiation, a small
fraction of grains in the whisker form could hide more modest energy injections. Figure 2 illustrates what happens
when one flattens the dust index to ay = 0 and uses a whisker-motivated value for Agj00 (2222 was chosen) on a
model with energy injected in a burst between redshifts 50 and 25 and a dust abundance ; = 1077, arranged to
give a depth just below unity. Whereas a model with injected energy 4% of the CMB is strongly ruled out for normal
dust with ag = 1.5 and Agi00 = 0.3, the redshifted whisker temperature remains so near the CMB temperature
that the distortion is small (but the 40% injected energy model is ruled out). Of course, a mix of grain types
with only a small percentage of whiskers will give larger distortions [57]; and even the whisker-only model will be
enhanced by nonequilibrium effects: these antennae are such efficient radiators that a balance between absorbed and
emitted energy leading to a steady dust temperature will not happen, but rather there will be strong temperature
fluctuations as absorbed energy is immediately radiated away, a phenomenon expected in very small grains as well [59].
With improved exploration of the sub-mm and mm sky, a necessary part of the next generation of CMB anisotropy
experiments, we can expect that the exotic dust loophole will be more strongly constrained.

C. The cosmic photosphere and Bose—Einstein distortions

To determine what happens to injected energy at early epochs, we must solve (9f/0t)q = Spremss + Spc + Sk
The other processes mentioned above are not important. To be accurate, numerical solutions are required; Burigana,
Danese and DeZotti [36] give the most detailed to date. Three redshifts characterize the solutions: Energy injection
prior to

Qph? —0.39
~ 1080 [ —=—— 51
o ( 0.01 ) (51)
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is redistributed into a Planckian form, hence zp; defines the redshift of the cosmic photosphere. Between zp; and

Qph?)
~ 1070 [ —— 52
BE < 0.01 ) (52)
injected energy is redistributed into a Bose—-Einstein shape characterized by a chemical potential. Below
Qph?)
~ 10° 53
v ( 0.01 ) (53)

the y-distortion formula holds. There is an intermediate range between zpp and 2z, when neither the Bose-Einstein
nor y-distortion forms are accurate.

To understand the magnitudes of these redshifts, an analytic treatment based on Zeldovich and Sunyaev [34]
is quite adequate. Assume the distribution function has the form f = [exp(x + a(x,t)) — 1]7! and linearize the
transport equation in a. (a is more transparent to work with than the thermodynamic temperature fluctuation
A; = —a/(z + «).) In the tight coupling regime, Sk + Spremss + Spc approximately vanishes; this condition is
satisfied for small . = w/T, if & = ap(t) exp(—zo/xe). Thus for low frequencies, © < zo, bremsstrahlung and the
Double Compton process dump photons in fast enough to yield a Planck form, but for x > z¢ the Bose—Einstein
form prevails. Here 29 = (42°(Tyremss + I'nc)/Tk)/?, where the “Kompaneets” rate is I'yc = 4n.opT./m.. The
approximate constancy of x* (Tpremss + I'pe) has been exploited to obtain this result. If we assume Y., photons per
baryon are being injected with average energy E, at time ¢, adding to the Y, photons per baryon already there, then
we find the scaling parameter ag evolves according to

d E Y.
@ _ (2oL —1)1.87—2
dt ™ 3.6, Y0
70 = 1.2920[(Doremss + Lpe)a®] ™! = 1.29(0 g /4) Ly b (54)

Thus there is a damping term with timescale 7 driving agy towards zero, i.e., a Planck distribution, against which
the injection term tries to drive the distortion. When the damping time is shorter than the expansion rate of the
universe, any injected energy input would be rethermalized into a Planckian in equilibrium with the electrons within
one Hubble time. This basically defines zp;. When the Kompaneets rate is a few times the expansion rate, xo will
be low but ap will not be zero, and the BE form is appropriate. This defines zgr. However, it is not until the
Kompaneets rate is a few times below the expansion rate that the perturbative y-distortion solution prevails. This
defines z, =~ zpg/4. Naturally zpg and z, scale in the way defined by I'x/H.

To constrain the allowed energy input in the Bose-Einstein regime, we take the BE distribution and linearize it in
AT/T and «, where now both are frequency-independent. The photon number density and photon energy density
are related to the unperturbed values by

AT AT
nwzngo) <1+3T—g—§a), pyngo) <1+4T—g—ia) ,

where (; = Y j~° denotes the Riemann zeta function of index s. With fixed photon number throughout energy

injection, we must have n, = n(y) remaining invariant, hence a relationship between the temperature perturbation

and the chemical potential, AT/T = ((2/(3)a/3, leading to a relative energy perturbation

opy (4G ()

Using the FIRAS constraint eq. (8), the allowed energy injection relative to the primeval radiation in the zp; to zpg
epoch is at most [58]

0EBE

cmb

<$6.4x107° (95% CL). (56)
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D. Recombination and photon decoupling
1. Hydrogen and Helium Recombination

The subject of the recombination of the primeval plasma was well developed immediately after the discovery of the
background radiation [60,61]. In this subsection, we display the ODEs we solved in the Bond and Efstathiou papers for
hydrogen recombination [134,88]. Although helium is neutral through hydrogen recombination, helium recombination
is now also explicitly included for our anisotropy calculations for increased accuracy [301], and the relevant equations
are also given. In implementing these equations, it is important to use very accurate and self consistent physical
parameters.

The availability of photons per baryon in the background radiation illustrates that there are not enough photons
above Lyman « energy to guarantee equilibrium of the 1s state with states above it, though there are plenty below
the Balmer continuum. Thus absorption and production timescales for the 2s — 3p transitions, for example, are
measured in seconds at redshifts above 1000. We can therefore take the population of excited states with n. > 1 to be
in thermal equilibrium with the 2s state. In the following, we denote the abundances per baryon of various hydrogen
states {n,(} by Y,, ,, the total abundance of hydrogen atoms and ions per baryon by Yzr, and the free electron and
proton abundances by Y. and Y,. The (positive) binding energy of the state n, £ is denoted by B,,, and g,, = 4(2(+1)
is its statistical weight, with the 4 coming from the proton and electron spins. As before, T. and T, are the electron
and photon temperatures in energy units (kg = 1). When account is taken of the equilibrium associated with the
fast timescales, the network of equations describing the normal recombination transition is:

1. Equilibrium of the state {n, ¢} with the 2s:

Yo = (gne/4)Yas exp[— (B2 — By)/T]. (57)

2. Baryon conservation:

Yo+ Yie + Y2 2(T) =Yur, Z(T)= > (gne/4)e” BB/ T, (58)

n>1,¢

The partition function for states above n =1 is Z(T)).

3. Loss of free electrons through recombination: Ye = —anpY.Y, + Ys;8.. Here a. is the recombination rate,
excluding direct recombinations to the ground state since the released photon above the Lyman edge leads
immediately to another ionization. The factor

2 3/2
_ —Bo/T, [ MeC T,
be=ce <27r(hc)2> e (59)

describes the detailed balance relating the photoionization rate to the recombination coefficient a.. For a., we
use the analytic approximation

e = 1.948 x 10713(10* K/T.)*2p(y) cm® s71, (60)

_ _ _ 13.6 eV
e(y) = 5(L735+Iny +y~'/6) — (L —y~' —2y7?), Y=

(Bates and Dalgarno [62]).!

! This recombination rate is superior to the Boardman [63] form, o = 2.84 x 10713T;41/27 T.4 = T./10* K, used by Peebles and
to the oft-used Seaton approximation, a. = 2.6 X 10_13T;10'85. The latter is accurate at 10* K, but differs from the Osterbrock
[64] values by 3% at 5000 K, 9% at 2500 K and by 19% at 1250 K, whereas the formula we adopt differs by only a percent
in all three cases (and by even less from the tabulated values of Bates and Dalgarno). The original Peebles formula differs by
12%, 26% and 37%, respectively.
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4. 1s production:

Vi

_ YZs _ & e—(B1—BZ)/T'y + E . (6]‘)

T2~ T2~ np

The first term describes the 2s — 1s 4 v transition, with lifetime 7,,=0.12 s. The second describes the rate
at which Lyman alpha photons from the 2p — 2s + v transition are shifted out of the line due to the expansion
of the Universe before they can be reabsorbed. Thermal CMB photons are irrelevant for this, since, at the
temperatures of recombination, essentially no photons with energies as high as Ly alpha exist. (Balmer lines do
yield a thermal distribution function.) Thus a detailed solution of the photon distribution function across the
line, including redshift effects, is needed. This is straightforward. For given Y3, and Y;,, Peebles shows

(B1 — By)® [Yas
(w2 (hc)?) [ Yis

R = H(a) e (Bi=B2) /151 (62)

Here the Hubble parameter is H(a).

The net effect of the rapid equilibration of the 2s state with the 2p and higher states yields the equation

. Yos Yie (. _ R
YZs = aanl/er - YtZsﬂc -2 + _16 (Bi=Ba)/T7 _ — (63)

T2~ T2~ np

The rates are large enough that st can be taken to vanish, yielding an expression for Y5 in terms of Y5 and Y.
Baryon conservation gives a further relation of Y7, in terms of Y, = Y, so the entire system of equations reduces to
one for the evolution of the free electron abundance, Y.

Denoting the ionization fraction by ¢ = Y,/Yur, putting Y1,/Yur = 1 — x, and transforming the time derivative

to one over the photon temperature, T, = T, /a, we have
dr 1 npYyracr? — Be(1 — x)e*(BlfBﬂ/Tw o
T, - T\ H(a)

—1
-1 B1—B32)3H(a
1 + ﬂc (TZ'Y + (”2((;74033)”;)1/1-11?(27:&)

This is a stiff equation. At high redshift, Saha equilibrium holds, with ¥;,=0, thus Ya, = Y;,e~(B1=B2)/T5 ' and Y, =0,
hence

E2Te —3/2
1) )

Yis = curYey, cur = ngeb/T
1ls Hllelp, HI B 27T(hC)2 9elp )
The statistical weights are g. = 2,9, = 2, g7 = 4. but by 7%, ~ 4000 K one should shift over to the ODE solution.
This equation is coupled to the Compton cooling equation (30) for the evolution of the electron temperature 7, as
it breaks equality with the photon temperature T, to follow the (1 + 2)? redshift evolution of a nonrelativistic ideal
fluid:

1d _ 8orpy Ye

27, 3
a2 dt “ 3me.c Yr

(Bl + —Te)

(Te-17) - |3 Y, 5 (66)

Here Yy = Yyr + Ye + Yy is the number of gas particles per baryon. (The term in square brackets from the
binding and thermal energy gained when an electron recombines is ignorable here.) The large value of the photon
energy density p, ensures that this Compton heating keeps 7. and 7', nearly equal until a redshift below about 400
(as shown in fig. 3(c)). These equations must be integrated numerically with stiff ODE solvers. Solutions for some
CDM models are shown in fig. 3(a). If one is just interested in the development of anisotropies, the critical region is
not around the redshift ~ 1500 when the universe passes from 95% to 10% ionized, but rather a redshift interval from
about 1200 to 900 when the radiation passes from being tightly coupled to freely streaming, when the optical depth
to Thomson scattering, (¢ defined by eq. (33), passes through unity. The final values of the residual ionization are
also of interest since those few free electrons present catalyze the formation of molecular hydrogen, which can be an
important coolant in the first objects that collapse in the Universe.

Krolik [65] discusses extra Fokker—Planck diffusive terms arising from scattering in the lines, but shows that these
result in numerically small corrections to recombination over that obtained using the system of equations given here.
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Although photons are quite tightly coupled to the baryons when helium recombines, for high precision calculations
of CMB anisotropies at small angular scales the effect should be taken into account [301]. With more free electrons
present, the photons do not diffuse as easily. It seems to be adequate to solve for the Saha equilibrium rather than
doing the full time evolution as is required for hydrogen recombination. One should solve for the ionization fractions
of the states of helium and hydrogen together, in practice done by iterating the following equation and demanding
convergence in Ygr and Yg.rr:

Yo =Yur +2Yger — (Yur +2Yner + Yaerr),

Yur =Yur/(1+ (curYe) ™),

Yierr = Yaer/(1+ (cerrYe) ' + crerYe),

Yier = Yuer /(1 + (1 + (cherrYe) ™) (cuerYe)™). (67)

The coeflicients entering are

—3/2
mT JHel
CHel = NB <7e < ) eBurer/Ty _JHel

27 (he)? gegHeIl
3/2
meTe Brerr/T- 9Hell
CHell = NB \ 57 5 e~ He v 68
‘ <27r(hc)2> JeGHeIIT (68)

with statistical weights reflecting the spinless alpha particle in the fully ionized state, ggerr = 1, the electron spin
in the once-ionized helium hydrogenic ground state, ggerr = 2, and the two electrons in the singlet ! Sy ground state
of neutral helium, gg.;r = 1. The partition functions can be assumed to be temperature independent. The binding
energies are By.; = 24.6 eV, Byc;; = 54.4 eV. When C;;I and cfllen are very small, helium is fully recombined and
the hydrogen-only Saha equation is adequate to solve.

2. Viswbility and decoupling

The visibility of the Universe to Thomson scattering is defined by e~¢¢ and the differential visibility by Vo =
de=¢¢ /dr = e~ /1¢, where 7' = an.or. Figure 3(b) shows Vo /(Ha) for the universes of (a); a closeup of a
subset of the models is shown in (c¢). For normal recombination the differential visibility is sharply peaked, only
weakly dependent on cosmological parameters. Although the distribution is somewhat skew, a Gaussian fit is not a
bad approximation. We define the conformal time of decoupling 74.. to be where Vo has a peak and the width of
decoupling, Ry, dec, to be the fwhm of V¢ times a factor 0.425, which turns the fwhm into a dispersion for a Gaussian.
The corresponding expansion factors are Ggec and o, cqec, related by

3 3
Taee = 190 Q121" Mpe (103%66)%{(” <a—>> - (a_> ]
Adec Adec

(10%age)'?
(14 oo 17 B0ecTaee

Qdec

RVc,dec = 9'5(100—a70dec)9;}/2 h*l MpC

Qer
QTLT‘

~ [24200Q,,h?]"t, CDM: 0.06 < 04.cgec SO.1. (69)

(eqg =

The aey/agec ~ [69,,-(2h)?]~! corrections usually cannot be ignored. For normal recombination CDM-dominated
universes, the o4 4ec range, as measured from the fwhm of the fig. 3(b) curves, imply the Gaussian width Ry, gec is
only about 0.03-0.05 of the horizon size at decoupling. The last scattering region is therefore quite thin, with typical
(comoving) Gaussian width ~ (5 — 10)97}1/2 h~! Mpec. The Gaussian approximation,
de—¢c N exp[—(7 — Tdec)z/(ZR%adec)]

dr (27R%_ )12

¢] (70)

is not bad for these cases, and is nice for analytic purposes ( [2], section V B).
Figure 3(c) shows how the instantaneous power law scaling pe gec = —dlnY./dIna varies with redshift. Around
decoupling pe qec ~ 10 is typical. The Compton scattering time is related to the Hubble time at decoupling by
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FIG. 3. (a) Evolution of the ionization fraction. Effect of varying Qg,Q,.,h. (b) Differential visibility functions de™°¢ /dIna
for standard recombination (concentrated around z & 1000, rather like a Gaussian in 7) and for “no recombination”. (c) Closeup
of (b), the Yo ~ a™P power, and on the extreme left the relative difference between the electron and photon temperatures
amplified by 10.
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V¢ max: neor/H = (Pe,dec +2) defines agec, Tdec

max: Neor/H = (Pe,dec + 2 — Qdec) ,

_ 1 (14 2(aeq/adec))
qdec = 2 (1 + (aeq/adec)) . (7]-)

We could also define the decoupling redshift when Vo /(Ha) has a maximum: this occurs slightly later than that
determined by V. Here gqe. is the value of the deceleration parameter at decoupling. The Compton time is therefore
only ~ 5% of the “horizon” size at decoupling. In section V A 2, we shall see that a local measure of the width of
the visibility at time 7 is useful to characterize the damping of anisotropies associated with the fuzziness of the last
scattering surface:

c
(Ha)

9?InVo ‘71/2 B (Ha) !

Ry, (1) = ‘ =

_ n . 1/2 "
[(pe +2)(—q + 2ege 4 o))

This also gives 0,,c = EdeVC; in particular, if we substitute neop/H = pe dec + 2 in this, note from the figure that
dln(pe + 2)/dIna is typically 2 or 3, we get 0.06 S 04,0dec S 0.1 for 7 S pe.gec S 12, in good accord with the fwhm
estimates. This expression also shows that Ry, dec = T¢,dec- (The time-dependent Ry, (7) expression must eventually
break down, once ne.or/H drops below the deceleration parameter g.)

Figure 3(b) shows the dramatic effect of early reionization on the visibility. For full ionization (pe,gec = 0), the
redshift at which V¢ /(Ha) peaks is exactly where the optical depth to us is unity,

o1 [ Qph) *®
Zeo—1 ~ 1021 <0—g2> QL3 (72)

The redshift z4.. at which Vo peaks is 20% smaller. Figure 3 shows the Gaussian approximation is not very good
(the half power points in 7 are at 0.7574e. and 1.574.., with “Gaussian” width of 0.3274..). For the typical Q,,,.=1,
Q25=0.05 dark-matter dominated Universes, zgec = 130 and Ry, 4ecc &~ 170h™! Mpec, but for the Qp = Q,, = 0.1
universe in fig. 3, whether open or vacuum-dominated (to make = 1), the decoupling redshift is pushed dramatically
forward, to zgee &~ 28 and Ry, qec &~ 360h~! Mpe.

E. Reionization of the universe

Erasure of CMB temperature anisotropies is dramatic if re-ionization occurs earlier than the minimum redshift
required to make the optical depth to us unity, eq. (72). Although this seems unlikely in CDM dominated models
[134], it is reasonable to expect a 10% effect on AT /T oc e ¢ even if re-ionization occurs as late as z¢.=1/3, say,
since (o = [(1 4 2)/(1 + zee=1)]*/2.

The Gunn—Peterson test shows that the cumulative optical depth to Lyman alpha radiation back to the most distant
quasars at z ~ 3 is less than 0.05 implying the universe is extremely highly ionized with neutral hydrogen fraction
Yy $ 1075, Quasars, which contribute a significant amount of this ionizing flux, are expected to have formed too late
to have had much influence on CMB anisotropies. An early population of massive stars or more exotic sources such
as decaying Big Bang relic particles with a radiative channel could reionize early enough. In [66], we estimated the
fraction of the closure density in massive stars of various types required for re-ionization to occur via the overlapping
of the HII regions they generate. We found that to reionize by z.,—=1 requires a cosmic abundance of ionizing stars

Qph

0, =K107% [ ==
(0.02

0.8

) (14 500) (73)
where K is a factor depending upon the type of stars: for stars with mass ~ 30 M, K = 30 if they have Population
III abundances (i.e., with essentially no heavy elements) and is somewhat higher if there is Population IT metallicity,
while for the limiting case of Very Massive Objects (mass 2 100 My), K ~ 1 for Population III abundances and
K = 5 for Population II abundances. €2, depends upon the overdensity of the gas relative to the background, 1+ d4qs,
i.e., the clumpiness factor. . is lowest if the gas is unclumped, but the gas in the neighborhood of the stars will be
overdense and the HII region would first have to break out of this gas before entering into the d4.s ~ 0 background
medium. It is therefore unclear what to take for the average d,.s entering eq. (73), and thus how much larger a
fraction than 10~° in massive stars is required.
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To assess whether it is plausible that such relatively large fractions of the universe can have gone into massive stars
by z¢o=1, we use the Press—Schechter formula [67] for the fraction of the baryons that would be in collapsed objects
by redshift z, Qp.ou(z) = OB erfc(uco”/\/i), where veou(2) = feou(l + z)/0,5. Here the factor f.ou =~ 1.686 is the
average linear density fluctuation within a sphere needed for that sphere to have collapsed to infinite density when
nonlinearities are included. o,5(z) denotes the rms level of the gas density fluctuations at redshift z. (For rare events,
i.e., high o, we have Qpeon ~ Qp(2/m)2v_ ] e~veo/2; the better physically-motivated “peak-patch picture” [68]
based on collapse about peaks in the linear density field yields similar results.)

There is a natural filter ~ 1h~! kpc for the gas associated with the Jeans mass at recombination. In [134], we
showed that o, on this scale is typically ~ 2005 /(1 + 2) for initially scale invariant ,, = 1 CDM-dominated models
with h = 0.5 and about the same for initially scale invariant nonzero A models with h = 0.75 and Q,, =~ 0.3. Here og
denotes the rms linear density fluctuations on cluster scales at the current time. For CDM and the nonzero A models,
we have veo(2¢o=1) ranging from about 7 to 10, hence Qpcou(zco=1) is very tiny indeed. However, by z¢,=1/3 it
would have grown to a number which can exceed 2.. Thus, although we concluded in [134] that the drastic case
of extreme damping of small angle CMB anisotropies was unlikely unless there were an extremely high efficiency of
massive star formation from collapsed gas, it is quite conceivable that there will be some small effect from the earliest
generation of stars on the anisotropies provided there is a reasonable amount of “short-distance power” in the density
fluctuation spectrum.

What complicates this enormously is that the entities which form may well be rather fragile with a small binding
energy, easily disrupted by the massive stars they generate. But it is also possible that the amount of nonlinear gas
could be amplified by the explosion of such stars sweeping up shells of gas far from the parent object. It is difficult to
argue definitively either way and this issue of efficiency and amplification or suppression will likely remain a subject
of uncertainty in interpretation of CMB anisotropies for a long time to come. For recent discussions of the issues
involved in rejonization see [69,70].

Although the influence of early reionization on inflation-based CDM models and models with nonzero A is am-
biguous, the situation seems clearer in other models. In isocurvature baryon models with (nearly) white noise initial
conditions popular in the late seventies [71], the first objects collapse at z ~ 300, making reionization easy, and,
indeed, expected. Similarly, in models in which there are isocurvature seeds, such as in texture models, one also
expects early ionization to be quite plausible, although by no means certain.

If there is no recombination, there is a constraint from the y-distortion on how early energy can be injected:

Qph\ "3
awreh &2 1058 [ 222 OL3 74
#maz,reh (0.02) nr (74)

This is a result from Zeldovich and Sunyaev [34], revisited by Bartlett and Stebbins [72], which I modified to take
into account the FIRAS limit [12]. This limit can be avoided if one can sustain a temperature of the cooling electrons
to be nearly the CMB temperature. In any case, it is no limitation for the low Qp favored by standard Big Bang
nucleosynthesis [73].

F. Post-recombination energy sources

After recombination, we expect energy release to accompany the formation of nonlinear cosmic structure as stars,
black holes etc. form. Although the limits on this release in the CMB region are now very stringent, they are not as
strong in the optical and near infrared. I now survey a number of sources that would be expected to contribute to a
background, choosing normalization parameters to be relatively conservative. Even so they are not far off the FIRAS
bound (eq. 9), < 2.5 x 10~* from 500-5000 ym — a useful limit to bear in mind when considering the following energy
source formulas. On the other hand, there is a tentative identification of a sub-mm background in the FIRAS data
[49] in the range ~ 200 — 1000 pum, with energy §E/E.my ~ 1073 longward of ~ 400 pum, which partly mimics the
Galactic contribution (and could be partly due to cold high latitude Galactic dust [48]). There are also residuals after
source subtractions in the DIRBE data which could be interpreted as a cosmological infrared background at shorter
(~1—200 um) wavelengths at the 6E/E..,;, ~ 1072 level [79,80]. These are shown in fig. 4.

We first consider an exotic source before the more prosaic ones we know must exist at some level. Decaying (cold)
particles with a radiative channel X — X' + v having a branching ratio Bx., contribute a relative energy

Edeca , 10°
—decty | 0.02Bx2x ih?

—_ 75
Ecmb (]- + Zdec) ( )

25



to the Universe, where 2 x ; is the initial density parameter of the cold particles which are destined to decay, which
may easily be in excess of unity; e.g., for keV neutrinos it is 40. z4e. is the decay redshift, when the lifetime equals
the Hubble time. In cases like this, z4ec > zp; unless the branching ratio is tiny, i.e., with a lifetime shorter than a
month. And if a considerable fraction of the CMB energy were created this way, the success of standard Big Bang
nucleosynthesis would come into jeopardy. If the particle has a longer lifetime and if there is dust to reprocess the
radiation into the sub-mm band probed by FIRAS, the constraints on the branching ratio are quite severe; if there is
no dust so the decay radiation is just redshifted, then it would lie at shorter wavelengths where the bounds are much
less stringent.

The nuclear energy output of stars with efficiency €, radiating at redshift z, with an abundance 2, relative to

the CMB is
E* Q*hz 5 €nuc
~ 0.03 . 76

Eemb <0.001> (1+ z.) 0.004 (76)

Massive stars have an efficiency which is not much less than the maximum value of 0.004 for Very Massive Objects
[66], those with mass > 100 M. The radiant energy release from stars which eject a mass Z; M in metals when they
undergo supernova explosions is limited by the metal fraction Z they contribute to a gas of density Qgqs,

Epresn Z Qgush? Zo; (M \?
—presN - o 0.0008 g J ( ) (77)

Ecnp 10-3 0.01 0.2 \20 Mg

Radiation generated by mass accreting onto black holes with an efficiency €,.., typically taken to be about 0.1 for
quasar models, delivers energy

2
EBHacc ~ 0'0008QBHacch ) €acc

Eemb 10°6 (14 2qec) 0.1°

(78)

We might reasonably expect that Q.€puc, ZQgqs and Qpmacc€acc Would be larger than the normalizations indicate
and so they would be in conflict with the FIRAS limit, eq. (9), if that radiation were to find its way to the sub-mm.
In particular, the prospect of (~ 10%-10° M) VMO remnant black holes forming a considerable component of the
dark matter is ruled out if the unavoidable thermonuclear energy release prior to collapse passed through pregalactic
dust or through dusty galaxies.

Although there is a contribution from the gravitational energy released during the collapse of various structures in
the universe in all wavebands, it is typically smaller than that from other sources. Letting Qg cou feoor be the density
of baryons which have cooled in a potential well characterized by the three-dimensional virial velocity dispersion vr
which formed at redshift z.,; and taking the average over all collapsed structures, we get an energy release

Eformation QB COllh2fcool vr 2
—Jormation ., 0.0002 ) ( ) . .
Eemp <10—3(1 + Zeonr) V1000 km s—! (79)

Taking typical parameters for gas that has cooled in forming galaxies gives a value of order ten lower than the
prefactor.

The FIRAS limit on the y-distortion does place a powerful constraint on how effective explosions could have been in
generating cosmic structure. As Ikeuchi and Ostriker emphasized (e.g., [74]), a predominantly hydrodynamic expla-
nation for cosmic structure development is a perfectly reasonable extrapolation of known behavior in the interstellar
medium to the pregalactic medium. In [2], I gave a conservative lower estimation of the amount of Compton cooling
that would have accompanied the explosive formation of bubbles of radius R.;, with filling factor f.., by equating
the thermal energy to the minimum energy per baryon required to scour out a bubble of size R.., at redshift zc,p:

Re:rp
20h—! Mpc

nr

ECom

pton cool _3

——————— ~ul0 " feyp
Ecmb

2
) QhQ/? (80)
with v ~ 1/2. Chris Thompson [78] gave a more refined derivation and got the same functional form with prefactors u
ranging from 1/3 to 1, assuming that the electrons would be much cooler than the ions. The z.,, dependence is weak
for redshifts > 10 when Compton cooling dominates, and ~ (1 + z..,)?/? below. Thus the FIRAS limit of 6 x 10>
very strongly constrains the scale R.., and/or the filling factor f..,. If supernova explosions were responsible for
energy injection, one expects that the presupernova light radiated would be in excess of the explosive energy by a
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TABLE I. Sample dust emission models

Model: M8 M11 M14 M13 pk
Qqust 107° 107° 10~° 10 © ~ 10~ °
0Fini [ Eems 0.04 0.004 0.004 0.004 0.01S5
Mode burst burst steep E flat £ burst
Zgf 5 9 5 9 6-4
SENIr/6Einj 0.82 0.01 0.14 0.81 -

factor in excess of 100, which would lead to even stronger restrictions on the model; and if the supernova debris is
metal-enriched, the allowed amount of metals also poses a strong constraint.?

Another victim of the powerful FIRAS y-distortion limit was the superconducting cosmic string model of structure
formation, in which the strings would radiate magnetohydrodynamic and (damped) extremely long frequency waves
that would heat the medium, giving a picture of structure formation similar in spirit to the explosion model, but with
a more exotic energy source. Thompson has estimated 0 E/E .,y ~ 10722(Gnu/107°) for Qp(2h)? = 0.1, where Gx
is Newton’s constant and p is the string tension. This is much too large for the range of u needed to make the model
viable.

Figure 4(a) compares current DIRBE constraints with sample theoretical models having spectra peaking in the near-
infrared [81], examples of the energy releases discussed above: metal generating stars which generate Q,,¢¢01s = 1074
at z = 100 and at z = 9 (two solid lines), Eddington-limited accreting black holes (AGN pre-cursors) at z = 9 with
Q= 1073, VMOs with abundance Qy 3,0 = 0.05 at z=100 (dashed), that make Q,;, = 0.025-0.05. The curves scale
up linearly with Qcrais, Qon, or Qv p0, and with (2h)2. (All models shown have 2 = 1 and h=0.5.) With increasing
1+ z of formation, there is a linear increase to longer wavelength and a linear drop in the amplitude of the curves, as
in the transition between the 2 solid curves.

If intervening dust is present, these curves will have the same underlying energy but be shifted, at least partially,
into the sub-mm. Figure 4(a) shows the FIRAS bound given as a fraction of the CMB peak, while fig. 4(b) gives a
closeup showing what freedom there really is, since the most powerful FIRAS bound was derived by modelling the
Galactic emission so if cosmological sources can mimic that Galactic emission they are not as strongly constrained
(e.g., [49]).

For the sub-mm theoretical curves shown, corresponding to the BCH2 [42] models listed in table I, “normal”
Galactic dust is assumed, with far infrared opacity index ag = 1.5, similar to the value derived for single temperature
dust from the COBE observation. (ag = 2 is better motivated theoretically in this range, and, with a cold component
added, by the COBE observations, section III B7.) The dust abundance is Q4 (~ 1075 corresponds roughly to a Pop
I abundance of dust in bright galaxies). The radiative energy input relative to that in the CMB is dE;,,;/Ecpmsp, of
which a fraction 0 Ex1r/dEin; is not absorbed by the dust, and just redshifts to appear as a near infrared background.
This fraction depends upon the dust distribution. The peak of emission also depends upon how clumped the dust
is; BCH2 used homogeneous models which have maximally cool dust, hence somewhat bigger emission in the FIRAS
bands than the hotter compact dust of starbursts. A peak-patch model [68] for starbursting galaxies [82], including
normal and dwarf contributions, radiating with a dust temperature 7, = 30 K that form according to a gg = 0.7
CDM model, but which were not allowed to burst below redshift 4, is also given in the table, since maps based upon
it are shown in fig. 15: the parameter S is variable, but should apparently be less than 0.1 to satisfy the COBE
bounds of [12]; S = 1 would have all the normal galaxies that formed pass through a phase at birth during which
their luminosity output was at the Arp 220 level — Arp 220 being the canonical strong starburst example. Wright et
al. [58] and De Zotti et al. [83] give other versions of the constraints on dust emission from high (and low) redshift
galaxies that can be derived from FIRAS.

IV. PHENOMENOLOGY OF CMB ANISOTROPY

Generally many sources will contribute to the CMB anisotropy pattern. Now that fluctuations in the temperature
have been discovered, the challenge is to design experiments that can separate the many components that will be

2The limits from anisotropy are not as strong: the packed shell model above gives anisotropies at the few times 10~° level, but
the expectation was that in the early fireball development phase, the hot gas would create large anisotropies [2,75], although if
Te < Tion Thompson suggests these can be avoided.
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FIG. 4. (a) The intensity levels v, in units of the total CMB intensity I.mp = 1072 erg cm™2 s™* sr™! for a variety of
near-IR and far-IR models of energy generation associated with galaxy formation are compared with current limits and potential
measurement levels. The straight heavy line in the sub-mm shows the current FIRAS constraint on spectral distortions of the
CMB, the light upper lines show the 1990 announcement limit, and the improvement one year later (using Baade window
observations). The upper heavy line shows the COBRA limit. Typical optical and UV limits are denoted by daggers, IRAS
measurements are solid squares. Open circles are DIRBE’s “dark sky” values, hence upper limits to an infrared background,
heavy error bars give the estimated DIRBE range of residuals at high Galactic after removing “foreground” sources, and the
open squares denote the sensitivities DIRBE could in principle have gotten to with perfect source removal in 1 field-of-view
after 1 year of integration. Inverted triangles are limits from the FIRAS HF channels. (b) A closeup in the sub-mm. The solid
circle data points are positive FIRAS residuals the open data points are absolute values of negative FIRAS residuals. They
are bounded by the solid line. If a spectrum mimics Galactic emission then it is not as strongly constrained. The solid line
above G Pole/4 is the FIRAS determination of the Galactic Pole emission, lower is 1/4 of this. The heavy large-dashed curves
in both panels denote the tentative sub-mm background suggested for the FIRAS data (Puget et al. 1996). The upper dotted
curve is the CMB blackbody, next is the perturbed CMB with fixed 67 = 0.004, and last is the CMB times 0.00025. The solid

curves below these are BCH2 primeval galaxy models of dust emission.
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FIG. 5. The flat spectrum in thermodynamic temperature predicted for primary anisotropies is contrasted with the spectral
signatures for other sources of anisotropy (normalized at 4 mm): SZ anisotropies (long-dashed, with a sign change at 1300 pm);
bremsstrahlung (short-dashed); synchrotron (dotted), with index varying from ps = 0.5 to 0.9; and dust (with index g = 2 as
indicated by a two-temperature fit to COBE), both the usual Galactic dust at 20 K (heavy solid) and dust at 6 K and 4 K (light
solid lines, which could represent a cold Galactic component or, e.g., 30 K dust radiating at redshift ~ 5); a shallower, less
physically-motivated, aq = 1.5 dust opacity law for the 20K grains is also shown, appropriate for the single-temperature COBE
fit. The frequency bands which various experiments probe are indicated. There is a minimum of the Galactic foregrounds at

about 90 GHz, the highest frequency COBE channel.

present, in particular, the cosmological signals from those that are merely Galactic or conventionally extragalactic (e.g.,
radio galaxies). Ultimately, it will probably require a sophisticated combination of spectral and angular information,
and cross-correlation with other datasets, such as X-ray and HI maps. With enough frequency bands covered, the
prospects for separation on the basis of spectrum alone is not bad. Figure 5 draws together the spectral signatures of
the different sources of anisotropy that are likely to appear, using egs. (32), (39), (41), (48). Although the different
signals are gratifyingly different, many parameters must be fit.

The angular patterns could also be used, for example to get rid of point sources. Of course, this can be dangerous
since what we are trying to discover is the angular pattern in the background. We now turn to measures of this
angular pattern, with special emphasis on the power spectrum as a way of codifying the contribution of different
angular scales to the anisotropies for different cosmic signals. However, the patterns may be non-Gaussian, especially
for secondary anisotropies, and so how the power is concentrated in hot and cold spots defines a crucial aspect of the
distribution.

A. Statistical measures of the radiation pattern: C(0),Cq,...

To relate observations of anisotropy to theory, statistical measures quite familiar from their application to the galaxy
distribution have been widely used. Denote the radiation pattern as measured here and now by the two-dimensional
random field AT(§), where —G = (6, ¢) is the unit direction vector on the sky (and ¢ is the direction the photons are
travelling in). The correlation function is
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e <q’>>, cos(8) = 44, (81)

c® =707

where T is the background temperature (the monopole). In theoretical treatments, a probability functional describes
the distribution of the sky patterns. Generally all N-point correlation functions are required to specify the statistical
distribution. The random field is statistically isotropic if all N-point functions are rotationally-invariant. In particular,
this implies C(#) is only a function of the angle between the vectors ¢ and ¢’. The theoretical correlation function
is an ensemble-average of possible skies, while experimentally C(#) must be an angle-averaged estimate for the patch
of the sky over which the observations have taken place. Even if there were perfect resolution and all-sky coverage,
the observed C'(f) and the theoretical C'(#) would differ. For realistic experiments, the errors arising from both
observational sources and fluctuations because the observed patch of the sky is just one realization from the ensemble
are crucial to properly include. The latter effect is called “cosmic variance” [90].

Other analogues of 3D measures that have been applied to CMB maps include: constructing the one-point distri-
bution for AT/T as a function of resolution scale, the analogue of “counts-in-cells”; particular aspects are the rms
fluctuation on a given resolution scale, and the skewness and kurtosis of the distribution; the statistics of hot and
cold spots (high positive and negative excursions in the maps); the genus, etc. Many of these are rather obscured by
the intrinsic observational noise, and only full scale Monte Carlo treatments are possible to assess how well a theory
is faring.

As for the galaxy distribution on large scales, the most useful statistic is the power spectrum, Cy, for a 2D distribution
a function of multipole number ¢. For CMB anisotropies, it is natural to expand the radiation pattern in spherical
harmonics Yz, (0, ¢):

T = aenYn @ = 3 {eatialt.0)
¢ Im V4
4
#VE S Vi 0,000 co5(m6) — i sin(m)] (52

with the latter splitting the complex ag,, into ¢ + 1 symmetric real components, &,,, and ¢ antisymmetric real
components, 7¢,, the symmetry defined by the behavior under change of the sign of the longitude:

1 .
ago = &5 Meo = 0; Qg = ﬁ(g&n +iNem)

) 1 .
Qe = i = 5 (Eom = Wlem) ;M2 1 (83)

If the temperature pattern is statistically isotropic, then (a;, a¢m:) = 0 unless ¢ = ¢/, m = m'. The nonzero

components are the ensemble-averaged angular power spectrum,
Ce=L(C+1)Ce/(2m),  Co = {agnaem) = (&) = (i) - (84)

At high ¢, this corresponds to the power in a logarithmic waveband d1n(¢). The specific £(¢ + 1) factor is chosen
because C; is predicted to be flat at small ¢ for theories with scale invariant adiabatic density perturbations [246]
(section V' A). In terms of a discrete “logarithmic integral”, Z(f), of a function f;, defined by

((+3)

I(f) = ij Ty (85)
the correlation function is given by
c) = Z %4—;:1 Ce Py(cos(8)) = Z(Cy Py(cos(9))) . (86)

J4

The rms fluctuations in the multipole ¢ are found by squaring the ¢-poles of AT/T, and averaging over angles:

l 4
. 1 . 1 . . .
o= 3 laenl = 1 (6 + €t (57)
m=1

m=—/
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For example, Qrms = T 07,2 is the quadrupole amplitude. The full four-year data [85] gives Qrms = 10.7£3.6£7.1 uK,
the first the 1-sigma statistical error, the second Galactic modelling errors; i.e., or2 = 0.4 x 107° [1 £0.3 £0.7].

Over small patches of the sky, the curvature of the sky is not important and we can Fourier transform the radiation
pattern:

(i) = [ Gk Qe (53)

This is certainly useful for the fast Fourier transform can then be applied to small scale map construction. Here
I describe the way we did this in [88]. Choose a pole p within the patch and, in the neighborhood of the pole,
let w = (w,,wy) = w(cos@,sing), where w = 2sin(f/2) is confined to the range 0 < w < 2. Its magnitude is
@ = |G — gp|, and to terms of order w?, we can decompose the unit vector ¢ ~ ¢p + w into parallel and transverse
pieces. This representation is an equal area projection of the sphere onto a disk in the sense that a solid angle element
dQ) = sin@dfde is just wdwdp = d*ww. However, only for w < 1 does the map look good: as one goes into the
opposite hemisphere, the distortions are severe. Note that the opposite pole to the one we are expanding about is the
w = 2 circle.! To evaluate the angular power spectrum, we make use of the property that in the limit of large ¢ and
small w

Py(cos) = Jo(({ +1/2)w) . (89)

We therefore have

Q

AT, |?
Ce < T(Q)
This suggests that the analogue of the power per logarithmic wavenumber interval is actually (¢ +1/2)2C,/(27). The
form C, = ¢(¢ + 1)C;/(2m) adopted differs by only 4% for ¢ = 2 and by less than a percent for ¢ > 4. Since the
dimensions of () are inverse radians, the ¢—pole can be considered to probe angles around 3438/(¢ 4+ 1/2) arcminutes
(and angular wavelengths 27 bigger).

>, if Q=10+1/2. (90)

B. Experimental arrangements and their filters
1. Pizel-pizel correlation filters

We now discuss anisotropy experiments in more detail. Typically we are given the data in the form of measurements
(AT/ T)p + op, of the anisotropy in the pth pixel, where op, is the variance about the mean for the measurements.
In general, there may be pixel-pixel correlations in the noise, defining a correlation matrix Cp,,r with off-diagonal
components as well as the diagonal O’%)p. Also there is usually more than one frequency channel, with the generalized
pixels having frequency as well as spatial designations. The signal (AT /T'), can be expressed in terms of linear filters
Fp,em acting on the agp,:

(AT/T), Z FoptmGem - (91)

The F, ¢ encode the experimental beam and the switching strategy that defines the temperature difference, the
former filtering high ¢, the latter low ¢. They can also encode the frequency dependence if the signal has a fixed
spectral signature, as primary CMB and secondary SZ fluctuations do. Reality implies F, ¢, = =F, im- The pixel-
pixel correlation function of the temperature differences can be expressed in terms of a quadratlc Npm X Npiz filter
matrix W, ¢ acting on Cry:

We can choose to zero AT/T at this circle; the expansion is then a Fourier-Bessel series with cylindrical eigenfunctions
< €™ J 0, (Qum @), where the Q,.,, are the positive roots of J,, (2Qnm) = 0, thus with a discrete spectrum, though not useful
like the Y, ., expansion unless we are interested in small enough angles so that @ = 2 can be considered to be infinity and Qnm
becomes continuous.

31



2.5 T T TTTT T |||||||| T TTTTIT T TTTTTT T T TTTTIT T TTTTTm
- gz -
o L . ovro22 ‘ovro —

i pyl JCMT /TRAM _

_
»
I

VLA mmOVRO |

filters W,

~—

wdle \ \;
) = l‘}\illll | ||||| (R L

1 10 100 1000 104 10% 106
multipole {

FIG. 6. Filter functions for some current experiments: cobe’s dmr and firs are treated as single-beam maps; ten is Tenerife;
sp94 is the UCSB 1994 South Pole experiment, for which two filters for different HEMT receiver systems are shown; sk95 is the
1993-95 BigPlate (Saskatchewan) experiment, which is sensitive to a large range in ¢, and for which two filters at ¢ ~ 100 and
¢ ~ 300 are shown; py is Python; ¢2, ¢3 are 2 and 3 beam configurations for MSAM; maz is for the MAX3,4,5 experiments;
wdl,2 are the m = 1,2 analysis modes for the WhiteDish experiment. owvro is the filter for the 1987 OVRO experiment using
a 40-m radio dish, ovro22 uses a 5-m single dish, JCMT/IRAM illustrates what bolometer arrays on submillimeter telescopes
are sensitive to, and mmOVRO and VLA denote approximations to the (-space probed by a mm interferometer array and by
the Very Large Array in a compact configuration.

Crpp = <<%>p <%>p> = I[Wyp,eCre] (92)

Npix
47 . — 1 &
Wopr o = 21 E FouemFp omis Wi = N E Wop,e - (93)
m pre p=1

The trace W, defines the average filters [3,42,242] shown in fig. 6, which determine the rms anisotropies o7 [W]:

— AT\? 1 i —
J%[W] = <T> = N Z Crpp = I[WZCTZ] . (94)
rms pwe p=1

We define the band-power associated with the filter W, to be the average power across the filter [5,89]:
<CZ>W = I[Wgch]/I[We] . (95)

Usually the band-power is the quantity that can be most accurately determined from the experimental data, and it is
used extensively in what follows to assess what various experiments have measured, and what various theories predict.
In the high ¢ limit it is often more convenient to use the Fourier transform representation:
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(AT/T), = Y F(Q Q). F(Q) = Y= BQULQ), (96)
Q

where w, is the position defining the pixel, B(Q) defines the beam profile, and U,(Q) contains details of the switching
strategy. The associated filter for Cpp,r is

— T dopq ~ o~ ,
W@ = [ S2FQF @

2m
_ / d¢Q eiQ-(w,,prr)BZ(Q)UP(Q)UZ’; (Q) . (97)
0 27

The decomposition of the filter into a Fourier phase factor associated with the pixel position, a beam function and
a switching strategy function U, (which can depend upon the pixel position too for some experiments) is generally
useful for experiments on scales below a few degrees — provided distortions in the w-representation over the region of
the sky mapped are not large; if they are, it is better to work with the full spherical harmonic representation. The
analogue for the spherical harmonic representation 7, ¢, of pulling out the phase associated with w, is to pull out
an overall Yy, (§p), but with penalty that the switching factor is a function of m’ as well as the ¢m and possibly the
pixel position:

-7:p,£m = Z YVZm’ (qu)B(Ev m)Up,me’ . (98)

Discretization into time bins and aspects of pixelization are encoded in the functions Up ¢mm: or Up(Q).

2. Beams and dmr and firs

Experimental beams are characterized by a full width at half maximum 6¢.,p,,. Beams must be determined exper-
imentally, typically by determining the pattern of a point source on the sky. Usually there is a nice monotonic fall-off
from the central point to low levels of power. However, beams do have side lobes which experimenters suppress as
much as possible. Also the beams are not always rotationally symmetric. Still, for many experiments a Gaussian as a
function of angle is not a bad approximation. The beam would then also be Gaussian in multipole (Fourier transform)
space,

(¢+3)° ]
B(l|6s) = exp |- ——21— |,
e e
1 1 0t whm
gs + - = 0 s 05 =
2 2sin(hs/2) V81n 2

The square of the COBE beam is shown in fig. 6: it falls off more rapidly than the rough 7° fwhm Gaussian used [90]
before it was precisely determined [91].

One can imagine a “one-beam” experiment, with the temperature fluctuation relative to an absolute temperature
being determined. In this case, the average filter is just W, ~ B2((|(;). But this is never the case in practice
although the processed COBE and firs maps can be analyzed as if they were one-beam experiments. COBE actually
measures the difference between AT values at two beam-smeared points 60° apart, but as the satellite spins and
rotates, the entire sky is covered, albeit with different integration times for different sections of the sky. The set of
dmr measurements give the difference in AT from a given beam-smeared point to enough connected points 60° away
to allow a successful inversion and construction of a map: i.e., beam-smeared AT(§) values at 6144 pixels for each
of the 2 x 3 frequency channels (using a convenient oversampled digitization in squares of size 2.6° of each beam-
smeared point). The price one pays is that residual correlation in the experimental variance occurs between map pixels
separated by 60° [92]. The gain is that the COBE maps can be thought of as giving AT(6,¢) directly, smoothed
with a “single-beam” high-¢ filter associated with the beam-size. Of course, the monopole and dipole components are
also filtered out: the ¢ = 0 component, the average temperature on the sky, obviously is inaccessible; and because
of the large dipole anisotropy induced by the motion of the earth relative to the cosmic background radiation, the
“intrinsic” ¢ = 1 component is also inaccessible.

The coverage of the firs experiment is more complicated than for dmr because it was a balloon experiment taking
useful data for only about 5 hours. Nonetheless, a map with highly inhomogeneous weighting of each of the 1.3° pixels

~ 0.4250 .- (99)
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can be constructed for each of its four frequency channels. Although one may be more sophisticated in taking this
into account in the construction of Wy, it is reasonable to characterize the experiment by a one-beam filter function
(99), with ¢ = 34 corresponding to the 3.9° fwhm beam.

3. 2-Beams, 3-beams, oscillating beams, . ..

For a given theory, experiments could be designed to get the optimal signal. For example, MAX, MSAM and other
half-degree experiments probe multipole ranges which optimize the signal from power spectra like that for primary
anisotropies if the recombination of the primeval plasma occurred normally. A filter with a beam like that of sp94
is better for probing primary anisotropies if early reionization occurred. It is of course best to get information from
experiments probing the entire ¢ range, and thus the emphasis on large scale mapping experiments for the future. I
now describe the U, and W, for a variety of current experimental configurations to give a flavor for what goes into
fig. 6. Versions are also shown and discussed in [3,5,42,89,106,140,242].

A single-differencing (or 2-beam) experiment subtracts the temperature of the points on either side separated by
Othrow/2 from the central point (the pixel label). Let us denote the separation direction by @inrow. For a pixel at w,
we have:

AT AT
Ap = T(wp + %wthrow; ws) - T(wo - %wthrow; ws)
hence U,(Q) = 2isin(Q - @Winrow/2) - (100)

The filter is simply expressed in terms of the Jy Bessel function:

(+3

W, =[2(1 = Jo(x¢))] B*(€|¢s), where 7, = ——2—.
Ethrow + b

(101)

The Jo(z¢) term is really the high ¢ approximation to Py(cos@,0w). W rises like (252
In a double-difference (3-beam) experiment, the smoothed fluctuation at the pixel site has subtracted from it the
average of the fluctuations at a distance @;4,.,, away. Thus

AT
Ap = T(wzﬁ @s)
1 [ AT ) AT )
) T(wp + Wthrows zUs) + T(wo — Wthrow: ws) )
hence U,(Q) = 25in*(Q - Wenrow/2) (102)
with the average filter
W =1[2(1— Jolay)) — $(1 — Jo(2a4))] B2 (] ¢5) . (103)

W, rises like (452,

In the MSAM (g2, ¢3) experiment, the raw data was projected into both a 2-beam and 3-beam mode, an example
of a growing trend to adopt switching strategies in software rather than hardware. Often the experimental filters are
more complicated than 2 or 3 beam ones and the associated matrix elements must be calculated precisely, taking
into account the details of the pattern on the sky. For example, the sp91 and sp9/ experiments are similar to
single-differencing experiments, except that the beam oscillates about the pixel position in a direction @w,s. with
an oscillation amplitude @,s., frequency w, and time behavior w, + @y sin(wt), with the temperature positively
weighted on one side and negatively weighted on the other. The sp91 beam was 1.5° with oscillation amplitude of
2.95/2 degrees, roughly corresponding to a 2-beam throw of about 2°, not that much larger than the beam: thus
beam and throw interference result in a relatively small width and maximum of W,. A similar story holds for sp94.
For such an experiment,

w/
Up(Q) = 2iHp(Q - wosc), where Hy(x) = %/ i df sin(z cos(8)) (104)
0

is called the Struve function of index zero [242].
The $p89 experiment and the MAX balloon-borne bolometer experiment both had fwhm beams of 30" ({; ~ 269)
and also measured temperature differences via oscillating beams, with oscillation amplitude ~ 1.4/2 degrees. The
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filters differ because MAX used a sine weighting of the temperature to make the temperature difference rather than
the plus/minus step function technique of sp89 and sp91. For sine weighting, U,(Q) = 2i 5J1(Q - @osc)-

The 1.8" beam Owens Valley (0v7) experiment [94] used a 40-m radio dish at 1.5 cm to observe 7 fields on the
sky with a double-differencing (or 3-beam) experiment, which (basically) subtracted the average of the temperatures
7.15" to each side of a central point from the temperature at the central point. Thus ;0 =~ 480 corresponds to
the “throw” angle 64,0, = 7' and ¢, ~ 2246 is the beam’s filter scale. It is theoretically advantageous to have
Othrow > Opeam to get the maximum rms signal, but it is difficult to manage experimentally.

Python was a 4-beam experiment with beam 45" and throw 2.75°, hence also a very large ratio of throw to beam;
for it,

UP(Q) =2 Sin3(%Q ’ zz"throw) )
Wo= L[5 1575 (we) + 3Jo(20) — L Jo(320))IB2((L.).-

The raw data A,(¢) for the WhiteDish wd experiment (beam 12') are differences in the temperature of points on a
circle of radius @iprow/2 (= 14") centered on the pixel and the pixel. Among ways to analyze the data, the most
straightforward is to form angular moments, [ e~ "™?A,(¢) dg/(27):

U;)n(Q) = imJ’m(%thhrow) (Qz - le)mv W;n = Jfr2n(%thh'row)lg2 - (105)
Data was given for the m = 1,2 modes, derived from 5 pixels in a line.

As we move into the next generation of experiments, the goal is to make maps of extended regions. An example
of the increasing sophistication is provided by the sk95 experiment [150], which projected from 3-beam to 19-beam
configurations in software, leading to an interpretation of an even more generalized pixel-space than one just including
frequencies and spatial centering. The filter functions can also be designed after the fact with this approach, as in
fact was done for broad-band power spectrum analysis in [150]. Two such filters at either end of the ¢-range that sk95
was sensitive to are shown in fig. 6.

C. Primary power spectra for inflation-based theories

Sample theoretical C;’s are shown in figs. 7, 8 for a number of inflation-inspired theories with modest variations in
cosmological parameters [144,260,304]. The “standard” scale invariant adiabatic CDM model (2@ =1, ns; =1, h = 0.5,
Qp = 0.05) with normal recombination shown in fig. 7 and repeated in each of the panels of fig. 8 illustrates the typical
form: the Sachs—Wolfe effect dominating at low ¢, followed by rises and falls in the first and subsequent “Doppler
peaks”, with an overall decline due to destructive interference across the photon decoupling surface and damping by
shear viscosity in the photon plus baryon fluid. A similar CDM model, but with early reionization (at z > 200),
shows the Doppler peaks are damped, a result of destructive interference from forward and backward flows across the
decoupling region, illustrating that the “short-wavelength” part of the density power spectrum can have a dramatic
effect upon Cy, since it determines how copious UV production from early stars was. Lower redshifts of reionization
still maintain a Doppler peak, but suppressed relative to the standard CDM case (as illustrated in fig. 8(e)).

The primary spectra are calculated by solving for each mode M the linearized Boltzmann transport equation for
photons (including polarization) and light neutrinos, coupled to the equations of motion for baryons and cold dark

matter, and to the perturbed gravitational metric equations (section VI).
(M)

If the post-inflation fluctuations are Gaussian-distributed, then so are the multipole coefficients a,, ’,

with ampli-
tudes fully determined by just the angular power spectra C éM). Figures 7, 8 include adiabatic scalar and tensor contri-
butions. The relative magnitude of each is characterized by either the ratio of the quadrupole powers, rs = CéT) / Cés),

or the ratio of the dmr band-powers 7; = (CZ(T))me/<C§S)>me. For the scale invariant cases, 7 is taken to vanish.
A simple variant of CDM-like models is to tilt the initial spectrum. We deal with the physics of tilt in more
detail in section VI, and just sketch the main results here. The scalar tilt is defined by vs = ns — 1, in terms of
the usual primordial index for density fluctuations, ns, which is one for scale invariant adiabatic fluctuations. There
is a corresponding tilt which characterizes the initial spectrum of gravitational waves which induce primary tensor
anisotropies, v;. Inflation models give vy < 0 and usually give vs < 0. For small tensor tilts, rs & —6.9v, and
ris & 1.37s are expected (with corrections given by eq. 184). For a reasonably large class of inflation models v; & v,

but in some popular inflation models v; may be nearly zero even though v; is not. Figures 7 and 8(a) show C ES) +C ET)

derived for tilted cases when v; = v, is assumed to hold. Figure 7 also shows the contribution that C ET) makes to the

total; C§T) for both the standard and early reionization cases are actually both shown; they cannot be distinguished
on this graph.
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FIG. 7. Temperature power spectra normalized to (Ct),,,., = 1071% for a standard ns=1 CDM model with standard
recombination, early reionization, a (dashed) tilted primordial spectrum with n, = 0.95, with the gravity wave contribution
shown, a (dotted) Hy = 75 model with A # 0, and an open Ho = 60 CDM model (with the peaks shifted to larger ¢).
Band-powers with 10% (dmr-level) error bars (for selected experimental configurations) are shown for the tilted and untilted
CDM models. A hot/cold hybrid model power spectrum with €, = 0.2 is plotted as well but is indistinguishable here from
the standard CDM case. The power spectra of SZ maps constructed using the peak-patch method (Bond and Myers 1996)
are shown for a og = 1 standard CDM model, a hot/cold hybrid model (2, = 0.3) with og = 0.7 (a tilted CDM model with
ns = 0.8 and og = 0.7 is also shown). Spectra for a BCH2 dust model (13) is also shown, the larger (arbitrarily normalized) part
a shot-noise effect for galaxies with dust distributed over 10 kpc, the smaller a continuous clustering contribution, including a
nonlinear correction. The ~ ¢2 shot-noise rise also characterizes the power spectrum for extragalactic radio sources. On the
other hand, Galactic foregrounds have power spectra falling ~ ¢~! with £. Average filter functions for a variety of experiments
are shown in the lower panel.

36



\\\HH‘ T \\\HH‘ T
__n=1,r =
s

s

a) voGW X '0J=0.05,n,=1,r,=0 (b
—_ 0,=0.1 x

_n=.9r =

T FET TR YT FTETE AT A

i

4

HH‘HH‘H\\‘\H\‘\H\‘\\H‘H\T"TH\V\\H‘H\\‘HH‘HH‘HH‘HH‘HH’
bbb b B B b b B B L

|

\H‘HH"HH

3 <E >
gl/\ﬁfdmr
O, N WH O LOFR,NWH N O~ NWHR OO

im- 2y, >200,n =1

reh

__ SRn,=.95

|
N
I
w
o

F

e ‘]A WY RE ' s Ny
I Ll
1000

|

¢

FIG. 8. Spectra for a variety of inflation-inspired models, normalized to the COBE band-power. Theoretical band-powers
for various experimental configurations are placed at (), horizontal error bars extend to the e YW mae points. Unless
otherwise indicated, Qph? = 0.0125, h = 0.5, ns = 1; when the gravity wave contribution is nonzero, vy = vs and 7, & —Tve
are assumed (1 = CST)/CZ(,S)). The untilted ns = 1, r¢s = 0 model is repeated in each panel (solid line). (a) CDM models with
variable tilt ns. (b) ns = 1 models with Qph? changed, h fixed. (¢) ns = 1 models, with Qph? changed, Qp fixed. (d) ns =1
models with fixed age, 13 Gyr, but variable Hy and QA = 1 — Qcam — Q5 (.92,.79,.43,0 for 100,80,60,50). (e) CDM models with
very early reionization at z,.n = 150 (equivalent to “no recombination”), and later reionization at z,.r, = 30,50 are contrasted
with standard recombination (SR). The z,., = 50 spectrum is close to the n, = 0.95 spectrum with SR (thin, dot-dashed): the
moderate suppression if 20 < z..p S 150 can be partially mimicked by decreasing ns or increasing h. (f) Sample cosmologies
with nearly degenerate spectra and band-powers. Dashed curve: increasing 2a is compensated by increasing h. Dot-dashed
curve: tilting to ns = 0.94 (7ts = 0.42) is compensated by increasing Q2a to 0.6. The dotted hot/cold model curves (Bond and
Lithwick 1995) (with Q, indicated) are nearly identical to the standard CDM one, but even these few percent differences can
be distinguished in principle by satellite all-sky experiments with currently available detector technology.
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Spectra for hot/cold hybrid models with a light massive neutrino look quite similar to those for CDM only
[259,261,260], as fig. 7 and 8(f) show, with small differences appearing at higher ¢. This is also even true for pure hot
dark matter models [134] because the scale associated with neutrino damping is near to the scale associated with the
width of decoupling.

The dotted C; in fig. 7 also has a flat initial spectrum, but has a large nonzero cosmological constant in order to
have a high Hp, in better accord with most observational determinations (~ 65 —85) e.g., [10]. The specific model has

the same age (13 Gyr) as the standard CDM model, and Qx = 0.734, Q.4 = 0.243, Qp = 0.022, Hy = 75, ns = 1.
+1.7;3.7

(The best current estimate for globular cluster ages, along with one and two sigma error estimates is 14.6 1776150 Gyr
[111].) Other nonzero A examples with this age are given in fig. 8(d). As one goes from ¢ = 2 to ¢ = 3 and above
there is first a drop in C; [110], a consequence of the time dependence of the gravitational potential fluctuations @y
(see fig. 23 for a closeup of this).

The model whose peak is shifted to high ¢ is an open CDM cosmology [304] with the same 13 Gyr age, but now
Hy = 60, and Q4 = 0.33 (and Qegn = 0.30, Qp = 0.035). By Ho = 70, Q4 is down to 0.055 at this age. The
shift to higher ¢ for open models is a simple consequence of the cosmological angle-distance relation (section VA 4,
eq. (130)); for closed models, the shift is to smaller ¢.

To get a visual impression of what the spectral structure means, fig. 9 shows what the sky looks like on a few
resolution scales for the standard ns, = 1 CDM model: on the COBE beamscale (Gaussian filtering ¢, = 19 here, see
also fig. 11), the nearly scale invariant form; on the half-degree scale (¢; = 269 here), where the standard recombination
spectrum is a maximum; with no smoothing at all, with the shapes defined entirely by the destructive interference
that occurred across the photon decoupling region. For early-reionization, the shapes in the 60° NR map are also the
naturally occurring ones, since there is no power left at {5 ~ 269 to artificially filter.

D. 2D spectra with tilt and a Gaussian coherence angle

A phenomenology characterized by three parameters, a broad-band power (C¢),,, a broad-band tilt va7, and a
Gaussian coherence scale 6, is often a good local approximation to Cy:

1 N
Qrare 297 T[]

— i . Q=(+3, w.=2sin(36,).
I[WQrare™2%"]

2

Co = (Codyr
(106)

Instead of @27, it has become standard to use a form U/, which, as is shown in section V A, arises when the anisotropy
is generated by emission from a thin shell at cosmological distance of sources described by a 3D Gaussian random
field with power spectrum P(k) o kVAT:

_ Dl +var/2)I(C +2)

U= SO+ 2 = var]2) Q"1 (1+0(Q72)). (107)

The band-power (Cy)3 derived for an experiment is estimated using one or more of these functional forms, and is
often quite insensitive to var or to 6.. Two special cases are usually analyzed:

(1) The pure power law case has zero coherence scale and var variable. va7 nearly 0 corresponds to scale invariant
in AT; vap = 0.15 is an effective index appropriate for COBE-scale anisotropies for a standard initially scale-invariant
CDM model with Q = 1, h = 0.5 and 5% baryon content [144,89], and varying vay can model changing the primordial
tilt of the spectrum: it is relatively insensitive to h and 2p changes for low ¢, but see fig. 23.

(2) The other case has a coherence scale and a white noise spectral index var = 2, a Gaussian correlation function
model with C(w) = (AT/T)? exp(—4w?/w?). It describes uncorrelated blobs of size ~ 6, and is similar to the
spectrum for a shot noise distribution of blobs with Gaussian profiles (section V C1, also see fig. 7) and so is a
reasonable form to try. Note that the form ~ (2 exp[—(?(w?/2 + w?)] when the beam smoothing is included is not
very dissimilar from the form of the W, of a 2-beam experiment, again not unreasonable. However, the (AT/T).
versus . plots that became the standard way of representing experimental data until the band-power representation
was developed are somewhat misleading: even if there is no information at all in the experiment on the shape of the
spectrum, (AT'/T'). will have a minimum at a scale corresponding to where the filter function has its maximum; by
contrast, the band-power is largely 6.-independent unless one has a mapping experiment with very broad filters; i.e.,
is sensitive to the shape.
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FIG. 9. How a CDM model normalized to COBE varies with resolution. The contours begin at 109 pK in the half-degree
smoothing cases, 54.5 K in the no-smoothing case, 27.3 pK in the all-sky aitoff projection map. Positive contours are heavy,
negative are light. SR denotes standard recombination, NR denotes very early reionization, so there is no Doppler peak. The
hills and valleys in the 5° SR (60° NR) map are naturally smooth: mapping them will give a direct probe of the physics of how
the photon decoupling region at redshift ~ 1000 (200) damped the primary signal.

39



E. Experimental band-powers: past and present

The story of the experimental quest for anisotropies is a heroic one. The original Penzias and Wilson (1965)
discovery paper quoted angular anisotropies below 10%, but by the late sixties 1072 limits were reached [123,124]. As
calculations of baryon-dominated adiabatic and isocurvature models improved in the seventies, with the seminal work
of Peebles and Yu [130], Doroshkevich, Sunyaev and Zeldovich [131] and Wilson and Silk [132,133], the theoretical
expectation was that the experimentalists just had to get to 10~*. And they did march from 10~ down to 10
in the seventies, with results from Boynton and Partridge [125], among others. The only signal that was found was
the dipole, hinted at by Conklin and Bracewell in 1973, but found definitively in Berkeley and Princeton balloon
experiments. Throughout the 1980s, the upper limits kept coming down, punctuated by a few experiments widely
used by theorists to constrain models: the Uson and Wilkinson [126] limit of 5 x 1075 with a 4.5" switch (and therefore
not much primary signal); the 1987 OVRO limit [94] of 2 x 107> on 7’ scales (also below the coherence scale); the 6°
limit of Melchiorri’s group [127]; early versions of the Tenerife experiment [129]; the 7°-beam Relict 1 satellite limit
[128]; Lubin and Meinhold’s 1989 half-degree South Pole limit [95], on an angular scale which was optimal for testing
CDM-like models.

These data were used to rule out adiabatic baryon-dominated models, but by then the dark matter dominated
universes had come to the rescue to lower the theoretical predictions by about an order of magnitude [134,135]. Many
groups developed codes to solve the perturbed Boltzmann-Einstein equations when dark matter was present e.g.,
[134,135,214,136-139], and, post-COBE [140-143,159,301,305]. With the results of the pre-COBE computations, a
number of otherwise interesting models fell victim to the data: scale invariant isocurvature cold dark matter models
[214]; large regions of parameter space for isocurvature baryon models [215,217]; many broken scale invariant inflation
models with enhanced power on large scales [232,191]; CDM models with a decaying (~ keV) neutrino if its lifetime
was too long (2 10yr) [232,251]; constraints on Qp,  and A in CDM models [242,136]. For all of these the strategy
was to normalize the anisotropy predictions using the clustering properties predicted by the model, in particular by
sg.

Now that we have detections, we normalize spectra to the COBE anisotropy level, and can now use the data to
rule out theories from below as well as from above. In fig. 10, I use the band-power estimates with their error bars
to give a snapshot of the current data at this time and use it as a vehicle for discussing the associated experiments.
To determine band-powers for an experiment [5,89], a local model of C; is constructed, assumed to be valid over the
scale of the experiment’s average filter W,. I usually choose eq. (106) with zero coherence angle. The once popular
var=2 coherence angle form is rapidly disappearing from the scene, but it is also easy to transform such results into
the band-power language. As we learn more, a shape that fits the data will be the preferred form [89].

Because there are so many detections now, fig. 10 is split into two panels for clarity, the upper giving the overview,
the lower focussing on the crucial first Doppler peak region. Data points either denote the maximum likelihood values
for the band-power and the error bars give the 16% and 84% Bayesian probability values (corresponding to £1o if the
probability distributions were Gaussian) or are my translations of the averages and errors given by the experimental
groups to this language. Aspects of these statistical techniques are described in section IV F. Upper and lower triangles
denote 95% confidence limits unless otherwise stated. The horizontal location is at (¢),,, and the horizontal error bars
denote where the filters have fallen to e=%-% of the maximum (with fig. 6 providing a more complete representation
of sensitivity as a function of ¢). Only wavelength-independent Gaussian anisotropies in AT/T are assumed to be
contributing to the signals, but nonprimary sources (e.g., dust, synchrotron) may contribute to these C;’s (as can
unknown systematic errors of course). Either it has been shown that the frequency spectrum is compatible with the
CMB and incompatible with expected contaminating foregrounds or some attempt at cleaning the observations of
residual signals in almost all of these cases. With residual contaminants, one generally expects the underlying primary
C¢ to be lower than the values shown, but it can be higher because of “destructive interference” among component
signals. In the following, considerable space is devoted to the dmr data since the definitive 4-year data set has been
released and it is so important for normalizing spectra. (A closeup view of the large angle band-powers is given in
fig. 23.)

The ¢ = 2 power uses the 4-year quadrupole value [85,86], determined from high Galactic latitude data. It is the
multipole most likely to have a residual Galactic signal contaminating it, possibly destructively, and the “systematic”
error, the dashed addition to the statistical error bar (solid), reflects this. In determining the dmr band-power, it
is therefore wise to assume that in addition to any primordial signal, unknown monopole and dipoles, there is an
unknown Galactic quadrupole contamination. Further, the Galactic plane should be cut out, and other regions of
known large Galactic contamination should be removed as well. T used to take |b] > 25° as a safe cut [146], but
have now adopted the |b] > 20° customized cut used by the dmr team in its analysis of the 4-year data [85], which
also removes regions found to be high when correlated with the 140 pm DIRBE map, in particular Ophiucus and
Orion. The two heavy points at ¢ ~ 7 are band-powers derived for the 4-year dmr 53+90+31 GHz “A+B” maps,
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FIG. 10. Band-power estimates derived for the anisotropy data up to March 1996. The lower panel is a closeup of the first
“Doppler peak” region. The theoretical curves are those of the filter figure, normalized to the dmr/ data: the standard SR CDM
model, the nearly degenerate one with 2, = 0.2 in light massive neutrinos, the NR CDM model, the Hy = 75 vacuum-dominated
model (upper), the slightly tilted CDM model with a gravity wave contribution, and the Ho = 60 open model. All are for
universes with age 13 Gyr. Although current data broadly follows the inflation-based expectations, the band-powers shown
may have signals from systematic effects such as sidelobe contamination or Galactic effects such as bremsstrahlung and dust,
as well as the cosmological primary and secondary anisotropy signals.
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using the methods of section IV F [146,162], the solid point assuming a vay = 0 spectrum, the open marginalizing
over all possible vap. (The latter is lower by 6% if a Galactic quadrupole component is not allowed for.) A good fit

as a function of var to the band-power is <Cg>}d7/,jr ~ [0.82 + 0.26(1 — ¥47)%8] x 1737, which is reasonably insensitive
to modest variations in var. Band-powers derived for the “A+B” maps as a function of frequency are in excellent
agreement: the functional form with the 2.8 power fits well, but the coefficients and errors are slightly different:
53 GHz: 0.88,0.24,110%: 90 GHz: 0.95,0.15,1"18; 31 GHz: 0.90,0.08,1%1%. The band-powers are also remarkably
insensitive to making signal-to-noise cuts in the data (i.e., filtering it). The “A-B” maps are consistent with no signal.

DMR had enough coverage in ¢-space that one can estimate the spectral index 1 4+ var from the data as well by

Bayesian means (marginalizing over <Cg>1/2 K 1.07f:§g;:g§ for 534+90+31 GHz (agreeing with the dmr team’s result

dmr

using this method [87] and also with the 1.05"_“:3;;:23 I determine for the Ecliptic (as opposed to Galactic) coordinate
versions of the maps); 0.97f:gg;:gz for 53+90 GHz; 1.15% 550 for 53 GHz; 1.27f:ig§:;g for 90 GHz. (First errors are
1o, second are 20.) Notice the preferred index actually goes down when the 53 GHz and 90 GHz are added. For the
31 GHz map, there is a residual bremsstrahlung contribution that lowers the index determination to 0.3, with large
errors.

The approximate relation between va7 and the primordial tilt v, for the standard CDM model over the dmr band is
var =~ 0.15+v,, hence the values of 1+va are quite compatible with the simplest inflation expectations, 0.6 S ng S 1.

~

Indeed when standard CDM models with tilts ranging from 0.5 to 1.5 are considered, the index marginalized over
os for the summed map is n, = 1.02Jjj§§;:§§ for the case with no gravity waves (1, = 0), and ny = 1.02i;§§;;;f§ with
gravity waves (v; = v). Band-powers for specific ¢ ranges also show the nearly flat character of Cy, as the light open
points at £ ~ 4,8,16 from [87] show.

Optimally-filtered maps show the same large scale features independent of frequency. The 53+90+31 GHz version
of this in fig. 11 shows the true sky anisotropy features as revealed by COBE (cleaned of experimental noise). It is
compared with a realization of a scale invariant 2 = 1 dark matter dominated model which has driven so much of the
theory of the last decade. The basic lesson is that there is a tremendous consistency in the 4-year dmr data set, with
the overall band-power being very well determined and the shape moderately well determined.

Many papers estimating Q,ms ps (i-e., C2), var, 0, etc. have been written using the 1-year and 2-year dmr
data e.g., [90,84,255,256,89,6,146], [287-291] which will all now be footnotes to history except for their importance in
developing the statistical techniques that have been applied to the definitive 4-year dmr data. A variety of different
measures such as correlation functions and power spectra estimated by quadratic pixel combinations, multipole modes
and S/N-modes using linear pixel combinations, have been used and there is good agreement among the methods [85]
and with the results given here.?

The two points at £ ~ 10 are for the 170 GHz firs map, solid with the restriction va; = 0, open with va7 allowed
to float. A “Galactic quadrupole” as well as a model for residual “noise” that exists in the data [89,6] were integrated

over. The band-power (C;)%/2. & 1.15 4 0.03(1 + var)? x 1723 is compatible with the COBE value. For example,

firs
for the n, = 1 standard CDM model, g = 1.27i;§3:;§§, compared with the 53+90+31 GHz A+B dmr map value of
o8 = 1.20f'8§ﬁ;. This strengthens the case for a CMB origin, extending the 31-90 GHz band to 170 GHz. The firs

team [93] also showed a significant cross-correlation with dmr exists. Although the firs coverage in (-space is large
enough that a spectral index can be estimated, the value I obtain for 1 + var, 1.6f:;, has very large errors, and the
small angle residual “noise” is probably driving the higher values [89]. Using a correlation function analysis, which
filters some of the residual noise, the firs team [93,147] derived similar amplitudes but a smaller var, although quite
compatible within the large error bars.

The Tenerife point [103] at £ ~ 20 uses combined 15 and 33 GHz data, agrees with the band-power for their data
at 15 GHz only, which covered a much larger region of the sky, and is rather remarkable in view of the relatively low
frequency (fig. 5). The Tenerife results have also been shown to strongly correlate with the DMR maps.

We now come to the crowded region from two degrees to half a degree. The lower open circle is from a joint 4-channel
analysis of the 9 and 13 point sp91 scans [96,5,89,162] (with the individual 9 point and 13 point values given in the
lower panel). The upper solid is for a simultaneous analysis of all channels of the sp94 data [148,162], with separate

2The 1-year (C@)}ifr and og value is rather close to the preferred 4-year estimate, e.g., only 3% lower for 53 GHz A+B [89].
For this channel, the 2-year value is about 4% higher, but for 90 GHz A+B it is 14%, leading to a 12% higher (CZ>(11£:T and a
14% higher og in the 534+90+31 GHz A+B map. Much of this can be attributed to the customized cut: a straight |b| > 20°
cut gives only a 4% discrepancy. The main lesson is that one should disregard the earlier values and only use the new ones

with the customized cuts; further foreground corrections beyond this do not change the values by much [85].

42



4—yr COBE South Galactic Pole Map
UNFILTERED OPTIMAL FILTER

< 140 degrees = < 140 degrees —

(b,c,d) contours: AT/T = +0.55%x1075 n, n=1
(a) contours: AT/T = +0.55x107® 2r-!, n21

FIG. 11. 140° diameter maps centered on the South and North Galactic Poles are shown for a realization of a CDM
Cy—spectrum convolved with the dmr beam in (c). No noise has been added. This is how the primary sky would appear in a
ns = 1 CDM Universe with og = 1.2 (or in a 2, = 0.2 hot/cold universe with og = 0.8), the most likely values for the dmr data.
This is contrasted with the 4-year dmr (534+90+31)a+b map shown in (a) and the map after the data has undergone optimal
signal-to-noise filtering in (b) (using the same C;-shape and amplitude for the filter). The statistically significant features are
also seen in each of the dmr channel maps after optimal filtering (which preferentially removes high angular frequencies, more
so for noisier maps). Thus, to compare, (d) shows the theoretical realization after passing (c) through the same optimal filter
used for (b); the average, dipole and quadrupole of the full |b| > 20° sky were also removed, an effective low (-filter — if they
stay in, the maps look similar to the unfiltered theory maps except small scale smoothing leads to loss of the higher contour
levels. Note that the contours are linearly spaced at £15n uK for all but (a), for which the spacings are +15, 30, 60, 120 uK.
The maps have been smoothed by an additional 1.66° Gaussian filter.
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4—yr COBE North Galactic Pole Map
UNFILTERED OPTIMAL FILTER

THEORY

N LA

< 140 degrees = < 140 degrees —

(b,c,d) contours: AT/T = +0.55%x1075 n, n=1
(a) contours: AT/T = +0.55x107® 2n-1, n21
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values for the Ka and Q bands (fig. 5) in the lower panel. The solid triangle in the upper panel is the sk93 result; the
big solid circle at ¢ ~ 80 in the lower panel is the s£95+94 result. The nearness of the sp9/4, sk93 and sk93+94 band-
powers, and the demonstration for both experiments that the preferred frequency dependence is nearly flat in AT/T
and many sigma away from bremsstrahlung or synchrotron, the expected contaminants in this 30-40 GHz range, lend
confidence that the spectrum in the ¢ ~ 60-80 region has really been determined; and it looks quite comfatible with
the COBE-normalized CDM spectrum: sp94 gives og = 1.26f:3;::i‘;’, and sk95+94 gives og = 1.21fj?3jj§9 [162], very
close to the dmr value given above: that this would be so is evident from the curves. The 5 heavy open circle points
probing ¢’s ranging from 60 to 400 repeated in the upper and lower panels labelled sk95 are combined sk93+94+95
results [150]. The estimated 14% error in the overall amplitude because of calibration uncertainties associated with
Cas A are included. The large (-space coverage from this one intermediate angle experiment gives a first glimpse of
the (-space coverage that will become standard in the next round of anisotropy experiments.

Python [104], py, the heavy solid curve at ¢ ~ 90, is sensitive to a wide coverage in (-space as the horizontal error
bars in the top panel indicate. Argo [105], ar, a balloon-borne experiment, is next. The next five points in the lower
panel are from the fourth and fifth flights of the MAX [100,99], maz4,maz5, another balloon experiment. Because the
filters changed with frequency, the points are placed at the average over all maz filters. In the upper panel three maz/
scans are combined into one data point as are two maz5 scans. The lines ending in triangles at ¢ =~ 145 and 240 denote
the 90% limits for the MSAM [101] single (msam?2) and double (msam3) difference configurations. A limitation on
these balloon experiments is the ~ 5 hours over which data can be effectively taken. Planned long duration balloon
flights that would circle Antarctica for about a week would allow extensive mapping at high precision to be done, and
a number of groups have been proposing designs labelled ACE, Boomerang, Maxima, Top Hat.

The CAT points at ¢ ~ 400 and 600 represent a very different experimental technique, interferometry, so I will
discuss the approach in some detail. CAT is a 3-element synthesis telescope, probing ~ 15 GHz frequencies with a 27’
synthesized beam and a 2° field-of-view (the fwhm of the individual telescopes). It is a precursor to the larger VSA
(Very Small Array), covering a wider frequency range with more telescopes and a larger (4°) FOV. Two other CMB
interferometers are also planned: CBI (fig. 16) and VCA. Interferometers directly measure the Fourier amplitudes

KT(Q) for wavevectors Q associated with the baseline separation of the telescopes; Q rotates with the rotation of the
earth and with many movable telescopes many |Q| can be probed as well. Analysis is most naturally done in Q-space
with the power spectrum a direct outcome. The phase information can be used to reduce atmospheric contamination.
Maps sensitive within the FOV can be made using methods such as maximum entropy reconstruction. The CAT team
have done this. The low frequencies of CAT implies that radio source contamination is a problem: these are found
using the higher resolution RYLE interferometer (section V C4) and subtracted from the CAT data.

The ovro experiments are also at radio frequencies, but use single dishes. The 1987 ovro 7 point upper limit [94]
used a 40 meter dish. A 5 meter dish has been used for the larger scale ovro22 experiment (fig. 6) that has detections
awaiting the cleaning of radio sources found with the 40 meter dish. WhiteDish [102] had a small amplitude filter
function, fig. 6, a hint of a detection in the m = 1 mode and a 95% limit in m = 2 mode at ¢ ~ 520, wd2. The open
triangle at ¢ = 160 is the (historically important) 95% credible limit for the sp89 9 point scan [95,242].

F. Measuring cosmological parameters with the CMB

In the future we will be able to strongly select the preferred theories by simultaneously analyzing experiments like
these. Although combining the statistics for a number of experiments was quite effective when we just had upper
limits (e.g., using sp89 and ov7 in [242]) and interesting when we had a mix of detections and upper limits (e.g.,
using dmrl, sp91, sp89 and ov7 [140]), it can also be quite misleading unless we are careful to include secondary
backgrounds, foregrounds, instrumental systematics and calibration uncertainties as well as primary anisotropies in
our model for A,, or can demonstrate that they are absent. Band-power diagrams such as fig. 10 are very useful
guides in the evolving progress towards a primary C, spectrum, and help to inhibit theorists from over-interpreting
the cosmological consequences of the current data. Some of the datasets have now been shown convincingly to be
consistent with a CMB rather than a foreground or systematic origin, and this warrants a return to the multiresolution
approach, since so much more can be determined using long baselines in (-space. In this subsection I illustrate how
the multiresolution approach works with two exercises. The first, fig. 12 taken from [140], shows what the near future
looked like as seen from summer 1993, with experiments still characterized by a narrow W, because of beam-to-throw
constraints, like most experiments in fig. 10. Although the prognosis was good, an approximate degeneracy in the
parameter space was identified that showed that apart from an overall amplitude (e.g., og) only a single parameter,
U5 (described below), was really well determined by few-scan data [144]. The second illustration, fig. 13, shows how
well all-sky high-resolution satellite experiments can do, as examples, albeit best-case ones, of what low noise maps of
contiguous regions may achieve: the approximate degeneracy is broken and a large number of cosmological parameters

45



1

LI IIIIII ] ] IIIIIII ] | L | IIIIII ] I rrrenet
=R CDM,n=0.85 _
Hy=50.02,=.05

(a)
S4+T

{i+1) C, / (BC,)
- N

L1 1 1 il [ [ IIIII:II“"-. L L 1L 1 RNl

10 130 1640 10*
{ (multipole)

o

1.0 grrr s T TT T TR T TR
gimulatad (h) ()

1 0 : data : L

<
wn

SCALAR

| HENEEE ' '-
TENSOR N

FIG. 12. A vintage simulation of how the multiresolution combination of experiments can determine cosmological parameters,
from Crittenden et al. (1993). (a) C¢/C2 for tensor, scalar and the sum for a tilted (vs = v+ = —0.15) but otherwise standard
CDM model with normal recombination. Hot/cold hybrid models look quite similar. The light dashed line is an Q5 = 0.01
model. The rest of the panels show contour maps in parameter space derived from simulated large and small angle data
consisting of the dmr correlation function (with error bars appropriate to 4 years of data), six 13 point sp9! strips (1.5° beam,
18-27uK error bars for each of the 4 frequency channels), six 9 point sp89 strips (0.5° beam, 15uK error bars) and one ov22 strip
(7" beam, 22’ throw, 25uK error bars). Error bars as good or better than these are now being achieved. The mean signal input
into the simulated data is denoted by the square; “x” denotes maximum likelihood. (b) Shows 1, 2 and 3 sigma contour lines
in the scalar ([Cés)]l/z/lo_s) versus tensor ([CéT)]l/Q/IO_s) amplitude plane, assuming the index 0.85 is known. (c) Shows
1, 2 and 3 sigma likelihood contours for the simulated data in [02(5)]1/27715 space, constrained to obey the CZ(,T)/CéS) ~ —Tvs
and v¢ = v, relationship (solid) and with this ratio unconstrained, but v; = v;. Shading indicates the range for which CDM
models are not dynamically viable based on og. Without other information such as this, one recovers well only one parameter,

a combination of [CZ(,S)]I/2 and ns, while parameters orthogonal to this have wide error bars. This ambiguity increases when
the space is opened up to encompass more cosmological parameters.
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can be simultaneously determined with relatively high accuracy. Less spectacular, in ¢ range and sky coverage, but not
by a huge amount, are projections for what will be achievable in ¢-space from long duration balloon and ground-based
interferometry experiments. In between, statistical methods are briefly discussed.

In [140], simulations of data sets with assumed noise levels were constructed for experiments probing ¢ S 15 (dmr),
¢ ~ 100 (sp91), € ~ 200 (sp89) and ¢ ~ 500 (0v22). The noise levels were being achieved even then and the number
of scans chosen for each configuration is conservative. The input signal was a model with s = 1, equal scalar and
tensor quadrupole powers and tilts vy = v = —0.15, with spectrum shown in fig. 12(a). The issue addressed was
how well the input signal could be recovered as one progressively relaxed what was known. What fig. 12(b) shows is
that if we happened to know vs and vy, recovery of the overall amplitude is excellent, and recovery of the ratio r¢s is
also quite good. (With only dmr data, r:s cannot be determined because the tensor and scalar spectra look the same
apart from ¢ = 2.) Allowing v to vary in fig. 12(c) shows that we can get one direction in parameter space very well,
that corresponding to the Uy variable of eq. (108), but the orthogonal one is sloppy. However, if we accept that we
know the relationship between v, and v, which can be computed for any specific inflation model, e.g., v, = v;, with
r¢s then following, then recovery is excellent. Using the 4-year dmr data in conjunction with just the sk9/ and sp9/
data gives error bars on ns that are similar to what this simulated exercise gave [162]. Another important point to
note in fig. 12(c) is information on the allowed value of og taken from cluster observations tightens up the precision
with which the parameters are determined. This is addressed more fully in section VII C. However, if we open up the
parameter space to include variations in Q, h, z,..x, etc. —as in fig. 8 — then more ambiguity arises.

Superposed upon the spectra in figs. 7 and 8 are theoretical band-powers derived for a variety of anisotropy
experiments. Figure 7 also shows 10% one-sigma error bars: with 4 years of data, the dmr band-power errors are 14%;
to achieve this with smaller angle experiments one would need to have about the same number of pixels as COBE,
but scaled to the beam size hence covering a smaller region of the Universe: that is, mapping experiments on smaller
angular scales. Even if there were idealized perfect all-sky coverage with noise-free versions of the experiments of
Fig. 7, there would still be cosmic variance errors on the band-powers to limit the accuracy. These go as (()71 [89]
even for quite narrow bands, as is shown below. Thus it appears that by using (nearly perfect) CMB experiments
which are sensitive to a wide range of angular scales, we might expect to distinguish even among the nearly degenerate
theoretical models shown in fig. 8(f), and be able to measure the parameters that define the variations in these models.

The near-degeneracy is especially prevalent through the first Doppler peak. In [144], we showed that for small varia-
tions about the “standard” CDM model, with ny, =1, Q@ = Q,, =1, Q5 = 0.0125h 2 (from big bang nucleosynthesis),
the height of the first Doppler peak relative to the dmr band-power is (within ~ 15%)

C2|maz 3.60
Stmaz 5 360, (108)
<C2>dmr
~ hl(]. + Fts) 1 QBh2 Zreh 3/2
s, — T g 510120 1] 40,08 —1—( ) .
Vs RV 36 [0 = 51+ 0.08( 55125 T

The nature of the tensor reduction term is clear. The Q}/fh term follows from a strong dependence on the redshift
at equal energy densities in relativistic and non-relativistic matter or a.q, eq. (69). This term shows that the height
of the peak goes up as Qo = 1 — Q. goes up, quite dramatically for fixed h, but not by much for models with
fixed age, since h goes down, as fig. 8(d) illustrates. a4 also varies with the relativistic energy density, .., if it is

not the “standard” value with three massless neutrino species; if not, Q%,°h should be divided by [Q.,/(1.680Q,)]/?
in eq. (108). (See [158] for small variations breaking the simple a., degeneracy, and for another form for #;.) The
reionization term is simply related to the depth to Compton scattering from the re-ionization redshift z,.., to the
present by 2C¢/3.6 o (zren/zco—1)3/2, where zc.—1 ~ 10*1 (25h/0.02)"2/* Q? (eq. 72), and so depends on ,,,h?
(and on Qph?). z.., must be < 150 to have a local maximum, as fig. 8(e) shows.

In [144], we fixed Qph? at 0.0125, but, as fig. 8(b) shows, a linear dependence in 7; on g gives the variation
of the peak height to sufficient accuracy. However, fig. 8(b) also shows that the relative heights of the secondary
Doppler peaks are sensitive to 25, so the approximate degeneracy is broken in the variable Qgh?. It is also broken
by Qiot, since the position of the peak, determined by the angle-distance relation, changes. The formula eq. (108)
shows that a model with no gravity wave contribution but ns =~ 0.88 has a spectrum that is almost degenerate with
the ngy = 0.95, 7ty = 0.3 spectrum, so much so that it will be difficult to tell them apart. We argued that the precision
required to separately determine ng, 75,2, ... was too high for what was then the near-term future, but 7, could
be determined accurately, and that to separate the various contributions to 75 in the near term would require other
cosmological experiments, e.g., measuring the scalar perturbation shape through galaxy-galaxy power spectra and
amplitude through cluster abundances or streaming velocities (section VII C); and, in some happy future, determining
Hy definitively. In the future, NASA and ESA high precision CMB space experiments should achieve the sensitivities
necessary using CMB anisotropy information alone [161,152,154].
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Fig. 13 gives a closeup view of how very fine differences in the theoretical C; can be measured using detector sensi-
tivities and the long observing times appropriate for satellite experiments feasible with present technology [152-154].

To discuss how cosmic variance, experimental noise, and sky coverage affect the estimation of the predicted band-
powers, it is worthwhile to make a brief excursion into statistical analysis. For the CMB data sets that have been
obtained up to now, including COBE, it has been possible to do a relatively complete Bayesian statistical analyses
[155] if the primary anisotropies are Gaussian and the non-Gaussian Galactic foregrounds are not large. The goal
is to determine the best error bars on the parameters of a target set of theories with correlation matrices Crpp,
by first determining the likelihood function £ for each theory, and then comparing the likelihoods as a function of
the parameters. To give preferred values and errors for a specific cosmological parameter of interest such as the
Hubble parameter, one often integrates (marginalizes) over the other parameters, such as og and ns, assuming a prior
probability distribution, which can be a statement of a priori maximal ignorance, or take into account constraints
from other information such as large scale structure observations, as is done in section VIIC.

A useful method for likelihood determination is to expand in signal-to-noise eigenmodes [146], those linear combi-

nations of pixels which diagonalize the matrix C,, Y/ 2C’TC; Y/ 2, where the noise correlation matrix C,, = Cp + Ces
consists of the pixel errors Cp and the correlation of any unwanted residuals C..s, whether of known origin such as
Galactic or extragalactic foregrounds or unknown extra residuals within the data.?

The S/N-mode basis facilitates the many Ny X Npip matrix inversions of C; = C,, + Cr involved in evaluating
the likelihood function,

In L(on) = =LA (Cp + Cp) 1A — LTraceIn(Cp, + Cr) — Npig In /27, (109)

as a function of an overall amplitude oy, o [Trace(CT)]% (e.g., os, 05/2/10*5, (Cg)ifr/10’5). Here 1 denotes
transpose. (This form of the likelihood function assumes a Gaussian distribution of errors and that the target
signal and residuals are also Gaussian-distributed. To derive it, integrate 6(¥»i=) (A — A) over each A, probability
distribution, A = n,T,res. The total A coming in to the detector is modelled as A = A,, + Ap + A5, each with a

distribution exp[—%AgC;lAA]/((%r)NP”det[C’A])%. If the target signal or any of the residuals has a non-Gaussian
distribution, the integrations cannot usually be done and Monte Carlo treatments of the statistics becomes necessary.)

Constraints such as averages, gradients (dipoles, quadrupoles) and known templates, which may be frequency
dependent (e.g., IRAS or DIRBE dust maps) can also be modelled in the total A, as “nuisance variables” to be
integrated (marginalized) over. Denoting each constraint ¢ on pixel p by k.Y, where the template for constraint c is
Tpe (e.g., the Fp 1, and Fp o of eq. (91) for the dipole and quadrupole) and the amplitude is k., we need only replace
A, in eq. (109) by A, — > _Y,ke, then integrate, assuming a prior probability distribution for the amplitudes k..
This is most easily done if we assume the k. are also Gaussian-distributed with a very broad distribution reflecting
our ignorance of its values (or if we know its likely range, incorporating that as prior information in the Gaussian
spreads). The integration over k. then yields

InLyo=InL+ iR [0t (K-t + vies )~ ric, A
—1Traceln(I + KYTC, '), (110)

where K. = (kcke) is the assumed prior variance for the constraint amplitudes. Evaluating this involves only
N¢ x N¢ matrix inversions, where N¢ is small compared with N,;,. Taking into account constraints with amplitudes
that are not linear multipliers times the template is much more complex. N

An equivalent expression to eq.(110) for In £ ¢ takes the form eq.(109) but with C, replaced by C,, = C,, + TKYT.
The constraint portion of the matrix is just (3. kY pe D Ker Tprer). The span of the templates T, defines a subspace

3The N,i, modes &, = Z;\J:lz (RC;I/Q)kp(AT/T)p, having the “dimensions” of signal-to-noise, can be expanded into noise
nk, signal sk, residual “noise” resy not accounted for by C,, and any further “constraints” c; (residual dipoles, quadrupoles,
etc. ): &k = sk + nk + ¢ + resy [5,89,6,146]. Here R is a rotation matrix. In this basis, the noise and signal have diagonal
correlations: (ngpng ) = Sppr, (SkSk) = Err kdrrr- The great simplification of orthogonality, i.e., no mode-mode correlations, is
destroyed somewhat by off-diagonal terms in the (crcyr) and (resgresy ) (if they are not fully modelled by Cr). The modes are
sorted in order of decreasing S/N-eigenvalues, ETg i, so low k-modes probe the theory in question best. This expansion is a
complete (unfiltered) representation of the map. In S/N-filtering, only restricted ranges in this k-space are kept. The sum of
€2 over bands in S/N-space defines a S/N-power spectrum which gives a valuable picture of the data and shows how well the
target theory fares [89,146,162].
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in the data. As the eigenvalues of K become very large, the effect of the constraint matrix is to project onto the data
subspace orthogonal to that spanned by T,.. Although one can directly use the likelihood equation in this projection
limit (using 6(V¢) (k) for the constraint prior), it is computationally simpler to use the Gaussian prior.

Which form of the likelihood to use depends upon the application: using eq.(110), one can vary the number of

constraints to include without recomputing the S/N modes associated with C{1/2CTC’{1/2 (e.g., allowing for a
Galactic quadrupole contamination in the dmr data or not); for a fixed but large number of constraints, the eq.(109)

form is better, using S/N modes associated with citropcnt.

Many of the determinations of the band-powers and their error bars shown in Fig. 10 were facilitated by S/N mode
expansions. This technique has the highest sensitivity to the data, but a byproduct is that it is also sensitive to low
level residuals. If these exist, they can sometimes be removed by signal-to-noise filtering, getting rid of modes that
are very insensitive to the class of theories being tested.

A strong indication of the robustness of the dmr data set is the insensitivity of the band-powers to the degree of
signal-to-noise filtering and to which frequencies are probed (section IV E). This S/N-filtering is a form of data com-
pression: when the eigenmodes are rank-ordered by decreasing eigenvalues, one usually finds that only the moderate
to high S/N-modes (e.g., ~ 10% for COBE) probe the target theory well and the rest must be consistent with noise
[89,6,146,162]; and if they are not, filtering out the high S/N-modes leaves offending residuals whose nature can then
be explored. [89,6,146].

Filtering using S/N-modes has a long history in signal processing where it is called the Karhunen-Loeve method
[156], and it is now being widely adopted for analysis of astronomical databases.

When the number of pixels becomes too large, statistical compromises are necessary because the eigenvectors of
the full S/N matrices cannot be determined. An all-sky experiment with 10’ resolution will have more than a million
pixels per frequency channel, and long duration balloon experiments will have tens of thousands of pixels. Exploring
how to best estimate power spectra and cosmological parameters given computational constraints by first projecting
the data onto well chosen smaller subsets is sure to become a very active area. This happy day of too many pixels is
Nnow upon us.

The optimal (Wiener) filtering shown in fig. 11 is an immediate byproduct of the S/N-eigenmode expansion
[89,157,146]: given observations A,, the mean value and variance matrix of the desired signal A, are [231]

(Ap|A) = CoCTMA, (0A7 @ 6A7|A) = CpC7H(Cy — Cr) . (111)

The mean field, (A7,|A), is the optimally-filtered map. The operator multiplying A is the Wiener filter. If the map
is very sensitive to the assumed Cr or if the fluctuation, 6Ar, = Ap, — (ATP|Z>, of the signal about the mean is
large in some region of space or on some resolution scale, then this tells us that the data there are not yet good
enough in the optimally-filtered maps to identify real structures on the sky with this method. (Marginalization over
the constraints is incorporated into the mean field and variance by adding YK YT to C,, and thus C; [146].)

To get an idea of how experimental noise and sky coverage affect the estimation of the predicted band-powers, we
consider an experiment with noise matrix Cp,p = 02,0, , with the per-pixel error oy, independent of the pixel
position (i.e., homogeneous uncorrelated noise). Suppose first that the pixels are sufficiently separated that Crppy = 0
for p # p/, i.e., that only W, is an effective probe of C,. For large N, the 1-sigma uncertainty in the experimental
value of the band-power about the maximum likelihood value, (C¢) 5 0,1, 18 [89)]

A(C) g = \/2/Npiz (€ maer + T2/ TOV ]| (112)

For large Npi., the observed maximum likelihood will fluctuate from (C;) 5 ,;,, the theoretical quantity we want, but

the error bars of eq. (112) include these realization-to-realization fluctuations (thus v/2 appears, not 1). To get 10%
error bars as in fig. 7 requires low experimental noise and N,;, ~ 200 “independent” pixels, i.e., a mapping experiment.

In a mapping experiment, the pixels will be adjacent and off-diagonal correlations in Cr,, are very important, but
for a large enough contiguous region and simple observing strategies this can be adequately treated with an expansion
in the agy, (or Fourier) modes. With uniform weighting and all-sky coverage, the S/N-modes are just the independent
Re(agm) and I'm(aem,). For each ¢, there is a (2¢ + 1) degeneracy, an effective pixel number for ¢-modes. If only a
fraction fs, of the sky is covered, then for high ¢, so that the angular scale (=! is small compared with the patch
probed, the effective pixel number scales by fsz,. Thus, for each ¢, we have

V2 ‘

ACrp &% ———ooe (Cry + Cres + CpeBB, %), 113
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1/2 1

Thus the cosmic variance for each ¢ goes as @~ %/, where, as usual, @ = ( + 5. The filter function associated with
the beam is 5. It has been divided out to show that the effective noise level in C; determination picks up enormously
above (, ~ (0.4256'fwhm)_1. For fixed experimental parameters, the combination ¢, remains the same as the pixel
size is varied.

Figs. 7 and 8 show that the variation in C7, with cosmological parameters is quite smooth so we can broaden the
band-power filters to encompass more than a single ¢. In fig. 13, the errors shown are those appropriate for logarithmic
binning of width +1AIn ¢ about In ¢, with 2AIn ¢ = 0.05. This gives a better feeling for how well parameter estimation
can occur. The variance is

[(CTe + Cres,e)? + 271 (Cre + Cres 0)CpeBy % + 72C% B, 412
V@ Fsky v/cosh(AIn O)[1 + Qsinh(AIn ()] '

ACTZ ~
(114)

The factors v; and 7, are nearly unity if Aln ¢ is small. There is a crossover point at which ACy, from cosmic variance
goes from the usual Q /2 dependence to a Q! dependence.
(The derivation evaluates the likelihood function within the (integer-spaced) [e=2"¢/2¢] < L < [eA!™/2(] interval.

The cosmic variance term is just the sum of ¢ + % over the bin. The 7; and - terms are estimated by expanding in

noise-to-signal, Cp¢/[(Cre + Cres,e)B?], up to second order, grouping terms to preserve the basic form of (ACr,)? in
eq. (113). If var is the local slope of (Cr¢ + Cres,e), then

_ sinh[(2 —var/2 + (Qw,)?)Aln/]

(2 -var/2 + (Qw,)?)sinh(Aln ()’
3sinh[(3 — var + (Qw,)?)Aln (]
(3 —var + (Qws)?)sinh(Aln f)

m (115)

Y2 R4 —

If w; is small and for a flat vap = 0, 11 = cosh(Aln¢) and v, =~ 1. For example, although fig. 13 includes the full
corrections of eq. (115), the result without them is indistinguishable for the Aln¢ = 0.1 chosen.)

The all-sky uniform-noise assumption was used to model the dmr correlation function errors before the 1-year
data were released, as in [5,140] and Fig. 12. The uniform-noise assumption for regular connected patches cover-
ing a fraction fs4y of the sky has been used recently to address the ultimate accuracy in measuring cosmological
parameters that satellite and balloon experiments might achieve if foreground contamination (i.e., Cyes,¢) is ignored
[159-161,154,163,164]. That application will be sketched here, following the treatment in [163], since it represents a
nice exercise for working with the likelihood formula, eq.(109), is being widely used, and it allows us to focus on the
two forthcoming satellite experiments.

We shall use current specifications for MAP and COBRAS/SAMBA, although these may well evolve. In fig. 13,
parameters roughly suitable for the NASA mission MAP [152] and the higher resolution COBRAS/SAMBA [154]
are shown. Of the 5 HEMT channels for MAP, we shall assume the 3 highest frequency channels, at 40, 60 and 90
GHz, will be dominated by the primary cosmological signal, and adopt fwhm beams of 32, 23 and 17 arcminutes,
respectively. We shall take the noise power to be Cp, = 4.5 x 1071° for each channel (i.e., 35 uK per 18’ pixel), which
decreases by two if the mission time is doubled. For COBRAS/SAMBA, which has both HEMTs and bolometers,
we take the 3 best bolometer channels at 150, 217 and 353 GHz to be the primary cosmological ones, with fwhm
beams 10, 7, 4.4 arcminutes and noise the remarkable Cp, = {1.3,1.7,2.4} x 10717 (3.4, 3.9 and 14 puK per 10’ pixel),
respectively. We shall also assume f,z, = 0.65 will be usable, the same as the fraction used in the analysis of the
4-year dmr data.

Consider a class of cosmological models with Gaussian-distributed temperature anisotropies defined by a parameter
set {ya}. For definiteness here we shall use the parameter space {Qor,h, Qph?, vy, 7es, Quae, (Ce) g, (o'}, with the
residual energy density, Qior — Quae — 2B, assumed to be in cold dark matter, (C;), the total bandpower for the
experiment and (¢ the Compton optical depth from a reheating redshift z,.; to the present. This is similar to the
space used in [154], except that C, was used instead of (C;) 5 (which does not change the results much); [161] added
2 more parameters, while [163] added 7 more.

For illustration we shall assume that the correct underlying theory is an untilted standard CDM one (the hot/cold
model has a very similar power spectrum). After integrating the 8 parameter probability distribution over all other
parameters but one, sample results for COBRAS/SAMBA are v, to +0.006, Q25h? to 0.8%, Hy to 0.3%, Qyac to
+0.01, Q40¢ to £0.003, while for MAP they are +0.04, 5%, 6%, £0.2, £0.02; if Q4 is forced to be zero, the MAP
constraint on 2,4, would improve to £0.1, and to £0.006 for COBRAS/SAMBA. COBRAS/SAMBA has such high
sensitivity that it could even determine €,,, to £0.03. Of course, between the experimental data and these wonderful
numbers many complications, especially foreground removal, must be overcome.
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We now sketch the method used for this analysis. Choose the parameter set {ya., } which approximately maximizes
the likelihood (e.g., using quadratic estimators to determine the power spectrum from the data and fitting it with
Ce(yam))- Expand In £ to quadratic order in 0ys = ya — Yam. Adjusting the ya,, so that the linear term d1ln £/dya
vanishes, thereby yielding a Gaussian approximation with zero mean to the likelihood,

ICry 2 9Cry

L~ Ly exp[—% ZEAB(SyAfSyB] , Sap= 8y—A 9ya

AB

(ACye) ™

(116)

Here the parameter derivatives 9Cp¢/dy 4 are evaluated at y 4., as is the Cyy in the variance (ACy¢) given by eq.(113).

Just as was done for the constraints, it is convenient to choose a Gaussian prior probability for the fluctuations
0ya, with covariance matrix H4p. The limit of very large eigenvalues of H corresponds to no prior information on
the dy4. The final probability for the parameter fluctuation dy4 is then a Gaussian with mean zero and variance
(S + H~1)~1. If we are interested in the error bars on 6y, irrespective of the values of the other variables, we would

marginalize over these. The 1-sigma error is then £4/(S + H~1),;, the numbers quoted above.

Generally the errors in the parameters will be correlated through nondiagonal components of (S + H~1)~!. There
are linear combinations of the parameters which are uncorrelated, namely (S 4+ H~1)'/2§y. When the eigenvalues
of (S + H™') are rank ordered, from high to low, the variable combinations corresponding to the top ones will be
very accurately determined, while those for the lowest may be very poorly determined, representing the degenerate
directions in parameter space. Such parameter eigenmode combinations are therefore a natural generalization of the
degeneracy parameter g of eq.(108).

These idealized studies do not take into account the issue of separating the many components expected in the data,
in particular Galactic and extragalactic foregrounds. As can be seen from fig. 7, the effects of Sunyaev-Zeldovich
fluctuations on the power spectrum are not large. However the power comes come the clusters and so non-Gaussian
aspects of this “foreground” are important (fig. 16). Little is known about high redshift extragalactic sources in the
sub-mm. The shape of the power spectrum will have a ~ ¢? part just from the source counts, and could also have
a tail into lower ¢ associated with clustering, as shown in fig. 7. By contrast, much is known about the abundance
of extragalactic radio sources as a function of flux at long wavelengths. However extrapolations to higher frequencies
are required, some poorly known fraction of the sources have flat (ps ~ 0) spectra, and it is not known how much
of a problem this will be in the optimal 50-150 GHz observing window for the CMB. The ~ ¢? Poisson part should
strongly dominate.

There is currently some optimism that the Galactic foregrounds may not be a severe problem. The individual warm
and cold clouds in the standard three phase ISM model are quite small (see, e.g., [50] for an inventory), and the
observed structure of the far-infrared emission, dominated by the dust-laden Cirrus clouds discovered by the IRAS
satellite, is actually rather filamentary with a power spectrum rising towards low ¢ with vay; ~ —1 [107]. Galactic
bremsstrahlung also has a var ~ —1 power spectrum, found using the dmr data [108]. This is extremely important
since it suggests that in the ¢ ~ 100 — 500 range, especially in the frequency range around 90 GHz, these backgrounds
will not overly contaminate high precision experiments. Complications will arise however, the most important being
the non-Gaussian concentration of power and the possible multicomponent nature of the dust. Because of this rise to

“The derivation is most easily done using S/N eigenmodes, which, as a result of the homogeneous noise assumption, are
spherical harmonics for all-sky coverage or Fourier modes for smaller patches. If we expand about parameters {ya.} for which
the likelihood is not necessarily a maximum, we have

InL=InL.+ ZFA5yA -1 Z(EAB +0SaB)dyadys,

[g (1 +<€* )] (0 /Oya)(0Ek/OyB)
E k a +5 ") k (0&k/0ya), Sap = E b f +5*k)k ,
_1 [Er — (1+E4)] [, (9€/0ya)(0E/OyB) 2
0Sap = 35 E i+ g*k)zk {2 b i+ g*kI; — (0 gk/ayA(?yB)},

where dya = ya — ya. and the S/N eigenvalue & and its derivatives are evaluated at {ya«}. The appropriate (linear)
adjustment to the maximum likelihood parameters isyam —yas = (S+ 55)71}7’ The Fa(ya —yam) term then vanishes, where
now 0ya = Ya — YAm, leaving In L =In L,,, — 3 ZAB SAB 4+ 0S4aB)dyadys. The matrix §Sap contains the fluctuations in the

S/N power spectrum, Ei, about its mean value (1 + £,1). If £ is the correct theory, the ensemble average of §Sap vanishes
and it is usually ignored — as was done for the specific numbers given.
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low ¢, the quadrupole is more contaminated than higher multipoles, which results in a large (70%) systematic error
in its value from Galactic modelling uncertainties [85], hence the large error bars in fig. 10. An important exercise is
to see how well we can do parameter estimation as we vary experimental mapping strategies and sky-coverage when
realistic non-Gaussian foregrounds are included in simulated data sets. In [154], optimal-filtering techniques (eq. 111)
were used on simulations of primary and secondary signals and realistic frequency-dependent foregrounds to show
that a well-designed high resolution experiment with good frequency coverage (e.g., the COBRAS/SAMBA set of
channels in fig. 5) should be able to accurately recover the primary signal.

V. PRIMARY AND SECONDARY SOURCES OF ANISOTROPY

The radiative transfer solution involves a line-of-sight integral of a 3D random source-field G(q,§,r,7) through
some region, projecting it onto the 2D sky through the action of the Green function, eq. (18), on the source. General
features of the C;’s can be understood from projections of simplified forms for G, which is the exercise undertaken in
section V A. Since this section also introduces some of the typical mathematical manipulations used to treat transport,
it is reasonable on a first pass to just read the introductory overview, and then go directly to section V B which describes
the sources for linear primary anisotropies and to section V C which describes some nonlinear secondary anisotropy
sources.

A. Angular power spectra from 3D random source-fields

A general selection function or visibility V(7) is taken out of G. It “illuminates” the portion of the 3D random
source-field we are to look at. In this subsection, general formulae are derived for the multipole coefficients a,,
in terms of fluctuations in G(q,q,k,7) (eq. (123)) and for the associated C; in terms of the 3D power spectra for
G (eq. (125)). Seeing what happens in special cases is quite instructive: limiting cases for high ¢ (eq. (126)) and
the relation to the Fourier transform approximation for 2D maps (eq. (129)); narrow and broad visibility limits
(section V A 5); simplified 3D spectra which allow analytic evaluations (section V A 6). The latter tells us in what
limits the phenomenological spectra of section IV D are realized by the transport of physical 3D fields; in particular,
3D power law spectra with narrow visibilities lead to the 2D formula eq. (107); white noise spectra with Gaussian
coherence-filtering lead to the 2D “Gaussian correlation function” model for a narrow visibility function, but the form
is modified for broad visibilities.

These results are applied to a treatment of SZ and dust-emission secondary anisotropies in section V C to give an
understanding of why the spectra for these anisotropies look as they do in fig. 7. All that is needed from this section,
section V A, is the broad visibility high ¢ limit. For secondary anisotropies, the back action of the radiation field on
the fluctuations in G is usually ignorable, but G is determined by the nonlinear physics of cosmic structure evolution
— and subject to the inevitable approximations the treatment of that entails.

A look at the dominant source fields for primary scalar anisotropies is given in section V B, which relies upon
the results quoted in section III A for G for Thomson scattering and the Sachs—Wolfe effect. Among other things it
describes how one arrives at the AT /T ~ ®5/3 “naive Sachs—Wolfe formula,” with @ the gravitational potential,
and what it neglects. This section will be easier to follow in conjunction with section VI which gives a full treatment
of perturbation theory and the primary scalar (section VIE 1) and tensor (section VIE 2) anisotropies. We shall see
that the 3D source fields are highly coupled to AT and to each other so we can expect analytic forms for G to be only
approximate.

1. Simple sample sources

The source function G(g, §,r, ) can be expanded in powers of §. For all sources we need to consider, the expansion
contains at most terms of quadratic order in ¢. The quadratic terms for scalar and tensor modes come from the
Sachs—Wolfe gravitational redshift sources of eq. (22) and some of the subdominant Thomson scattering sources.
However the dominant Thomson scattering source terms and all of the secondary sources have only terms of zeroth
and first order in ¢, i.e., monopole and dipole sources; further momentum space transformations can put the scalar
Sachs—Wolfe terms into this form.

For the illustrations in this section, we shall consider only monopole and dipole sources, and further simplify the
dipole by assuming it is a gradient:
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FIG. 13. This shows the ability of satellites to measure cosmic parameters to high accuracy. The relative difference of the
power spectrum in question from a comparison spectrum (both normalized to the 4-year dmr (53+90+31)A+B COBE maps)
are shown so that the few percent deviations can be clearly seen over the entire ¢ range. The lighter lines are 1 — sigma
error bars for all-sky coverage (averaged over the smoothing width shown, with %Alnf = 0.05) and include cosmic variance
(dominant at low ¢) and pixel noise at 20uK or 6uK (dominant at high ¢), with the very rapid growth relative to the theory
curve at high ¢ coming from the finite beam-size (with the fwhm indicated, corresponding to a Gaussian filter in multipole
space of ¢; = 404 and ¢; = 809 respectively). The first choice corresponds to the NASA satellite experiment MAP, the second

choice to the ESA mission COBRAS/SAMBA, if the entire sky were usable (errors scaling o fs_k;/Q
achievable will depend upon the decontamination of the primary signal of non-Gaussian Galactic synchrotron, bremsstrahlung
and dust signals. The models shown all have a uniform age of 13 Gyr, Qcdm + Qms + Q4 + Q5 =1, Qph? = 0.0125, ns = 1

and no gravity wave contribution. Notice the scale change for the hot/cold model panels. (One species of massive neutrino was

). The ultimate accuracy

adopted for these two cases.)
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G V(1) [G(r) =¢-VGi(r) +--,

% NT(T) [Ago + Ag, +] (117)

The secondary anisotropy sources accompanying distortions are of the scalar Gy form: eq. (31) for Compton upscat-
tering, eq. (46) for dust emission and eq. (38) for bremsstrahlung. The asymmetry in Thomson scattering from the
flow of electrons contributes a dipole term, o7aq - [neve], to G. The current n.v. can be expanded in terms of the
gradient of a scalar potential, thus of the G; form, and the curl of a divergenceless vector potential. For primary scalar
perturbations, the curl vanishes, leaving only a G;-type term, but when the gas is nonlinear and clumpy, Vn, will
not be aligned with v,, generating a curl source which can sometimes exceed the anisotropy driven by the gradient
term.! For primary scalar fluctuations there are also Go-type terms.

For mathematical convenience, a (differential) “visibility function” V has been removed from the sources and a
“transparency function” 7 from AT/T. This is useful to do if there is a reasonably strong concentration of the
“emissivity” in redshift space. For Thomson scattering, the transparency is 7 = e~¢¢. Depending upon which
sources we are interested in, } will either be the differential Thomson visibility function, Vo = n.orae¢, of fig. 3
or the integrated visibility e=¢¢. For the Sunyaev-Zeldovich effect from clusters, we would take both 7 and V to be
unity. For dust emission from primeval galaxies, V can be chosen to define an (angle-averaged) emission shell and 7
to be unity, as we described in BCH2 [42].

2. Angular power spectra for simple sample sources

We now manipulate and solve the transfer equation in a manner which shows how one passes to C; from the 3D

power spectra for the random source fields,
k3
PQAQB (k;>27AX) = 2—7_‘_2 <gA(va+)g.B(vaf)>v A,B=0,1, (118)

where Y = (x4 + X-)/2, AX = X+ — X—, X+ = ¥ & $Ax. We shall assume that the sources are statistically
homogeneous and isotropic, so that the 3D power spectra are functions only of |k|. If the sources are Galactic, for
example, this will not be correct.

The easiest way to deal with the gradient terms is to rewrite the transfer equation as

o (AT . AT,
E(T) +q'V<T> =9

AT\ AT )
(T) =T +VG1, G'(q,r,7)=V(1)G + Evgl ) (119)

where G' now has no ¢ dependence. If we assume that there is initially no anisotropy, then the solution (in a flat
background cosmology) is

ATN ~ Tk <o —ik-GR ()
<T> (q,q,here,now) _‘/0 dX/W(Sg (q7k77-)e )

R(x)=x=m-—-T. (120)
In open or closed universes, the mean curvature precludes making a Fourier transform expansion, but a prescription
for small angles using a modified R(x) is described in eq. (130) below.

For secondary anisotropies, there is a nonzero angle-averaged part to the random function G(q, §,r, 7), which gives
average spectral distortions:

AT [ dQy
—(qu:07T0)> :/ / -
< T angle 0 4m

V(T)QO(Q7T = vavT) dX (121)

!Nonlinear Thomson scattering in a flowing plasma is responsible for the moving cluster effect generated at relatively low
redshift from ionized gas in groups and clusters, and for the Vishniac effect, which has quadratic nonlinearities included to
correct scalar primary anisotropies in a baryon isocurvature example with early reionization.
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For primary Thomson scattering anisotropies, this term vanishes.
To go from eq. (119) to the anisotropy pattern on the sky as embodied in the multipole coefficients ag,, of eq. (82),
we make use of the plane wave expansion

e S i) o (B) Yo (@) (122)

Im

(Recall that (204 1)P(§- k) = Yom 47TYZm(IQ:)ng(qA).) Denoting the contribution of mode k to the anisotropy ag., by
aom (k), we have

Apm Z/%dzm(k), (123)
Gem (k) = / " (i) 4xY 5 (R)je (k)56 (g, K, 7)
/ V() (=) 4rY () [Goje (k) + kG ju(kx)] (124)

using an integration by parts on the G1 term. The statistical homogeneity and isotropy assumption implies in particular
that the correlation of (G (k)aj,, (k")) is zero unless k' = k, so the 2D radiation power spectrum, C, = £({ + 1)

(laem|?}/ (27), is

Co=20(0+1) /dlnk/dgdAX VR + 1A0V(x - LAy

_ (A (B
> K PG (ks T AN (e )il (ko) (125)
A,B=0,1
with j( ) = Je, ]é ) = Jjp and A, B = 0,1. Thus to understand how the C, will look, we rnust get into the arcana

of how products of spherical Bessel functions behave. We show below that the product Jz (kX+) Jo (kx ) can be

written as Jz (k:x) (B)(kx)(cos(k”Ax) plus a fast-oscillation term which will often average to zero). In that case,
the Ay integration reduces to a Fourier transform defining a function p(/%H : X, A, B) which encodes information about
variations in the visibility about the average longitudinal distance y:

dc,

TnE "~ 20(0+1)
/dXVZ ) > (k) Pgag, (X, 0 0) (i) (k) kAHE |
A,B
V(X V ) [PQAQB +PngA](k X X) 7.
dAy — cos(k;Ax),
/ [V X) [PQAQB +PngA](k7X7 ) ( I )

(126)

where k| = k| (%), kj(x) = VF?> — Q*/x2, Q = (+ 5. Here (jéA)jéB)> is either a direct product of the Bessel functions
evaluated at kY or an approximation to it given by eq. (128) below. For example, the main feature of (jej.)(z) at
high ¢ is that it is nearly zero for x < @, falling from a finite maximum as (2z/22 — Q2)~! for = > Q.

Examples of dCy/dInk for primary anisotropies are shown in fig. 14 for the standard CDM model for a variety of
Os. At ¢ = 4,10 the oscillatory behavior of the products of j,’s is apparent. For ¢ = 59,121, smoothing over nearby
0’s has been done, with the sharp rise in k (at ~ (/) and power law decline a characteristic shape for averages of j,
products, as we now describe.

3. Products of Bessel functions

In this technical subsection, we make use of standard Bessel function asymptotics to define approximations for
A) +(B)
G i) @):
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FIG. 14. dC¢/dInk for the scale invariant CDM model shown demonstrates the basic j7 (kxgec) oscillatory behavior for low
¢. For the two higher ¢ cases shown, smoothing over nearby ¢’s has been done to damp the fast oscillations, and the result
basically follows the limiting high ¢ behavior of the products of j, and/or j;. The vertical lines are defined by k=% = 2cH0_1
and Tk~! = 2CH(;1, when half a wavelength equals the horizon size.
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Je(kx) ~ (COS(kHX - Qarcsin(k”/k) - g) + O(Qil)), k” >0,

1

AR
+1

expl|k)[x]

() ~ 5 :
IS [+ VIR E T B Torlhix
jali) o SEOLA/S) L (1 Vit (%) ) by o,

k) imaginary,

BFI0E (k)

For high ¢, the (ky/Q)*** behavior in the kx < @ “imaginary-k|” regime ensures that it is almost zero.
To evaluate products of form Jz (kX+)Jz (kx ), with A, B =0,1 as in eq. (125), expand in Ax/x:

3 )il () ~ GV 3 ) (cos Ry Ax) + fast). 121)

“Fast” denotes a cosine or sine term with a large argument consisting of terms like IQH)’( which average to zero. For the

(jéA)jéB)Kk)‘() one can either take the product ]z (kx)]Z (kx) or use an average based on the high-Q asymptotics
[88]:

GEVi) (k) =0 for k< Q/%s and for k> Q/X,

1050y (v} = mi e Q ¥ ' 5/6 .
(Je "Jp ) (kX) = min 2kk||>z2’“(Q) = , 5(Q)Q%° = 0.59,

i =gz ()}

<]Z ]Z > — mln{ 2kl’€”)—cz <k2 + ( )2k4 36Q2]Z (Q) k)_( .

The apparent singularities as k” — 0 are avoided by saturating the (]éA) ]éB)> at their values for IQH = 0, as indicated

by the minimum function. For low @, the drop on the imaginary- k” side is not rapid enough to use this approximation,

but the expansion in Ay may still be good: the direct product y,ﬁ ) é ) should then be used. It is by dropping the

“fast” term that we get eq. (126).

(128)

4. Fourier derivation of the simple sample spectra at high €

With the form for (j éA) j Z(B)>(k)’() valid for high ¢, we encounter the first of a class of “small angle approximations”
that have been used over the years to simplify the calculations of C'(8) and C,. They turn out to be reasonably good
provided we are not interested in low multipoles and do not need the answer to high precision for higher multipoles.
A useful exercise to guide understanding of eqgs. (125), (126) is to first derive the correlation function C(w) for an
isotropic source source-field of the Gy form, then calculate its 2D Fourier transform (using the notation of eq. (88),
and splitting the wavenumber into components &) along the average line of sight and k , perpendicular to it):

e~ / XA V(x )V (x-)
> Q\ -
/0 dky <W> e MAX P (ks 7, Ay), (129)

k= (Q/R(V)? + ki, QE€+5, R(X) =%

[*S) > 2 L
L N e e

Qs k3 N N
V(X+)V(X7),PW(IC; X, AX) = 4—7: ﬁ <g(q7 q, kv T+)g. (q7 q, kv T*)>'
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Equation (129) allows one to turn the &) integral into one over k; hence, with p(k)) defined as a Fourier transform over
Ay, we regain eq. (126) with the eq. (128) approximation. Note that the k > (/¥ restriction is just a consequence
of positive k.

As a further approximation when the source-fields are not isotropic, but have more complicated angular dependence,
e.g., G(q,q,k, 1), an isotropized power spectrum for the source fields has been used; for the G = V(Gy —i§ - /%kgl) case
of this section, Pgz = Pg,g, + Pg,0, k?/3: cross-correlation terms do not appear.?

These small-angle C, formulas can also be applied to open (or closed) universes for multipoles on angular scales
(> 2|1 — Q207" if we replace R(x) = x by

R(X) = d““"v Sinh((TO - T)/dCUTv) if Q <1 ) (chrv =1- Q) )
dewro = Hy "Q2M2 0 Quuro =1-Q, 70 = f2H; ', 12

curv ?

Q 1/2
fr = (n) I(QY2, +1) - (@), Q=9 <1),

(130)

where 73 is the conformal time now and f; is a factor that must sometimes be computed, e.g., in universes with
sizable vacuum energies. For closed universes, f; = (Qu,/|Qecuro|)'/? arcsin[(|Qeuro|/Qnr) /?] and “sinh” is replaced
by “sin”. In flat universes, dC;/dlnk is concentrated around @ ~ k¥, in open universes Q is pushed higher than ky
and in closed universes @ is pushed lower: hence features in C; will be at smaller angular scales in open models (as
fig. 18(c,d) shows) and larger scales in closed models than in flat ones.

5. Narrow and broad visibilities

A few other nomnessential approximations are useful to get a simple analytic form for p(l_eu ): e.g., absorb the leading
growth terms in Pg, g, in the visibility product so the remaining weak dependence upon Ay can be ignored — e.g.,
the linear growth factors D(x4)D(x—) may describe the dependence. To get a nice result for discussion of limiting
cases, it is useful and is often not even a bad approximation to assume that the product of visibilities looks like a
Gaussian in Ay, V(x4+)V(x_) & V2(x) e (Ax/Bv)*/4,

_ 72 9%1
p(ky) = 2V/7Ry e Fi Y , R?= _Wn;}'

The function Ry () will generally be dependent upon { and could also depend upon A, B = 0,1. A case of some
interest where it is constant is a Gaussian visibility. We showed in section III D 2 that this was a reasonable approx-
imation for V¢ for standard recombination, with Ry, (Y) = Ry, dec. It is used in section V B. There are also a few
interesting limiting cases:

(131)

1 Broad visibility: When the selection function is broad, Ry — oo, p(/%‘|) — 2ﬂ6(/¥‘|). This is the approximation
used in [2,42] and eq. (140) in section V C 1 below for anisotropy power spectra from primeval dust and the SZ
effect. The broad limit has a nice interpretation: the “column depth” across the visibility surface is ¥g(%) =
J dxV(x)Go(x = &x, 7). The radiation correlation function C(6) is the correlation function of the column depths
along lines of sight separated by angle 6. For SZ anisotropies, the “column depth” is the Compton y-parameter,
and for dust-emission anisotropies it is the dust optical depth (for a constant redshifted dust temperature).

2 Narrow visibility: When the selection function is narrow, Ry — 0, p(l_ﬂn) — 2y/T Ry, and the power spectrum is
integrated over the unobserved k||, the projection of the 3D spectrum onto 2D. Only for primary anisotropies with
normal recombination is one ever really close to this limit and even then damping of the spectrum for ¢ 2 /Ry
due to the “fuzziness” of the visibility surface is important to include, as encoded in p(kj). The surface is
perpendicular to the photon path to us, so the spatial oscillations are across the surface, giving destructive
interference from both peaks and troughs for waves with KRy > m. There is no destructive interference if the
photons are only received from either peaks or troughs, but not both, the case if oscillations are along the
surface, or if the wavenumbers are small.

2ReplaCing (g(q7 qu k7 T+)g*(q7 quv k7 T—)> by <g(q7 qAP7 k7 T+)g* (q7 qAP7 k7 T—)>7 where qAP ~ (qA + qAI)/2 — without the averaging -
is a “DSZ” approximation [131]; [132,134,88] exploited the isotropized form. These methods have been applied to C'(6) and C,
estimations for primary anisotropies (section C 3b) and to the secondary én.ve nonlinear source-field ( [215] and section V C 6.
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6. Power-law spectra with coherence scales in 3D and 2D

There are a few power spectra for which there is an analytic integral over the Bessel function products. To deal
with these we shall restrict ourselves to sources of the Gy form. The first case we shall consider has a thin shell source
concentrated at zs;. For the power law 3D spectrum

20'2 2
. _ Go vg _(chuh)_/2
Péag (F: X2, 0) = 2v90/2T (vg, /2) (olteon)0 ¢ ,
Cz = F(2 — l/go) T 20'50 <R00h ) “o
92—vgy "2 (37590) 2V90/2F(Vg0/2) s

I ((+%2)r(+2)
“TOT ((+2-22)

(132)

This formula is valid as long as the angular scale (= is large compared with the coherence angle R.on/R({s)-
If the visibility has finite extension, the integral over k can still be done, but in terms of a hypergeometric function
which is not very useful. What can be done easily once again is the Fourier calculation for large ¢:

202 QRon Y90 1 _\2
CZ ~ /d}z V2(>Z)7T - Yo < C:) ) efz(QRcoh/X)
2”90/2F(Vg0/2) R(X)

% Rcoh\/iRV
VQA(RZ,, +2R3) /T + (3 - vg,)

The (3 — vg,) term in the denominator is an approximation based on a first order expansion in (kjx/Q)?. With
the visibility concentrated at s, eq. (133) is just the 2D power law equation, eq. (106), with @, = R.on/R(s) and
VAT = Vg,

For the special case of a 3D white noise distribution, vg, = 3, the exact result including the Gaussian coherence
length R.., can be expressed in terms of a modified Bessel function:

(133)

Paug = (2/m)!/ 0%, (kReon) e HHn)"/2,
Cp = /d}ZdAX V(X+)V(X7) V2T 0’50 é(ﬁ + ].)
% e~ (B%)?/(2R%,1) o= (x+x=)/Ri, Io(xsix—/R%,). (134)

If the coherence scale of the blobs is small compared with the cosmological distance at which the visibility is concen-

trated, the asymptotic expansion of the modified Bessel function, Iy, /5(2) ~ \/2172 e*(1—0(+1)/(22)+---), can be

used to simplify the expression:

2
CQ N/dxv2()2)\/%aé <QRcoh) efé(QRmh/R(X))z RCOh\/iRV
0

R(X) V Rgoh + ZR% .

This is the vg, — 3 limit of eq. (133), as expected, and if the visibility is concentrated at ys, it is the var = 2,
we = Reon /R(Xs) version of the 2D law eq. (106). If the visibility is broad, there is a distribution of coherence angles
contributing so the final result is only roughly of the Gaussian form.

It might be thought that clouds in our Galaxy could be modelled by such a blob spectrum with no long range
correlations, but this is not so. As we saw in section IV F, C; for dust-emission and Galactic bremsstrahlung apparently
rise as ell ! [107,108] at the resolutions they have been observed.

B. The primary primary anisotropy effects

For primary scalar anisotropies, we describe here the leading terms associated with the Sachs—Wolfe and Thomson
scattering sources, eqs. (25), (26), using the v, ¢, ¥, notation for the metric perturbations introduced there. This is
just a preview to show which fields are “illuminated” by the visibility of Thomson scattering. The terminology and
manipulations of this section will become more familiar after reading section VI.
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1. Sachs—Wolfe, photon-bunching and Doppler sources

By manipulation of eqs. (25), (26), they can be cast into the G ; form for a modified field ﬁgs) (and for a flat
Universe):

0 i 0 ~(S) 1~ 4 0 i~
{ar +a axi] TeAd” =Ve |10 — 05507 Yop+ ()
9
+Te—lv—p+0-(a~'¥,)],
or
~ a~ 1w, )
AP = A 4 u 4 a“T —§0,a Y, , vp=-a"'VU,p, (135)
T
1~ 1 9
gnSW,O + g5 ,0 = _6’}/ = _6’}/ +v+ _a_llpa = Fq)(va)(I)N/Sv (136)
v 4 4 or
Gi=a W, p=a (P, 5+ 7T,) =F,(k,7)7®N/3, (137)
82
Giswo===a "V, +0—¢=Fy(k,)®y/3. (138)

or?

Here 6., is the photon energy density perturbation, vp is the baryon velocity and ¥, g is the baryon velocity potential.
The (- --) refer to source terms driven by the quadrupole and by polarization terms. These are subdominant and can
be ignored in rough treatments. There are three types of terms multiplied by V. The “Doppler” source is G;. The
Go = 04/4 term has two parts, metric terms which give the “naive” Sachs—Wolfe effect, in particular the famous
® /3, where ® is the gravitational potential, if ®, is constant — which it rarely is. The ¢,/4 term describes the
amount of “photon bunching” when decoupling releases the photons, which gives the equally famous %6;} B/PB term
if the entropy per baryon is constant — which it is not. The source term multiplied by 7¢ is known as the integrated
Sachs—Wolfe or Rees—Sciama effect. While the Doppler and integrated Sachs—Wolfe sources do not depend upon the
gauge which is chosen, the relative amount which is attributed to photon bunching and the naive Sachs-Wolfe effect
does, although the d./4 combination is gauge-invariant.

All of the effects have been normalized to @y (k,79)/3 through form factors F(k), F, (k) [2] and Fy, to emphasize
that the magnitude of ®y controls the magnitude of AT /T — although it is the explicit form of these order-unity
form factors that define the bumps and wiggles of the spectral shape. The statistical distribution of AT/T is also
completely determined by the statistical distribution of the stochastic field @, with the spatial Fourier transforms
{Fs,F,, F}(x,7) defining nonstochastic time-dependent fields which are convolved with ® y(x,79) to give the sources.

2. Longitudinal and synchronous pictures of the Sachs—Wolfe effect

The longitudinal gauge has ¥, = 0. The metric is characterized by vz, which is the closest analogue to the
perturbed Newtonian potential ®y; and ¢ goes to —®x once anisotropic pressure forces can be neglected, which
it can after G.q and Ggec. In the regime in which nonrelativistic (nr) matter dominates the evolution ® is constant

(in linear perturbation theory). The velocity potential for baryons in that gauge is ¥, pr = ¥, g and the velocity

potential for cold dark matter is ¥y, cgmr = ¥y cam. In the nr-dominated regime, (’fl‘lfv,cdm = %@NT. Compton drag
stops the baryons from following the nr dark matter flow, but once the photons do let go, G; also approaches %‘I> NT.
For normal recombination, there is by this time no differential visibility left; the G;-field is determined by the earlier
baryon physics, i.e., the transition through the optical-depth-unity regime of tight-coupling to damped-streaming. In
universes with early reionization, much of the “visible” region can be after the Compton drag lets go and G; = %‘P NT
can be a good approximation.

In the synchronous gauge, v is set to zero and the constant time surfaces chosen to be those on which cold dark
matter is at rest; the synchronous gauge metric variable ¥, is then just ¥, .4, and the metric part of G,sw,o +Gs, 0
gives %‘I> ~ in the nr-dominated regime, i.e., the classic naive Sachs—Wolfe term. This suggests we define the photon
bunching source Gs_ o to be %5.,5, which is then a gauge-invariant term, with the remainder of eq. (136) defining the
naive Sachs-Wolfe source G,sw,0. In the oft-used longitudinal gauge, the correct ®y /3 behavior is obtained only
when a piece of ¢, /4, photon bunching as viewed in this gauge, is added to v, = ®y: we show in section VI that
6y1/4 = 6,5/4 — HY,, which becomes 6,5/4 — 2@y in the nr-dominated regime.

The integrated Sachs—Wolfe term at late times becomes T02<1>N. Thus Fj = 6¢>N/<I>N. In the nr-dominated regime,
it vanishes for linear perturbations. Nonlinear clustering generates nonzero ®y. Even though the potential change
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may not be very great, the factor of 6 enhances the impact on the CMB. When the equation of state changes from
nr-dominance, ® ; no longer vanishes. This is the source for the relative upturn in C; in the vacuum-dominated model
in fig. 7 [110]. It is also rarely true that a., is so much less than ag.. that changes in ®x around recombination
can be ignored. In that case, we can absorb it into a V¢ style source by replacing Fo by Fe + 17cFjy, where

7'0_1 =fieora = Ve /T

3. Dufferential power spectrum and form factors

We can apply the machinery leading to eq. (126) to get the power spectrum. Let us ignore late-time integrated

Sachs—Wolfe effects associated with nonzero A, etc. so we can use just the visibility Vo sources. Since we are also
(A) (B) (A) -(B)

interested in low ¢, we use the Bessel function product j,"’j,~ for (j,"'j,”'):
dCy 1 _ N
T = 2004 1) Py () [ dx V(0 p(Ey)
[(Fo(k,7) + 10 F4 (k, 7))je(KR(T)) + kT F, (k, 7)o (kR(7))]*. (139)

We have seen that the visibility V¢ is roughly a Gaussian in conformal time with width Ry 4., for normal recom-
bination. If the 3D source functions do not change much over V¢, the form factors can be evaluated at 7 and even
at T4ec; otherwise an average over the shell is needed, defining effective form factors which can also absorb 7¢ F; and
the last scattering surface fuzziness damping associated with p(kj).

The goal of analytic approaches is to use approximate form factors like these to understand the physics defining
the basic features of the spectra and to provide a tool for rapid estimation of C;. It has been developed in various
approximations in [2,143,268-270]. Hu and Sugiyama [270] have included the most effects, in particular the time
variation of ® i that arises because a4 is not very far from aq4..; by doing so they obtain remarkably good reproductions
of the spectra derived using full Boltzmann transport codes, within about 10% or so even at high ¢. Here I shall
just use a simple analytic result [2,200] to illustrate the physics that determines the nature of the oscillations that
translate into the C; peaks and troughs, but caution that the more elaborate scheme of [270] is needed if one wants
a quantitative tool. (It was, for example, used in [161] to rapidly calculate C; for a large parameter set to assess how
well parameters could be determined in idealized all-sky satellite experiments.)

Earlier than decoupling, the photons and baryons are so tightly coupled by Thomson scattering that they can
be treated as a single fluid with shear viscosity (4/(15f,))p, Grc, zero bulk viscosity, thermal conductivity x, =
(4p/(3Ty))arc and sound speed c, (145) = (c/V3)[1 + 3pp/(4p,)] /%, lowered over the (c//3) for a pure photon
gas because of the inertia in the baryons. Here f, is a parameter which depends upon the approximations that are
made to treat the photons: it is 3/4 if all effects are included, 9/10 for unpolarized photons and 1 if the angular
dependence in the Thomson cross section is also ignored. These results are derived in Appendix C 3 a.

Let us assume constant ®y and pp < py through decoupling. The WKB solution of the tight coupling fluid
equations is, for 7 < Tgee,

Fp ~ e‘%(‘w’”)z(?@i)l/‘1 cos(kesT),
Fv ~ 6_%(‘7Dk7’)2(362)1/4 Sin(kEST) )

s ket

Also Fy = 0. op is a parameter describing Silk damping. In this tiny baryon number limit, the sound speed is
¢s = (c/ V/3), but for finite 5p, ¢, is a suitable time-average of Cs,(v+B) and there is also a weak amplitude-diminisher,
(322)1/4.

The WKB solution for dys/(—®x) = 1 — Fg shows d,s growing outside the horizon like 72; the horizon is “entered”
for photons when ké;7 = 7/2; and thereafter oscillations spaced equally in k¢,7 should be expected in the evolution
of individual k-modes. Some examples of this behavior for different k’s are shown in fig. 19. By contrast, the view
of the density fluctuations in the longitudinal gauge is d,1/(—®n) = 5/3 — Fp, dominated by the constant 2/3 part
which swamps the rising part. This emphasizes the care that must be taken in choosing which variables to integrate
— no matter what the initial gauge choice.

The phase of the waves as they hit the narrow recombination band, kCs7g., determines the oscillations in C; that
appear in fig. 7. The combination of viscous and fuzziness damping diminishes the amplitude of the Doppler peaks.
Because the oscillations are in both ., and ¥, g, both contribute to the detailed structure.

In section VA2, a high ¢ form of C;, was given, eq. (129), and a further simplification associated with isotropizing
the total source power spectrum was described. For the limiting WKB case, the isotropized source-power evaluated
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at T = Tgee 18 %P¢Ne*("DkT)2(3E§)1/2(1 + i"% sin?(kc,7)). This illustrates that in the instantaneous recombination
Y

limit with no damping and tiny baryon abundance, Pg, /9, the naive Sachs—Wolfe effect, is recovered. But this is

obviously not what one sees in the figures. It is in the finite 25 effects, the time dependence of ®5 and even the

differences between j, and j; that the dramatic hills and valleys of C;, owe their origin — and it is with just those

factors that the C,—landscape can be estimated accurately.

4. Damping

The parameter op is an integral of the damping rate involving the shear viscosity and thermal conductivity. In
the WKB limit, it is given by eq. (C51) in section C3a: for CDM models with low Q 5, op is roughly 0.02-0.03 with
polarization included, which enhances damping, and is about 10% lower if the radiation is assumed to be unpolarized.
With Qgh? = 0.0125 preferred by Big Bang nucleosynthesis, op ~ 0.02, and the same rough value is obtained in the
limit of large Qp. Of course the tight coupling equations break down as the radiation passes through decoupling, so
it is better to treat op as a phenomenological factor, but matching to numerical results for Silk damping in baryon
dominated models also gives the 0.02 estimate for CDM-model parameters [2]. The damping acting on AT /T due
to fuzziness of the last scattering surface is e~ (FIfvc.ac)®/2 while that from Silk damping is e~(k7p7a<)*/2 From
eq. (69), we have Ry, dec/(0DTdec) & 04 dec/(20p) which is ~ 2 for the examples of fig. 3(b).

The fuzziness damping acts only on k||, while the WKB viscous damping acts on k. Effective isotropized fuzziness
filters are found by expanding in k| Ry, 4. and angle-averaging [2], which reduces the effective filter to Ry dec/ V3;
this makes the WKB and fuzziness damping values similar in magnitude. The WKB tight-coupling solution does in
fact calculate a version of fuzziness damping acting on 0., along with other transport effects, but the k; —k asymmetry
is obscured by the truncation of the ¢-hierarchy at such low ¢: up to = 74ec, higher moments are strongly damped,
but as the photons pass through (¢ = 1, fuzziness damping in this “scattering atmosphere” occurs. At decoupling,
7o is only 5% of Tgec.

5. Early retonization form factors

If we assume early reionization, and a decoupling redshift (where the visibility peaks) in the nr-dominated regime
and below the epoch at which Compton drag lets up, < 200, then we have F, = 1. For small k7 and adiabatic
perturbations, we expect to have Fp = 1 in this nr-regime, damping as k7 increases, but not exponentially once
To ~ @ grows to a point where tight-coupling breaks down. What one does get is a photon density gradient
responding to the residual Compton drag; a converging baryon flow increases d-/4, a diverging one diminishes it: the
net effect for large k7 is Fy ~ —7/7¢, which falls like a~3/? for a fully ionized medium. Thus in reionized adiabatic
models, one expects a normal Sachs—Wolfe behavior at small ¢, with a velocity-induced extra piece pushing it up a
bit at larger ¢, both being diminished by an overall large fuzziness factor, typically with Ry ~ 0.37 (section IIID 2).
The high-kT part of Fp has been shown to augment the velocity-induced term by an order-unity factor [216,217].

6. The isocurvature effect on low multipoles

If the perturbation mode is isocurvature rather than adiabatic, the fluctuations are initially perturbations in the
entropy (per CDM particle for isocurvature CDM perturbations or per baryon) without accompanying curvature
perturbations. For these, there is another effect which amplifies F3 to 6, the isocurvature effect. Let d; = %57 —
0, denote the relative perturbation in the entropy per x-particle, where x = cdm,B. To have no energy density
perturbation in the k7 — 0 limit and yet have a nonzero d, we must have 4,5 =~ gés(l—l—éﬁer/ﬁnr)*l ~ —(Pnr/Per)0zs,
where p,,, is the density of nonrelativistic particles, pe, is the density of relativistic particles and it has been assumed for
this illustration that all nrand er particles will have the same relative density perturbations, d,s and d,g, respectively.
At very early times, 0.5 is tiny, with the entropy perturbation being carried by the z-particles, but as pi./per = G/Geq
grows from unity to ~ 10%, the perturbation is primarily carried by the radiation. When a given wave enters the
horizon, d,s ceases declining, and begins to grow after 7., via the usual Jeans instability. This diminishment of §, at
low £ translates to a sharp bend in the isocurvature CDM transfer function at & ~ Te_ql, falling as k2 at low k, but
being unity at high k. The reciprocal impact of this on d.,5 gives the isocurvature effect.

It is easiest to see why Fp=6 using the equation for d,(k,7)/4 in the k7 < 1 limit, the angle-average of the
Ay transfer equation (and eq. (C50) of Appendix C3a). Since 0,5 is initially nearly zero, we have - (k,7)/4 =
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(v — ¢ + 0-[a'¥,])(k,7). Both sides turn out to be gauge-invariant and so the right-hand side is the quantity
vy — pr; but v is @y by definition, and ¢, & —®y, which becomes exact if there are no anisotropic pressure terms;
ie., 6y(k,7)/4 = 28y for low k: ie., Fp =~ 6 [214,173]. The isocurvature effect can also be expressed in terms of the
initial entropy fluctuation, 205/5 = 0,/3 + ®n /3, where the gravitational potential is related to the initial entropy
perturbation by ®y = 65/5.

The Fp = 6 factor is so large that isocurvature theories with nearly scale invariant spectra are strongly ruled
out by the observations, [214] although there is still some room for them to contribute at a subdominant level to
adiabatic scalar perturbations [232] for dark matter dominated models. For isocurvature baryon perturbations, there
are significant features in the density transfer function for scales k7., ~ 1 [131,247,215]. Although the isocurvature
effect does lead to nearly scale invariant spectra being strongly ruled out, isocurvature baryon models with arbitrary
spectra (which are steep with ng = 0 corresponding to seed models) and arbitrary ionization histories are usually
adopted; with this freedom, the case against them is strong but not yet definitive [215,217,218,242]. (See also fig. 18).

C. Secondary anisotropies

Secondary anisotropies are non-Gaussian, with the spectral power concentrated in hot and/or cold spots on the
sky, rather than being democratically distributed as it is for Gaussian anisotropies. The power spectra are instructive
since they do tell us what the best scales to probe are, but they are far from the whole story. Examples of C;, for the
ambient SZ effect from clusters and dust-emission from primeval galaxies are shown in fig. 7. The dual nature of the
power spectra for dust anisotropies can be understood using the methods of section V A, as sketched in section V C1.
The power spectrum can be used to calculate rms anisotropies. In the mid to late 80s, estimates made on the strength
of the SZ effect from clusters concentrated on the distribution of y and the rms variations as a function of beam, using
simplified peak or Press—Schechter based models to calculate the abundance and clustering of the sources [2,112,113].
This work showed that for inflation-based CDM-like models, the rms SZ fluctuations would be quite small, well below
1075, Similar techniques were applied to estimating the rms anisotropies in the far infrared and sub-mm from dusty
primeval galaxies [81,2,42]. More powerful methods were developed in the nineties [117,118,120-122] to address how
non-Gaussian the signals would actually be (e.g., figs. 15, 16).

1. Sample secondary anisotropy power spectra

For secondary anisotropies, the broad visibility case of section V A 5 is the appropriate limit for the angular power
spectrum. For high Q@ = /(¢ + %,

Co ™ /dfc V2(X) (Q/R(X)) " 7Pgug, (k = Q/R(X); X, 0) (140)

It is often suitable to adopt a shot noise model for the distribution of the random source-field Go [2,42]: this consists
of (1) a class of objects defined by parameters C (e.g., mass, luminosity, X-ray temperature) whose positions are
specified by a random point process nc,(r) = Zjec §G)(r — r;) with the sum over points j satisfying the conditions
C; and (2) profiles for Gy centered at each point, ¢g(r|C, 7). ncs is a comoving density if r; are comoving positions.
The points C could define galaxies, clusters, N-body groups, the centers of cosmic explosions, ..., and the profiles g
may be asymmetrical (e.g., filaments, pancakes). In the “peak-patch picture” of [2,68,117,120], the shots are equated
with specially selected peaks of the smoothed linear density field.
The source function Gy for a shot noise model is the sum of convolutions:

Go(r,7) = Z/d3r'g(r —1'|C) nex(r, 7), (141)
C

Go(k,7) = > _ g(K|C, 7). (k, 7)), G(k|C,7) = ge(7]C) Ve Fy (K[C) .
C

We have separated g(k) into a central value g., a weighted volume of the region Vo = [ g(r) dr/g., and a form
factor F,;(k) which is dimensionless and equal to unity at & = 0 by construction. Although g can be considered to
be a random field as well, it is usual to just assume fixed profile shapes. An example of some interest is a truncated
spherical $-profile,

g(I‘) = gC(]' + rz/rfore*)735/2 79(RC* - 7‘) 9
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with core radius r.ore and truncation radius Rc; the % denotes comoving quantities (e.g., Tcorex = @ 7core). This
form is widely used to model the gas density in clusters and thus g for the SZ effect if the cluster is isothermal. Fits
to X-ray profiles give 3 =~ 2/3. An approximate form factor which roughly takes the truncation into account is

eXp[_chore*]
((kRc.)? +1)3079)

Fy(k|C) = (142)
For small k, F4(k|C) = 1 and ¢.(7]|C) Ve is o (T,)Bc for the SZ effect from clusters, where B is the cluster baryon
number, while for dust at fixed temperature, it is o« the mass of dust in the galaxy.

The power spectrum for Gy can be written in terms of the cross-correlation power spectra for the shots:

i 1*
Pgog, (K Zlg k|C1) |2 <

+Z (K[C1)g" (K|C2) ey «ney PE o, () (143)
0102

where the tilde denotes Fourier transform. The shot correlation power has been decomposed into a Poisson

contribution 6clcg(lm71/ ®)3/(272) describing the self-correlation of the discrete objects and a continuous corre-
lation piece P&, describing the clustering of the objects. In a linear biasing approximation, we would have
PE o, (k,7) = bey (T)be, (T)P,, (K, 7), where the be, (1) are biasing factors and P,,(k, 7) is an underlying mass density
power spectrum. Even if such a relation were to hold for low & one would expect considerable modification at high k.

For the Poisson piece, the contribution from an object which subtends an angle 8¢ ~ Rc./R(YX), whose core
subtends Ocore ~ Teores/R(X), 18

~ QL+ QRO) B ¢, (144)

i.e., white noise (Poissonian) for small Q, @31 for Q > 90 , with an exponential suppression at very high Q.
For the continuous clustering contribution, the overall amplitude is usually lower and the shape is multiplied by
Qres1(Q/%) | wwhere n, ;s (k) is the local index of P, (i.e., ~ k3t™.sf). For angular scales > 6, it can often
dominate, ~ Q2t7r.csr (k) ¢f. the ~ Q? Poisson term.

Notice that if we use a Gaussian profile for the shots and have a narrow visibility at redshift z;, the C, we get
from the Poisson piece is a Gaussian coherence spectrum with coherence angle 6. ~ w. = /2 (1 + z,)Rc/R(xs), i.e.,
eq- (106) with var = 2.

2. Anisotropy power from dusty primeval galazies

The BCH2 [42] spectra shown in fig. 15 show the basic features: a Gaussian radial profile of scale R = 10 kpc for
the dust in galaxies defines the cutoff at high ¢, the amplitude is determined by the galaxy (shot) density, here chosen
to be that of bright galaxies ng. = 0.02 (h=* Mpc)~3. The continuous clustering piece dominates at lower (.3

The spectra clearly show that to get the maximum signal one would like to probe the shot noise power, i.e., have a
small beam. This is misleading because a small beam may be unlikely to capture a galaxy. Large beams have too many
galaxies in them to give much shot-noise anisotropy. Clustering dominates the signal there. Figure 15 emphasizes how
useful very small angle anisotropy experiments can be for detecting high redshift dust emission from primeval galaxies
even for cases which fall well below the FIRAS bounds. The dust maps in fig. 15 were constructed using the peak-patch
method to identify the high redshift galaxies [82]. The most promising instrument coming on line for this is SCUBA
on JCMT [114], with 12" resolution, and the ability to probe a number of frequencies, in particular an atmospheric
window around 850um. The peak model shown in the figure gives rms anisotropies (Avl,),.ms of 0.25 — as measured

in units of 107% erg cm 2 s7! sr7!. Assuming galaxies with a density of ~ 0.02 (h™! Mpc) 3 (the current density of

3The particular model chosen hybridized a biased linear density power spectrum shape for small k and a nonlinear power
law contribution for high k, with the two joined at kyi where the power is unity. The shape change in the graph is a result
of this rough approximation. The maximum occurs where (Q/R(X)) *7Pgyg,(k = Q/R(Y)) ~ Q> "rcrs®) is maximum, at
Nperf(k) ~ —2, which occurs at ~ 0.5h™" Mpc for the CDM spectrum, and on somewhat larger scales for adiabatic models
with nonzero A.
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FIG. 15. Illustration of what the sub-mm emission might look like from primeval galaxies in a o0g = 0.7 CDM model. (a)
A 4’ x 4" contour map for dust-emission from primeval galaxies at z ~ 5 convolved with a 12" beam appropriate for the 8554
37-pixel SCUBA array. The minimum contour is 1000S pJy/beam and subsequent contours increase linearly in 2505 pJy/beam
steps. SCUBA has a 2’ x 2" FOV and is expected to achieve 470 uJy/beam at the 1o level in just one hour of integration. (b)
Shows the same map seen with a 1" beam with 2505 pJy/beam contours for an 800u sub-mm array. (c) Shows the map with a
0.86" beam with 200S pJy/beam contours for a 1.36 mm array. S is a scaling factor which is 1 if all “bright galaxies” have Arp
220 luminosities down to redshift 4. To satisfy the FIRAS bound (Fixsen et al. 1996), apparently either S < 0.1 is required, or
< 0.1 of the sources present could be bursting. (1 Jansky = 1072°W m™?Hz™!, hence I, = (A\/3 um)(§E(\)/Eemp) MIysr™h)
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“bright” galaxies) do all of the emission in a biased CDM model for the other (BCH2) models given in table I, the
rms anisotropies that SCUBA would see (assuming a double differencing mode) would be quite large: 1, 4, 4, 0.3 in
the above units, corresponding to AT/T of (7,20,12,2) x 107> for BCH2 models 8, 11, 14, 13, respectively. These
anisotropies should be compared with the current 800 JCMT 95% C.L. upper limit for an 18" beam of 3.4 x 1073
[115,42], and the 1300 IRAM millimeter 95% C.L. upper limit for an 11” beam of 2.4 x 10~ [116,42]. (The signal
would also have fallen off from the 800y value by 1300u.) Of course the map fig. 15 also demonstrates that the rms
emission is somewhat misleading for SCUBA since it is concentrated in bright patches; and it is totally misleading
for the interferometric arrays.

3. SZ and nonlinear Thomson scattering from clusters

The most direct way to make maps of secondary anisotropies is to do hydrodynamical simulations, then calculate
the line-of-sight integrals of G through the computational volume. It is difficult to make large enough simulations and
still get the resolution needed to treat the structure in the objects. A good example of the current state of the art
is given in [122], in which SZ maps were constructed by using many hydrodynamical simulations. The “peak-patch
picture” that Steve Myers and I developed [68] allows us to determine the spatial distribution and properties of rare
events in the medium such as clusters over very large volumes of space by identifying them with carefully selected
peaks of the linear density field [68,117,120]. Peak-patch catalogues accord well with N-body cluster and group
catalogues, both statistically and spatially, reproduce well the gross internal properties such as mass and internal
energy, and do reasonably well at getting the bulk flow of the rare events [68]. The maps in fig. 16 were constructed
in this way, finding all clusters and groups in a 16° x 16° patch over a region extending out to redshift 1.5 for a
og = 0.7 CDM model. A truncated /8 profile was used with 8 = 2/3 to give the gas density distribution, the core
radius was calibrated with X-ray observations, and the gas was assumed to be isothermal. og controls the overall
abundance of rich clusters: maps such as these look dramatically different with even small variations. The shape of
the power spectrum controls the poor-to-rich cluster ratio. The og was chosen so the cluster abundances as a function
of temperature roughly agreed with X-ray observations. A COBE-normalized CDM model has o5 ~ 1.2 (eq. (222))
and far too many large clusters, but, for example, a COBE-normalized 2 = 1 model with a mixture of hot and cold
dark matter (see section VIIC) has og ~ 0.7, fits the X-ray data reasonably well, and has a similar appearance to the
CDM model shown here, albeit with a smaller poor-to-rich cluster ratio [120].

The SZ, moving cluster and primary maps of fig. 16 have the following minima, maxima, mean offsets, and rms,
in units of 1075 (a) (—47,0,-2,3)Csyz; (¢) (—8,6,—0.04,0.4)Cy; (d) (—53,48,—0.06,18). Thus the SZ effect is
competitive with the much larger primary anisotropies expected in this model only in the cores of clusters; and the
moving-cluster anisotropies are disappointingly small, even when nonlinear corrections are included. For the X-rays,
the map flux characteristics are (b) (0,12,0.05,0.2) x 10~**Cx erg cm~2 s~!. Using the information in a deep field
cluster catalogue such as (b) will clearly be invaluable for separating SZ from primary. Even so, since the true sky
will be the sum of (a), (c), and (d) — plus Galactic and extragalactic synchrotron and bremsstrahlung sources for CBI,
and plus dust for SAMBA, some possibly cold — separation using many well-spaced frequency bands will be essential
and also quite difficult.

4. Single-cluster observations of the SZ effect

There has been dramatic improvement in observations of the SZ effect from individual clusters in the last few years,
with the promise of much more to come. The effect has now clearly been seen in more than a dozen clusters at
between the 5 and 10 sigma level [201,202], with redshifts ranging from 0.023 for COMA to 0.55. The immediate
implication of these sort of observations is that the CMB comes from a redshift > 0.55.

The SZ effect involves pressure integrals along the line of sight through the cluster. Even in a medium with gas in
states of mixed cooling, so with large density and temperature inhomogeneities, the pressure tends to uniformize on a
sound crossing time into a distribution defined by the gravitational potential. By contrast, X-ray emission — involving
line of sight integrals of ngTel/ ? for bremsstrahlung and more complicated temperature and abundance dependences
for recombination and line cooling — is very sensitive to clumping. Because the SZ effect is proportional to n. rather
than n?, it can probe the intracluster medium out to much larger radial distance than the X-ray emission, especially
when sensitivities in the few times 107¢ range can be achieved. A further advantage is that AT /T for clusters does
not diminish with redshift for a nonevolving cluster population, whereas cluster X-ray fluxes drop off dramatically. We
have evidence from X-ray observations that there is strong evolution of the cluster population, and this is expected
theoretically as well. Even so, we should eventually be able to probe clusters at z ~ 1 with the SZ effect. An
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FIG. 16. 2° x 2° maps for a og = 0.7 CDM model that could be probed by the Cosmic Background Imager (CBI) being built
by Caltech: an 8 small-dish interferometer to map scales from ~ 2'-20", with optimal sensitivity 2 5', using HEMTs to cover
frequencies 30-40 GHz, with a 15 GHz channel to help to remove contamination. (a) Shows the SZ effect for 30 GHz, with
contours —5 x 107%Csz x 2"7!; (b) the associated ROSAT map (0.1-2.4 keV), with contours 10™**Cx x 2”7 erg cm™? 571,
so the minimum contour level is similar to the ROSAT 50 sensitivity for long exposure pointed observations; (c) the Thomson
scattering anisotropy induced by the bulk motion of the clusters, with contours now £1.25 x 107 %Cy x 2", Cy =~ 1.2; (d)
primary anisotropies, with contour levels at +107% x 2”7, Negative contours are light and dotted. The Csz, Cx and Cy are
order-unity correction factors.
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FIG. 17. SZ contour maps derived from a cosmological hydrodynamics simulation for a cluster which becomes massive, hot
and large at redshift zero after a major merger at z ~ 0.05. The SZ image (AT /T = —2y here) is contrasted with the ROSAT
image at redshift 0.2. The ROSAT contours correspond to deep-pointing mode. The upper panels show that the SZ effect
in the pre-merge pieces at z = 0.7, 0.5 is reasonably large on a few arcminute scales. The solid SZ contour levels > 1075 are
experimentally accessible now and the dotted < 10™° contours should eventually be feasible. The contours roughly scale with

Qp, here chosen to be 0.05 for this Q,, =1 CDM model.

illustration of this is fig. 17: a smooth particle hydrodynamics calculation in a CDM model of a rare-event region that
grows into a cluster of COMA-like mass 10'°h=! Mg, by 2z = 0 after a major merger at z ~ 0.05 is seen in AT/T at
2 =0.7,0.5,0.2. (SPH and other hydro calculations of the SZ effect for individual clusters were pioneered by Evrard
[212] but have not been exploited much to date. The SPH example shown, from Bond and Wadsley [213], evolved
from peak-patch initial conditions for a spherical region 30h~! Mpc across constrained to give a cluster of the final
state mass, as described in [68]. The cosmology is a standard CDM model of fig. 7 with 05 = 1 (20% lower og than
COBE-normalization would give). The simulation used 65247 gas and 65247 dark particles, and a 1283 multigrid
Gauss-Seidel gravity solver with particle-particle corrector forces to improve short distance resolution, by a factor of
20 or so. The gravitational and SPH smoothing were matched, which means that about 40 neighbors were required
to be within the softening radius. As such the resolution achieved, 30 h~! kpc at the final stage, is a factor of 5 or so
better than X-ray core radii, just good enough for the X-ray calculations. Calculations that are optimized for X-rays
with an order of magnitude more particles are easily feasible on current workstations and are currently being done
by a number of groups.)

Combining the SZ and X-ray observations is one of the main paths to Hy (and in principle ¢o). Because (AT')
J neT.ady and the X-ray surface brightness ©x o a?; [ nzTe:l / 2(zdx for bremsstrahlung, the proper linear scale of the
cluster, Ry o< (aflAT)2/(T3/2EX), can be measured. But R, = 2Hy (1 — \/@u)aqf. (for flat universes, with a
weak go-dependence for nearby clusters), so combining the SZ and X-ray observations with the angular size 6.; and
the redshift of the cluster z; allows Hy to be estimated. In practice the data are used in a more sophisticated way
than this, but even so, spherical symmetry is assumed: cluster elongation along the line of sight pushes Hy down,
clumpiness pushes it up. These and other effects make the values of Hy derived from SZ/X observations uncertain
and it is difficult to set realistic error bars.
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So far the SZ effect has only been observed in massive clusters where the effect is quite large. Birkinshaw [203-205],
using the single 40-m OVRO dish at 1.5 cm (ovro filter, fig. 6), observed the SZ effect in 3 clusters, 0016+16, Abell
665 (the richest cluster in Abell’s catalogue), and Abell 2218, with observed central decrements —(1.8,1.5,1.5) x 10~%.
These were used to estimate Hubble parameters for the latter two of 51 + 18 and 65 £+ 25. Nearby clusters, such as
Coma at z = 0.023 [206] and three other X-ray luminous ones [207], have recently been detected using the 5-m OVRO
dish (ovro22 filter, fig. 6). Hy values obtained with this data vary, with 74 &+ 29 for COMA, similarly large values for
Abell 2256 and 2142, but a significantly smaller one for Abell 478. The Ryle telescope is a 5-km interferometer array
with 8 13-m dishes and receivers operating at 2 and 6 cm. [208] showed the first SZ image of a cluster, Abell 2218, at
z = 0.17 (with Hy = 38 £17 cf. [205]) and the Ryle team have now imaged the SZ effect in a dozen clusters, including
0016416, Abell 665, 1722 and 773. Since some clusters give low Hy, some high, it is unclear what conclusion to draw:
although we can be confident that the statistical error bars will shrink with new technological advances, systematic
error bars may never be reliable because clusters are decidedly not idealized spherical distributions. However, the
distribution of Hy determinations for a well-selected sample of clusters may help to reduce these biases.

Other interferometers are also being applied to this problem. Because clusters at moderate redshift subtend a
reasonably large angle, high resolution instruments with long baselines such as the VLA are not effective. On the other
hand, smaller dishes in a close-packed configuration are quite promising: the OVRO millimeter-wave interferometer at
32 GHz was used to observe Abell 773 and 0016416 [211]; the Australian compact telescope array, ACTA, is another
example of a compact array being applied to this problem [210].

SuZIE uses bolometers (operating at 300 mK, at wavelengths 1.2 and 2.2 mm) on the Caltech sub-mm telescope
(1.4" beam, 2’ separation). The SZ effect in Abell 2613 has been observed, with a large —(2.6+0.6) x 10~% decrement.
The advantage here is that one can straddle the SZ sign change (fig. 5). It is hoped that one can use this to extract
the moving cluster effect from the SZ effect, at least for cases when the cluster is moving mostly forward or away from
us (cf. fig. 16) at a high speed.

5. The mazimum entropy nature of Gaussian anisotropies

One of the fundamental features of these secondary maps is that they have their power concentrated in hot and/or
cold spots: they are decidedly non-Gaussian. The fundamental characterization of Gaussian fluctuations is described
by the following lemma [117,120]: Consider a general statistical distribution functional P[A(§)|DA(G) giving the
probability of an anisotropy configuration Ai(§) of the random field A¢. Define the entropy of this probability to be

Entropy[P] = — /P[At((j)] In (P[AL(§)]) DA(G) - (145)

Among all of the distributions with a specified spectrum Cg, the Gaussian one is the one which maximizes this entropy.
Thus the Gaussian statistics of the primary anisotropy maps displayed in fig. 9 show maximally random distributions
of the power available. The best observing strategy is then to concentrate the observing time on just a dozen or
so patches of the sky because you are bound to hit something. For non-Gaussian fluctuations, with power more
concentrated around the “hot” or “cold” spots than in the Gaussian case, a better observing strategy is to sample
many patches at lower sensitivity to look for the regions of high power concentration. Because we now expect that
the observed anisotropy will be a sum of many component signals, Galactic as well as cosmological, most of which
will be source-like non-Gaussian ones, it is really essential to sample very many patches: i.e., to make large maps.

6. Quadratic nonlinearities tn Thomson scattering

As noted in section V A, quadratic nonlinearities in Thomson scattering can sometimes dominate over the first-
order anisotropies if the latter are strongly damped and there is early ionization. Their importance was originally
suggested by Vishniac [109], and calculations have been done by Efstathiou and I [215,217,242], Dodelson and Jubas
[142] and Hu and Scott [220]. Even if there is early reionization in nearly scale invariant models, there is generally not
sufficient power on small length scales for the Vishniac effect to be important. Thus it can usually safely be ignored
in inflation-based models.

This is not so for isocurvature baryon models in which the initial spectral index n;, is considered a free parameter,
as the maps in fig. 18 adapted from [221] demonstrate, using power spectra taken from [242] calculated using the
methods of [88,215]. The nonlinear source-field is G = V¢ (7)d¢q - ve, where 6. = dn./fi. is the perturbation to the
electron density and v, is the electron velocity. Subdominant nonlinearities o< (dn.)? have been ignored. The electron
and baryon velocities can be taken to be the same, but §. = §5 + Y, /Y, can have a piece associated with fluctuations
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ISOCURVATURE BARYON MODEL, n=0, h=0.5

FIG. 18. 10° x 10° maps, with grey scale extending from —40mqp t0 40map, for an nis = 0, @ = Qp = 0.2 isocurvature
baryon model with (b) no recombination, calculated using only linear perturbation theory, (a) with quadratic nonlinearities
added as well (and assuming the superposition of many sources along each line of sight is sufficient to make the nonlinear
contributions Gaussian-distributed, which should be reasonable). (c) and (d) show standard recombination models, (d) with
Qp =1 and (c) with © = Qp = 0.2, illustrating how the changed geometry concentrates the signal to smaller angular scales.
The total power Z[C;] for (b) is (3 x 107%)%03, rising to ~ 107303 for (a) with the nonlinearities. The SR model (c) has total
power 107852,
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in the ionization fraction, although it is usually ignored. The calculation uses some of the techniques of section V A
in particular the Fourier transform expression for Cy, eq. (129), using a time-averaged isotropized power spectrum for
the nonlinear source-field given by [215]

> dlnk
— — I
o/ kR /(kR)? — Q2
)2

[y DD
L —/dXVC(X)(D1D1)2 Cc=1>

Co~ Q? Pgg

= ™

e~ 25 (%pq’zv (vaCc—l)) (kTCc:1)5I2(k)’ (146)

I (k) =
= y(1 — p®) (1 = 2uy)* Pay (k(1L +y* — 2uy)'/?) Pa, (ky)
/0 dy/du (1+y? —2uy)3/? Pa (k) Pay (k)

The gravitational potential fluctuations are assumed to be time-independent appropriate to nr-dominated evolution;
D(7) ~ 72 is the linear growth factor for the density fluctuations and D = dD/dr is the linear growth factor for
the velocity fluctuations. The normalization time, 7¢.—1, is chosen to be when the optical depth is unity, i.e., at the
maximum of V¢ /(Ha). The Vishniac effect actually comes from a broad redshift range because of the DD growth
factor. R is an average cosmological distance.

The spectral index in the maps has been chosen to correspond to the Poisson seed model (although Gaussian
initial conditions were assumed). Phenomenologically it seems n;s between —1 and 0 is preferred. Since there is a
great deal of power at short distances in these models, star formation is expected to occur very early, hence it seems
likely that the Universe would have been photoionized shortly after the usual epoch of recombination at z ~ 1000.
Thus no-recombination (NR) models provide a more realistic description of the anisotropies expected in isocurvature
baryon models, although our limited ability to deal with star formation in the early universe gives us arbitrary freedom
in designing an ionization history. The isocurvature effect due to photon bunching at large scales is augmented by
Thomson scattering anisotropies from the flow of baryons during decoupling, giving an enhanced signal around ¢ ~ 200
for the NR Qp = 0.2 model. Although primary small angle anisotropies are diminished if there is NR, the quadratic
nonlinearities in the scattering induce a significant anisotropy in, e.g., the ovro window of fig. 6, and even more so
for experiments with filters like “VLA” | especially for high n,s models. With og about unity (the conventional value
for these models), large regions in Qp—n;s space are ruled out by the observations of current small and medium angle
observations [242], but exactly how much depends upon one’s assumptions about ionization history. Nonlinearities
beyond quadratic order could also obscure this result. There is also uncertainty in how to extrapolate the spectrum
to the curvature scale, so it is unclear how such a model is to be “COBE-normalized”.

7. The influence of weak gravitational lensing on the CMB

Another nonlinear effect is gravitational lensing which bends, focusses and defocusses the CMB photons as they
propagate from decoupling through the clumpy medium to us. Of course lensing is a mature subject in astronomy
(e.g., [271,272]). There was a flurry of activity in the late 80s assessing whether or not lensing would significantly
decrease anisotropies by taking photons from a high AT/T region and dispersing them into lower AT /T regions
[273-277]. Given the difficulties that astronomers have had detecting lensing, with the best observations coming
from clusters of galaxies, it may seem obvious that the effect on the ~ 10" coherence scale typical for primary CMB
anisotropies is likely be quite small; and this is what these papers found. However there is an effect on sub-arcminute
scales that may affect some types of secondary anisotropies.

An important issue to re-address is how weak-lensing from late-time linear and nonlinear structure development
may complicate the interpretation of the primary anisotropy power spectrum even if it is very well determined. In the
post-COBE era, the CMB lensing issue has been picked up again by [278,279]. In particular, while the earlier papers
emphasized the influence of lensing on the correlation function, Seljak [279] has shown what its impact will be on C,.
To show the effects on both, in Appendix C5 I apply the Boltzmann transport equation formalism of Appendix B to
lensing of primary anisotropies, in particular to C'*"*(#) and C}*™ in eqs. (C62), (C64).

The critical quantity to determine is the statistical distribution of the extra displacement between two photons due
to lensing relative to their unlensed separation; i.e., the component of geodesic deviation driven by curvature. At small

71



separations, the displacement defines a 2 x 2 shear tensor. The surface upon which the radiation pattern is constructed
and upon which the separation is measured should be well after decoupling so that the distribution function for the
here and now is just a direct map of the initial distribution function on the post-decoupling hypersurface by the action
of a Green function that now fully incorporates the bending geodesic trajectories.

The total angular power is conserved: i.e., C'*"(0) = C™e"s(0), However, at finite separation 6, C'¢"*(f) is
a smoothed version of C™7'e"s(¢), with smoothing scale ~ 0 where ¢ is basically an rms shear. Since C(#)/C(0)
gives the statistically-averaged profile about a point, this means that lensing smooths out hot and cold spots e.g.,
[274-276], but it does so in such a way as to preserve the overall power in a map. How much spreading occurs depends
upon how outrageous the structure formation model is, but the consensus of the papers on this subject is that the
effect is not very large for primary anisotropies. Seljak [279] has used realistic power spectra that include nonlinear
corrections, which enhances the role of lensing at sub-arcminute scales, to translate the correlation function decline
into its effect on Cy: the effect on the primary spectra of fig. 7 is to smooth the Doppler peaks; the typical range
in ¢ over which the power is spread in Al/( is basically the weak-lensing shear, about 10% to 20% or so at a few
arcminutes, depending upon the model [279] — in agreement with the levels estimated by people advocating using the
influence of weak-lensing on the ellipticities of faint galaxy images to determine the mass density power spectrum e.g.,
[272].

VI. PERTURBATION THEORY OF PRIMARY ANISOTROPIES
A. Overview of fluctuation formalism

A generic fluctuation variable D(x,t) can be expanded in terms of modes M € {adiabatic scalar, isocurvature
scalar, vector or tensor; growing or decaying}:

D(x,t) = w3 {ul () Quat®)acns + w2 ()Qin ()l }
kM

w=1/2 classical, w =1 quantum. (147)

For classical fluctuations, axa( is a random variable and a;r(  its complex conjugate, while for quantum fluctuations,
akr is an annihilation operator for the mode kM and aLM is the creation operator. The ug\zl(t) are mode functions
which describe the evolution (and, for now, include polarization effects, e.g., for gravitational waves). The spatial
dependence of the modes is given by eigenfunctions Qx(x) of the Laplacian of the background geometry. For a flat
background of most relevance to inflation models, it is simply a plane wave, Quaq(x) = e?** | labelled by a comoving
wavevector k. For curved backgrounds, the eigenfunctions are more complex.

The power spectrum of D associated with mode M is the fluctuation variance per log wavenumber and can be

expressed in terms of the statistics of axaq and aLM:

dopiv _ K ()
dlnk ~— 272 KM

k3
classical: PHU(k) = Py ul((l?\zl(tﬂ2 (g g axpm) - (148)

quantum: PHU(k) = O (1 + 2(a) v axm))

In the quantum case, {((—)) denotes Trace(p(—)), where p is the density matrix operator; in the classical case, it denotes
ensemble average with respect to the probability distribution functional. If the modes are Gaussian-distributed,
statistically homogeneous and isotropic, then this is all that is needed to specify the patterns in the field D(x,t). The
local shape is characterized by the index

np(k) +3=dn Py (k)/dInk. (149)

Thus —np is a “fractal dimension”: zero is white noise, while three is scale invariance in D.

In the inflation picture, the wavenumbers in the observable regime are usually considered to be so high that any pre-
inflation mode occupation, (aL Mm@kM), is negligible, and only the unity zero point oscillation term appears. In that
case, we connect to the random field description by making the real and imaginary parts of axrg Gaussian-distributed
with variance 1/2. Although quantization is at least self consistent in linear perturbation theory about a classical
background, and gauge invariant, there are still obvious subtleties associated with the transition from a quantum
to a classical random field description. A true inconsistency appears if we include the nonlinear backreaction of the
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fluctuations upon the background fields and upon themselves. For this, we would need a quantum gravity theory.
The stochastic inflation theory is an attempt to bypass this using classical fields acted upon by quantum-derived noise
(e.g., [179,180]). In the inflation regime,

D € {8¢ing,5¢is, by b, 5Ina, 510 H,bq, ...} .

That is, D would refer to fluctuations in: (1) the inflaton field d¢;,; whose equation of state can give the negative
pressure needed to drive the acceleration; (2) other scalar field degrees of freedom d¢;s which can, for example, induce
scalar isocurvature perturbations. (If axions are the dark matter, ¢;s would be the axion field.) The isocurvature
baryon mode would need to have a ¢;5 (“isocons”) coupled some way to the baryon number, e.g., [245]; (3) gravitational
wave modes hy,hy; (4) the inhomogeneous scale factor a(x,t), the Hubble parameter H(x,t) and the deceleration
parameter:

q(x,t) = —dlnHa/dlna, (150)

or other geometrical variables encoding scalar metric perturbations and their variations.! Inflation ends when ¢ passes
from negative to positive. Provided the fluctuations over the observable k-range remain Gaussian, the outcome of
inflation is therefore a set of amplitudes for scalar metric (adiabatic) perturbations, gravity wave modes and various
possible isocurvature modes, and primordial spectral tilts for each, in particular:

dl Pna k
scalar: va(k) = na(h) — 1 = LB el (B)

dlnk
(a|H* = G(X,t(X, Hil))) )
dlnP, k
tensor: v, (k) = (k) +3 = %V]:() , (151)

Measuring the power in scalar metric fluctuations on the time surfaces upon which the inhomogeneous Hubble param-
eter H(x,t) — the proper time derivative of ln a(x, t) — is constant is useful [174,191,175,180]: Once Ha exceeds k for a
mode with wavenumber &, (dlna|g.) becomes time-independent during an inflation epoch with a single dynamically-
important scalar field, and it remains so through reheating and the passage from radiation into matter dominance
until Ha falls below k (the wave “re-enters” the horizon). Although transforming calculations to a uniform Hubble
hypersurface is instructive, it does not mean that solving the equations for fluctuations defined on that hypersurface
is best. The perturbation quantities used in practice depend upon the gauge and choice of time surfaces, and are
described in the next section.

In the post-inflation period,

D € {6pcdm76vcdm76PB76UB76}(‘776fe'ru76fmu7h+7h><7yv(pv \110'7 - } .

That is, D would refer to fluctuations in the density and velocity of dark matter and baryons (0pcdm, Ocdm, 0pB,00B),
in the distribution functions for photons (¢f,) and relativistic or semi-relativistic neutrinos (0 ferv,dfm.), and in
the metric (dispersing gravitational wave modes h x and the scalar variables such as the “gravitational potential”,
& = vp). The Gaussian nature of the statistics is not modified until mode—mode coupling occurs in the nonlinear
regime.

B. Perturbed Einstein equations
1. Time-hypersurface and gauge freedom

In two relatively technical appendices, A and B, the Einstein—Boltzmann equations are viewed as defining a Cauchy
problem: the spacetime metric plus matter variables step forward from a set of initial conditions through a sequence
of spatial hypersurfaces, each labelled by a time coordinate. This “foliation” of spacetime into a 3 + 1 split is

'To be more precise, in terms of the variables of eq. (24), in the longitudinal gauge with ¥, = 0, we have dlna = ¢,
(6InH) = (Ha) ‘¢ — v, 6¢ = (Ha) *vr + (1 + §)dIn H, and the fluctuation used to characterize post-inflation amplitudes
isdlnalg. =d6lna — (dlnd/dlnH)MnH = Peom-

73



described by the ADM formalism [166-168,170,177,195]. Appendices A and B give the full nonlinear equations
for transport and metric evolution, and only then are reduced to linear perturbation theory, because the nonlinear
version illuminates the physical meaning of the perturbation terms. Because the ADM formalism restricts attention to
foliations which are covered by a single time parameter, a change of foliation (timelike hypersurfaces) is conceptually
intermingled with a change of coordinate system (gauge transformations). The gauge invariance aspect of this which
looms so large in much of the cosmological literature is not as important as the choice of time surfaces upon which
the perturbations are instantaneously measured. The time surfaces have a spatial 3-geometry, defined by a metric
() gij, which are the geometrodynamical variables encoding the dynamics of the gravitational field. The theorist can
decide how to push/pull his/her spatial hypersurfaces forward. This is encoded in the 4 remaining components of
the spacetime metric, parameterized in terms of a lapse function N and a shift three-vector N*,i = 1,2,3 (goo =
—(N? — N,N*),go; = N;). The contravariant 4-vector, e,, with components (e¢2) = N71(1,-N! —N2 —N3) is
timelike and unity-normalized, e%g,ze® = —1: it is the 4-velocity of observers who each have fixed positions on the
spatial hypersurfaces (fiducial observers).

The covariant derivative of any 4-velocity U (of which e, is a special case) can be decomposed into an acceleration
4-vector A = VyU (A® = UU .5, where ;” denotes covariant derivative), expansion rate 6, a vorticity we, and an
anisotropic shear o4, (where a,b € {0,1,2,3}):

Ub;a = _UaAb + %9 J—ab + Oab + Wab » J-a,b = Gab + Uan . (152)

The tensor L¥ satisfies L (U) =0,1% = L (le, L2U°=0and L2L{ = L1¢), hence is a projection operator onto
the three-dimensional subspace orthogonal to the flow U®. The vorticity tensor is the antisymmetric (and trace-free)
part of L Uy, 8 is its trace, and o4 is the remaining symmetric trace-free part.

By construction, spacelike hypersurfaces exist which are orthogonal to the U* = e flow. This implies vanishing
vorticity for the flow of time, wg, = 0. (In general spacetimes, a global time parameter may not in fact exist.) The
remaining spacelike part is the total shear, and its negative, K, is called the extrinsic curvature:

forU=e,, K4 = —(%9 Lap +0up)- (153)

It measures the relative deviation of the fiducial flow lines and defines how the spatial 3-geometry changes in time.

For a given flow U, in particular for the time flow e%, the stress energy tensor Tgf;e for matter of type “type”

can be decomposed into an energy density, pgype, @ momentum current J(“e ) type A isotropic pressure, pgype and an

anisotropic pressure tensor II{7 :

Ttyl;)e ptypeU U + ‘]( ) typeUb + UQJ( ),type +ptype J‘ab + Hg;pe ’
J_ab = gab + Uﬂ’U 5 ptype = U typeUb 5 J(E) type = J_ﬂ' thybpeUb 5
Ptype J‘ + thpe - J‘a Ttgldpe d» (thpe) =0. (154)

The total values ptot, J(“e ) tot? Prot I1¢% are just the sums of course.
In perturbation theory, we expand the spatial three metric, the lapse and the shift in terms of normal modes for

the Einstein equations, expressed in terms of scalar metric variables p, ¥, v, ¥, the vector contributions, h (V) N, (V)
and the (transverse traceless) tensor contributions, h(TT
©giy = (Vg5 + Dgi20 — @ OF,OF 20 + @) +ahf") |
,2 .
N=NQ1+v), Ni=NOvw,+N" ¥, = %1/)+‘11n. (155)

The parameters of the background geometry are the average lapse IV, which is taken to be @ if conformal time 7
is chosen, and an unperturbed FRW background 3-metric (k = 0,1 gives the 3 FRW curvature possibilities and
isotropic coordinates are used here):

(3)-  _ g 114 r? -

gl] - f ( ) 17 f - 4:d2 ) X =170 T,

{ - = tanh Qdirv , X = fr =deyrysinh d:u(m } ,

4 o X o N . X
b=t { 2dcurv = tan 2dcurv ’ == fr B dCUTU i dcurv } ’

_ 6k _ a
(O - — K;; = —— %@, . 156

0N R TH 1)
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Here 7y is the current conformal time, and y is the comoving distance back to redshift z (and x = c¢(r9 — 7) is
the solution for radial p_hoton geodesics) The covariant derivative with respect to the background 3—metric in the

direction i is )V, BV = B¢ B}, and the Laplacian is BT = OF' ©F,. For flat (k = 0) models, ®)V; = a;,
BV = 6a=29;, and the Lap1a01an is (3)Vz =a"23 0;0; — recall these a~' factors in the following.

2. Scalar mode Einstein equations

The physical meaning of the scalar metric variables is determined by their relation to such physical quantities as
the fluctuations in the 3-curvature scalar, (6 () R), in the anisotropic 3-curvature tensor, (J (3 )R’) in the expansion

rate, (0H ), in the anisotropic shear oj of e,,. For a conformal time choice, with N = @, from eqs. (A25), (A24), (A21),
(A22), (A25) we have:

157
158
159
160

(6@ R) = —4®T o — @ R2yp,

P (3)=2
(BORYj = —[OF OF, — 15, O]y,
a(bH) = ¢ — NHv — L O aw, |

(
(
(
J;'_ =—( ©AvA (3)_ 152 BT @ ), (

)
)
)
)

In addition to the three metric scalars, for each type of matter present there will be a relative density perturbation,
dtype, @ velocity perturbation which, because the flow is irrotational for scalar perturbations, can be written in terms
of a velocity potential, ¥, type: Viype = —@ V¥, type,> Here type runs over inflaton and isocon fields, massless and
massive neutrinos, photons, baryons, CDM, etc. For some types of matter there may be an anisotropic pressure
perturbation, m ¢ype, and for photons and neutrinos, there will be higher moments, expressing all of the degrees of
freedom in the perturbed distribution functions.

There are generally 10 Einstein equations, G§ = 87G nyT}. These split into 4 constraint equations, G = 877G N1}
(where G, = €,%Gage,’) and GL = 87GNT!, and 6 dynamical equations, G), = 87GNTL. (Here I,J refer to
spatial components taken with respect to a triad e;® of spacelike 4-vectors perpendicular to e, described in more
detail in Appendix A 1.) Because spatial components of scalar variables can be expressed in terms of gradients, first
integrals of the gradient equations can be done, reducing the total to 2 constraint and 2 dynamical equations.

The perturbed energy constraint (§G™™) and momentum constraint (§G.) equations are

_ 2 (oy— 1 8 G
2H(5H) — BT, — s W R2e "IN (5p)tot » (161)
14— _
a(oH) + 5 ®T’a0, = ¢ — Hav
1 _
= —4nrGy Z(ﬁ + p)typea‘llmtype - 6 (B)Ra‘llcr : (162)

type
A combination of the momentum and energy constraints gives a “Poisson-Newton” constraint equation:

~OF e+ AY,) - L O R2(p+ HY,)
= 47G N ((0p)sot + 3H (P + P)tot Vo tot) - (163)

The dynamical Einstein equations are those for the isotropic pressure (6GL) and the anisotropic stress ((5G§ —
%5§6Gﬁ}); instead of (0G1), it is more useful and usual to use the perturbed Raychaudhuri equation, §R",, = —(6G nn+

6GI[)/2Z

d(aoH)
or

_ 1 _
+ ~(@H) ~ (1 +q)(Ha)*v - za° BTy

ISINRSID

2This is the usual definition for nonrelativistic matter, but 1s better defined in terms of the momentum current, (p¢ype +

Ptype ) Viype, especially for scalar fields ¢ for which ¥, 4 = a¢ 6(;5 is ill-defined since (;5 can vanish [177,191].
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4G N _.
_ﬂ—NaZ

=-—3 ((6p) +3(0p) )tot » (164)
a0, + HU, + (p+v)=-8rGy Z DeypeTt type » (165)
type
S - - _ 2\ =
Hgygei]‘ = ((3)vi (3)Vj - % (3)gij Y )DtypeTt,type -

Note that only the combination ¥, of the two scalars i, ¥,, enters the linearized equations. Terms contributing to
the total pressure are photons, p-0./3, massless neutrinos, per,der. /3, hot and warm dark matter, and scalar field
pressure if appropriate. The pressure of the baryons can be neglected — except on very small scales.

3. Useful gauge invariant combinations for scalar modes

Under change of the hypersurface from 7 to ¥ = 7 4+ T'(x,7), the scalar metric variables change according to
p=¢p—-Hal,V, =¥, +al, v =v—a '0.(al) (see eq. (A37) for the behavior of other variables). Three simple
combinations can be made that are T-independent:

I/LZI/+C_L71\1/(TE‘I)A, QDL:(,D+H\IIUE‘I)H,
Aa) lp— s
o+ % = Peom — H 2 OR(W, 10 + T,) = (Flnalu.),

where  @eom =@ — HU, 1o - (166)

Here 7 is the mean deceleration parameter, expressible in terms of the mean densities and pressures of the matter
present.

In the absence of mean curvature the metric combination (6 lna|g,) reduces to the scalar curvature potential on the
hypersurfaces in which the net momentum current vanishes, @¢,m. This quantity deserves some comment. In early
universe calculations and to characterize the initial conditions for the photon transport through decoupling, the power
in adiabatic scalar fluctuations on scales beyond the Hubble radius is best characterized in terms of quantities such
as Ycom Which become time-independent; ¢, has been used to simplify calculations of linear fluctuations generated
by quantum noise since the early eighties by Mukhanov and others [175,170,184].

The variable In a|z. is the inhomogeneous scale factor as measured on time surfaces upon which the space creation
rate, H, = 0lna/(NOJ7), is uniform. It gives a nice characterization of even nonlinear fluctuations that can arise
in stochastic inflation [180]. However, H, here is not exactly H = —K/3, the usual Hubble parameter. For scalar
perturbations, given a foliation, we can change spatial coordinates on the time surface to get ¢ = 0, with all of ¥,
moved to the shift potential ¥,,. In these coordinates,

1 R
H=H+-—0OVNaxsH+=¢p—H
+3N V; +Ncp v,
1 _
(OH.) = (6H) + 3 OF*,, Ilna=lna+e. (167)

Under the purely spatial transformation, ¢ remains unchanged. Both (§H.) and ¢ are modified under time surface
changes, but in such a way that the combination (d1naly,) is invariant.

For numerical or analytic calculations in inflation, it is impractical to work on a uniform Hubble foliation for
complex calculations. One determines (6 Ina|g.) by hypersurface shifting after the computations are done. In linear
perturbation theory this is particularly simple. For example, suppose that the calculation has been performed in the
longitudinal gauge, for which the variables of relevance are In N, Ina and In H. Keeping the same spatial coordinates,
the time we transform to defines a scalar function T'(x, 7), and the inhomogeneous scale factor and Hubble parameter
become a(x, 7 + T'(x,7)), H.(x,7 + T(x,7)). Choosing T to make H, constant gives a nonlinear equation for a|z..
With linearization, (§lna|y.) = §lna — 42 (5InH,), i.e., eq. (166).

Bardeen [170] emphasized the virtues of ¢y, the value of ¢ on surfaces upon which H = —K/3 is constant. The
difference between (§H) and (0H.) is a term of order (k/(Ha))?, hence ¢, differs from (61na|g.) by terms of order
(k/(Ha))? as well; i.e., they are the same well outside the horizon. Another quantity which I have used extensively is
Bardeen, Steinhardt and Turner’s ¢ [174,231,191,177]:

(5P)tot (B)VZQOL

C:§0+7:¢com+m~ (168)

3(p + P)tot
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Again, far outside the “horizon”, k/Ha < 1, ( & Peom ~ d1lnaly,.

The most commonly used gauge choice in nonlinear numerical relativity computations of black hole formation has
been one on which K is not just uniform but is zero, because it turns out to be the time slicing which maximizes the
3-volume. This has the virtue of avoiding singularities, but in cosmology we usually care about following collapsing
objects. The cosmological generalization of maximal slicing is one on which the Hubble parameter is uniform, i.e.,
basically the hypersurfaces whose scalar curvature parameter ¢ is used to characterize the initial conditions for
adiabatic fluctuations.

4. Longitudinal and synchronous gauges

For scalar perturbations, there are no intrinsic dynamics of the gravitational field. This is similar to Newtonian
theory in which, given the density, the Newtonian potential is found by solving the Poisson equation, but no ODEs in
time. To specify the gauge, a single combination of the scalar degrees of freedom can be fixed. Two have been most
widely used in cosmological calculations of radiative transport. In the longitudinal gauge (L), ¥ and ¥,, are both set
to zero. Thus ¥, is also set to zero, so the hypersurfaces have zero shear. The remaining two metric variables in
Bardeen’s notation [170] are &4 = vy, Py = ¢ (= 01lna). In the longitudinal gauge, one can use the anisotropic
dynamical Einstein equation to algebraically relate (v, — ¢ ) to the anisotropic stress, and the Poisson—Newton
equation to get vz in terms of the total comoving energy density. All dynamical information is then carried by the
matter present. Refs. [172,138,250] adopt this approach, but instead of solving for the longitudinal gauge d¢yper, they
solve for the comoving densities diypecom = Otype + 3(1 + %)typeﬁlllv7type. Ref. [259] solves for dyyper, but uses the
momentum constraint equation in place of the anisotropic shear equation. The longitudinal gauge is considered to
be the one closest to Newtonian in the nonrelativistic regime, for both metric variables are given by the perturbed
Newtonian potential ®n: ¢4 — Py, Py — —Dy.

In the synchronous gauge (5), the lapse perturbation » and ¥,, are set to zero. One could solve the momentum
constraint equation as a first order ODE for ¢g in terms of the various velocity potentials, and then determine a(6H),
x the perturbation to the trace of the extrinsic curvature, through the energy constraint. We recommended this
approach for inflation in [191]. The perturbed equations in the synchronous gauge for radiation and matter involve
only a(0H) and ¢g, so actually solving for ps is not really necessary, except to get a(6H). However, a(0H) can be
directly determined from the Raychaudhuri equation, which is just an ODE at each point, and does not depend upon
s or even ¢g. If one uses this equation to evolve a(0H), $g is set algebraically by the momentum constraint, and ¢g
is not solved for. The transport equation for CDM in the synchronous gauge is simply Seam = —a(0H). Transforming
to normal N = 1 time gives the usual density perturbation growth equation, Scdm + 2ﬁ5cdm = 47wG N PeamOcam +
4rG N Ztype;ﬁcdm (6ptype + Sdptype)'

The spatial hypersurfaces are those on which cold dark matter is comoving (the velocity potential for cdm particles
in the longitudinal gauge is Uy cam,.="5.s). In the nr limit, s = ®5/(47Gnpnra*) becomes the potential for
the displacement field that appears in the mapping from Lagrangian space to Eulerian space, x(r,7) = r — s(r, 7),
s(r,7) = Vis. The coordinates x’ (r, 7) are Eulerian ones appropriate to the longitudinal gauge and the r’ coordinates
are Lagrangian ones labelling the cold matter particles. The deformation tensor e/, = 9x7 /9rt defines a triad of
orthogonal vectors e/ for the space in which the cold dark matter is at rest (i.e., perpendicular to the flow e% of
the CDM). The way gravitational collapse manifests itself is through the shrinking of the comoving lengths e?.dr?,
although dr® remains fixed: i.e., collapse is viewed as a motionless distortion of the geometry. The synchronous gauge
breaks down once e’ becomes singular, i.e., once caustics form and shell crossing occurs. (Once the universe has

become dominated by nonrelativistic matter, g5 — 0, 5 = =538y /3, @ ¥, = 7®x /3, g = 9. (a1 ¥,) = ®x/3).

5. Tensor mode metric equations

The tensor modes satisfy the anisotropic §G?7 — %5§5G§}’ Einstein equations. Expressed in conformal time this is
R pomaht™ T — a2 ORI 4 Lg2 @) gt
= 167G ya> (1)) (169)

72 ?

where (Hgt))i is the tensor mode part of the anisotropic stress. The mode expansion (147) for gravity waves (in a

flat FRW background) is
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hy )
(Te) zkx (Tﬁ)* —ik-x T
=w Z Z hre) Eij ax(re) + hipo Eij Ay (Te) >
e=+,X kM
E(T+) = (el®e1—e2 ®92), E(TX) = (el ®e2+e2®e1),
k-e=0, e -e=0. (170)

Here {ey, ey, k} form an orthonormal triad. With the wavevector k oriented in the z-direction, e; in the z-direction
and e, in the y-direction, we have the usual

E(T+) i hij(k,T)
E(T+)ij EZ_(]_TJF)
ETX) i, (k,T)
E(Tx)ij g(T'%)
1%

hiryy(k,7) = = (h11 — h22)/2

h(Tx)(k) = = h1z.

The only degree of freedom of the stress energy tensor which has a nonzero amplitude in the tensor mode is the
anisotropic stress, which has components

A(T{HxD) = BT 9Tl 45 (k, 7)
Dtot ¢ tot = E(T{+,x}) ijE_(_T{+7><})
ij

Hence (for flat backgrounds) the Einstein equations reduce to
ﬁ(Te) + 2H6_Lh(T€) + k2h(T€) = ].67TGNC_L2ﬁtQt W,E(Y);E) s €=+,X. (].7].)

For inflation-based models in which gravity waves are zero point fluctuations, the anisotropic stress driver can be
ignored, even during evolution through the radiation-dominated epoch where the anisotropic stress may not be irrel-
evant. This contrasts with the scalar perturbation case for which the Einstein equations have source terms depending
upon the density and the velocity potential, and one cannot solve for the metric variables without simultaneously
solving for the radiation and matter. For tensor perturbations the predominant behavior is just free evolution from
a given set of initial conditions for the waves.

The solution for k¥ < Ha is hipqy x)) constant for all relevant equations of state. Let us suppose that the
gravitational waves are characterized by a power spectrum Ph(T (+xD) (k,7.) at some initial time 7, for which k7, < 1.
To see the character of the solutions for £ > Ha, let us consider the case where we have only relativistic particles
with density parameter now given by ., o (photons and massless or very light neutrinos) and nonrelativistic particles
(baryons and cold dark matter say) with density parameter now 2, 0. When eq. (169) is expanded in k-modes,

h(T{+’ x}) obeys

d? h(Te) 5@/ (22.) + asy” 1 dher

h =0 =k(r—1e), 172
da? x/(4 )+a1/2x dx + i ! (r =) (172)
where ., = k[HOQ,ll/T?O]_1 and
Qer
@& = Ge = %[Hoﬂiz/r?o(T —Te )]2 + al/z[H Q}z/fo(T —Te)], g = Q 2 (173)
nr,0
For waves which reach Ha ~ k in the er-dominated regime, the solution is
Phirisryy B T) = Phipipy, (B, 7e) (o(k(T — NP, a—a. K e, (174)
while for those which reach Ha ~ k in the nr-dominated regime it is
B (k(r — 7o)\’
Phirgroy B T) = Prip gy (Fs Te) < k(T — 72) » 4= (e > deg- (175)

It is more complicated in the transition region or if there are other constituents in the equation of state, such as
vacuum energy, decaying particles, light massive neutrinos, etc. These solutions explicitly show the constancy outside
of the “horizon” and the loss of power due to the free-streaming of gravity wave perturbations inside the “horizon”,
ie., for k(m — 1) > 1.
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C. Connection with primordial post-inflation power spectra

The evolution equations for fluctuations d¢; in scalar fields ¢; are

920¢; 900, 92V
2Ha—2 —a* Vs a2
or? +ata or v ¢;t Z 99;0¢; 09
= —6,(3p — v — OV aw,) — 28—Vz/ (176)
99;

The inflaton and isocons are coupled through a potential V (¢ins, dis, .. .). No explicit dissipative coupling term has
been included (but is needed to turn oscillating scalar field into radiation and matter). The combinations

8¢; — 6,0 "W, =6¢;, and 6¢; + (Ha) ;0 = 66j|ine (177)

are gauge invariant. Thus the perturbation in the longitudinal gauge is an invariant combination d¢;z. Scalar fields
have no anisotropic stress in linear perturbation theory. For the longitudinal gauge this gives the simple relation

vy, = —pr. The second gauge invariant combination, 0¢;|ine = 0,1 + %Mn a, is the value of the scalar field on
hypersurfaces of fixed ln a; i.e., beginning in the longitudinal gauge, one forms ¢y, , = ¢(x, 7+ 7T (x, 7)) with T" defined
by lna(x, 7+ T(x,7)) is constant. Mukhanov [176] showed in perturbation theory that the metric terms disappear in
the scalar field evolution equation when the choice @0¢;|inq is made, resulting in considerable simplification for the
case of a single scalar field being important in inflation. In [180], we emphasized some of the virtues in the nonlinear
case.

The equation for h(r(4 x}) is identical to that for scalar fields with no effective mass. (There is a (0H) term
multiplying A7y x}), but this is an ignorable quadratic nonlinearity.) A factor is required to make the actions the
same: (mp /v 167)h(r(4 x}), where the Planck mass is related to Newton’s gravitational constant by mp = G;m in
units with A =c=1.

We now describe the power spectra resulting from zero-point quantum oscillations found by solving these equations.
During inflation Ha increases. The solution of the massless scalar equation shows rapid oscillation of the respective
mode functions “inside the horizon”, almost freeze-out outside (k < Ha), with a power amplitude P;/2(k,Tk) R

H(r)/(27) on the k = Ha boundary. The Hawking temperature H/(27) result® follows from a WKB solution to
(169) evaluated at k = Ha provided the effective masses of the scalars are small compared with H. The perturbation

in the inflaton field ¢;,; translates into scalar perturbations in the metric through élna = (H/(;'ﬁmf)é@nf. If we
denote the end of inflation by 7. and horizon crossing by 7%, the post-inflation spectra are

1 Vdr H(ty) pie
Vea+1 mp 27 ’

Var H
1/2 =8 m;r 2(771-1@ e", Paw (k) = Phpy, (k) + Phipy, (k).

P2 (k1) =

In a| gy

(178)

The correction factors u; and us to “the H/(27) at k = Ha WKB approximation” are in practice nearly zero. How
near is now of considerable interest because the COBE results have created a desire for calculational precision [183,6].
Complicated potential interactions between the inflaton and isocon degrees of freedom can also change these results.
In eq. (178), H(¢) and the deceleration parameter g(¢) are treated as functions of the inflaton field. These functions
naturally follow from the Hamilton—Jacobi formulation [180,181], in which H(¢) is related to the potential V' (¢) by

= [1 (22 v

81nH]2

2
g =2 15

47

1
3m2 |2 \dr 99 (179)

The oft-used slow rollover approximation, valid in many inflation calculations but certainly not all, is the zeroth order
solution in an expansion in 1+ ¢: H? =~ 87V/(3m3).

3In stochastic inflation, noise at the Hawking temperature radiates from short distances across the decreasing (Ha) ™! boundary
into an inhomogeneous background field built from longer wavelengths.
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The adiabatic scalar and tensor tilts are logarithmic derivatives of eq. (178):

V¢ nt+3 -1

—=—=1 C

) 2 +q + ty

v ne —1 m2 0?ln H

== =1 -1 _ 1P Cs. 180
2 2 T e T (180)

Here Cy s are small and essentially ignorable correction factors associated with derivatives of the u; ;.
Eq. (180) shows that tilt mostly depends upon how far the acceleration is below the critical value of unity. For
uniform acceleration, the scalar and tensor tilts are equal:

ve=1=-2p-1)"", q+1=p". (181)

It is realized by power law inflation, a o t?, with p constant, and an exponential potential in ¢. Over the small
observable window we have in k-space, this is often a good approximation, e.g., for extended inflation, one of a class
of theories with variable gravitational coupling. Of course, ¢ must go negative for a viable model of inflation. Power
law potentials of the form V(¢) = Aem$(¢/mp)*™/(2n) with n constant have the acceleration naturally dropping
through zero: ¢ ~ —1+ (¢/mp)~2n?/(4x). In chaotic inflation examples [187], one often takes power law potentials
with n = 1 or 2. A characteristic of such potentials is that the range of values of ¢ which correspond to all of the
large scale structure that we observe is actually remarkably small: e.g., for n = 2, the region of the potential curve
responsible for the structure between the scale of galaxies and the scales up to our current Hubble length is just
dmp < ¢ < 4.4mp [191]. Consequently, H(¢) does not evolve by a large factor over the large scale structure region
and we therefore expect approximate uniformity of v,(k) and v;(k) over the narrow observable bands of k-space,
and near-scale-invariance for both. Although this is usually quoted in the form of a logarithmic correction to the
In a| g «-spectrum, a power law approximation is quite accurate [189]:

L U

ST UN(k) —n /67 YT N(k) —n/6’
n/2

+1lr —.

1 N.(k) +n/3

Ny(k) is the number of e-foldings from the point at which wavenumber k “crosses the horizon” (when k = Ha)
and the end of inflation. For waves the size of our current Hubble length we have the familiar N;(k) ~ 60, hence
ve & —0.05,1; ® —0.03 for n = 2 and vy & —0.03,; & —0.02 for n = 1 (massive scalar field case). Further, the
observable scales are sufficiently far from the reheating scale that N is relatively large over the observable range:
e.g., over the range from our Hubble radius down to the galaxy scale, vs; decreases by only about 0.01.

In natural inflation [188,189], the inflaton for the region of k-space that we can observe is identified with a pseudo-
Goldstone boson with a potential V' = 2A*sin®(¢/(2f)). This is similar to the axion, except that the symmetry
breaking scale f is taken to be of order mp and the energy scale for the potential is taken to be of order the grand
unified scale, mgy7, so that an effective weak coupling, \e = A*/(fmp)? ~ (mgur/mp)* arises “naturally”, giving
the required 10713 for mgyr = 10'°GeV. To obtain sufficient inflation and a high enough post-inflation reheat
temperature for baryogenesis, f 2 0.3mp is required. To have a tilted spectrum and also get enough inflation in our
Hubble patch, ¢/ f must have started near the maximum at 7, an inflection point where ¢ is nearly —1, hence tensor
tilt and gravity wave power are both exponentially-suppressed; however the scalar v, ~ —m% /(87 f?) does not have
to be small [189].

The index vs can have complex k-dependent structure when the acceleration changes considerably over the k-band
in question. According to egs. (180), the post-inflation gravitational wave spectrum will have power increasing with
wavelength, whereas artfully using the 9% In H/9¢? term allows essentially any prescribed shape for the adiabatic
scalar spectrum (e.g., [190,191]). However, most broken scale invariance models which do give considerable variation
in v4(k) over the relatively narrow band of k-space that we can observe are not very compelling, since rather dramatic
features must be tuned to lie on the potential surface in just that stretch which corresponds to our observable band.
A slowly varying vs(k) is certainly a better bet.

D. Relating scalar and tensor power measures to the dmr band-power

For early universe calculations and also to characterize the initial conditions for the photon transport through
decoupling, the power in adiabatic scalar fluctuations on scales beyond the Hubble radius is best characterized in
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terms of quantities which become time-independent. We have seen that some examples are the spatial curvature of
time surfaces on which there is no net flow of momentum, the expansion factor fluctuation on time surfaces with
uniform space creation rate and . An initially scale invariant adiabatic spectrum has k-independent power per d1ln k
in these variables (for k/(Ha) < 1), while for models with spectral tilt v, we have Py, (k) = Py, (5") (k70)",
where we use the instantaneous comoving horizon size at the current epoch, 7y, as the normalization point. For CDM-
like models (those with @ = Q,,, =1 and 70 = 2H; 1), these spectra are related to the portion of the dmr band power

(Ct) g, in the scalar adiabatic mode, (Clgs))me = (Co) gonr/ (1 +71s), and to the quadrupole power, Cés) =Co/(1+74s),
by

Poeon (1571 2 23.4(CY), 71990 (140102) o 93 50(5) o= 11vs (182)
Poeon () = Pryaly, (k) = Pe(k) Py, (k) =Py, (15" (k10)"

i.e., roughly 3 x 107°. This relation, determined for the Q5 = 0.05,h = 0.5 CDM model, is quite insensitive to

variations in h and Qg (e.g., 23.6 to 23.0 as Qg rises from 0.0125 to 0.20 for <C£S)>dmr and almost no change for Cés)).

For scales of order our present Hubble size, we also have P, ~ 29—577¢H = %’P((gp)hw, where @y = o = —vp = —®y
is the perturbed Newtonian gravitational potential and (0p)nor is the density fluctuation (in the synchronous gauge)
at “horizon crossing”, k7 = 1.

Quantum noise in the transverse traceless modes of the perturbed metric tensor would also have arisen in the
inflation epoch and for many models may have been quite significant, as is discussed below. The gravitational
radiation power spectrum Pgyw = Ph, + P, is the sum of the two independent gravitational wave polarizations. It

is related to the amplitude of the dmr band power (CéT))dmr = (Cq) g, Tts/ (1 + 74s) and to the quadrupole CéT) by

PGW(T(;l) ~ 17.6(C£T)>dmr e 192ve (140 1v) o 13.7C§T) e 1:25ve

Paw (k) = Paw (15 1) (k7o) (183)

with very little 25 dependence.

The inflation model determines the ratio of Paw (75 ') to Py, (75 1), through eq.(178), which is related to the tilt
of the gravity wave spectrum, —4v;/(1 — v;/2) in zeroth order, with small corrections associated with Cy and u; — us
predominantly dependent upon v; — v; and which can usually be ignored [183,6]. The fits given above can then be
used to relate the ratio of dmr band-powers (and quadrupoles) to the tilts (for Q4 = Qeuro = 0):

?

(T) _
Frs = M ~ 1.33 PGW(TO 1) :| 6—0.0714 6—1.99(u5—ut)

s P (15) ’
csh =

- 2(5) ~ 1.71|:'PGW(7'071)] e 015V oL (ve—w) (184)
Cy P (107)

-1
. —4
[PGW(TO—l) ] = 8(1 + q)e2w )
Poeon (157) (1 —1/2)
Recall from eq.(180) that the tensor tilt is simply related to the deceleration parameter ¢ = —aii/a? of the Universe in

the inflationary epoch, v;/2 ~ 1+¢~1; although 1+¢~" is the leading term for the scalar tilt, other terms can dominate

when the deceleration is near the critical deSitter-space value of —1. It is invariably negative. When assessing the
effect of gravity waves on the normalization of the spectrum, as noted earlier it is useful to consider two limiting
cases: Vs = v, which holds for the widest class of models, including power law and chaotic inflation, and v; = 0,
with vy arbitrary, which holds for some models such as “natural” inflation. To lowest order in vy, 75 & —5.31; and
r1s & —6.81; (often rounded up to —7v, which is nearly the value one gets if only the naive Sachs-Wolfe formula is
used to estimate Cés).)

There are also corrections as one goes away from the 2,, = € = 1 models. For example, models with nonzero

cosmological constant Q,4c, but Q,,,+Q,. = 1, have PGW/<C§T)>
s
P/ ()

4my Peing only weakly dependent upon €2,,. whereas

o (1 —0.603:3) is strongly dependent upon it (section VII C).

dmr vac

E. The Boltzmann transport equation

In Appendices B and C, transport theory with polarization in the ADM framework is derived with full nonlinearities
in the gravitational field included. The Boltzmann transport equation depends upon not only the spacetime foliation
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chosen, but also upon the momentum variables ¢’ chosen. A natural set to select are those referred to the orthonormal
basis {e,,e;}, where the spatial triad e; is normal to the hypersurface flow vector e%; however, this choice, p!, is a
physical momentum, not a comoving momentum, and we have seen that the transport equations are much simpler if
we use comoving momentum, hence use ¢/ = Qp!. The factor Q must reduce to the average expansion factor, @, in
the unperturbed case, but can be inhomogeneous if we like. Choosing different 2/a corresponds to choosing different
momentum-space gauges, and leads to different forms for the Boltzmann transport equation. This is only one example
of the extra gauge transformation freedom that exists in dealing with transport phenomena. Momenta defined with
respect to tetrads other than the {e,,e;} also lead to modified equations.

Recall from section IIT A that to treat polarized photons, four distribution functions are required, f, fu, fv, fo,
corresponding to the four Stokes parameters. These are best understood as elements of a 2 x 2 polarization matrix
fss', where s denotes the photon polarization, s = £1 for circular polarization, s = 1,2 say for linear polarization,
with associated polarization basis e satisfying €5 L §. One can combine the tensor product basis €5 ® ey with fsg
to make a (spatial) tensor of rank 2 which is conceptually extremely useful for understanding the Stokes parameters
and how they behave under rotations:

f=Y fowea®ca = fifey + fulw) + fr€u) + foliq) - (185)

ss!

The tensor basis £(,) for the Stokes parameters are linear combinations of the ¢, @ ., defined by eq. (C3). In
Appendix C, the source function for Thomson scattering is derived using this language. A more conventional approach
is to apply Chandrasekhar’s classic development of the scattering source term for Rayleigh (and thus Thomson)
scattering in a plane parallel atmosphere [199]. Of course, the transfer problem is not plane parallel; however, it
effectively becomes so for each normal Fourier transform mode for flat universes [134]. The nonlinear Boltzmann
transport equation for Ag o vy is given by eq. (B14). The linearized version for photons takes the form (using

N=a, i.e., conformal time)

) ., 0
EA{t,Q,U,V} + QJWA{t,Q,U,V}

= g{t,Q,U,V} sw + g{t,Q,U,V} curv T g{t,Q7U7V}C 5 (]_86)

in terms of a Sachs—Wolfe source from redshift effects, a source associated with mean curvature of the Universe,
91t,Q,U,V'} curv, and the Thomson scattering source, Gy ¢ v,y ¢- In nonlinear theory, there is a term associated with
the bending (lensing) of light, Gipend, but to linear order it manifests itself only if there is mean curvature. Mean
curvature terms, grouped into Gy 0.1,V } curv, are described in section C4. Although the solution method when there
is mean curvature is quite similar to the flat case one, the discussion is complicated because the mode functions are not
plane waves. For this section, we assume a flat background so the modes are characterized by a comoving wavevector
k7, with the understanding that we really mean the action of the operator —ia )V ;.

1. Scalar mode transfer equations

For scalar perturbations (and flat universes — see section C4 for mean curvature modifications),
Gidty = —iq - kkv — ¢ — (- i%)%z"lwa, (187)

gQSW 0, gUSW 0, gVSW
00 = —A®) + A(S) —ig - kka*l%ﬁ

LG B)(AS + A5 +A5)). (188)
TchSC) =AY + -(1 — Py(k-q)) (A4 + A% +A%)), (189)
TGN =0, 710G\ =-A 435 kAl (190)

The moments Af{f)Q v} are defined by expanding in Legendre polynomials:

A%f)cg vy =2 20+1) (=) Ag)QUy}sz(l% Q). (191)
4
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A(US) and Ag/s) are initially zero, and remain decoupled from other sources, so remain zero. Thus for each eigenmode

only transport equations for AES) and Ag ) need to be solved. However, when one reconstructs from these mode
solutions the statistical distribution of the observed polarization pattern, A¢q v,v} (%, 70, ¢), the U and @ components
mix, so both are nonzero.

These equations are valid for arbitrary gauge choices. The momenta have been chosen as the components defined
with respect to an orthogonal basis so that the direction ¢ is what would be measured. The change of momentum
coordinates is itself part of a gauge transformation.* It is often convenient in dealing with the transport equation to
rewrite it with many of the explicit terms of form ¢’ 3)¥; brought into the transport operator. This is equivalent to
a momentum component transformation. An explicit example is to use momenta

¢ = exply + (9 — 00 (a0, ¢, (192)

which transforms the distribution function and source terms to the gauge-invariant combination &ES) introduced in

section V B:

da~'v,
or
5(S) R . 82(1_1‘110

gtSW =rv—¢+ 972 )

A =A® o4 —§oat,, (193)

~ ad
6y =310, +v+ Ea‘l‘llg,

V=0, +%,, AP =AY (1>2).

=

If the Compton sources are small and the gravitational potential perturbations do not change in time (or equivalently if
the time flow has a1 ¥, o 7), then the source term can be neglected, AES) propagates freely, and is particularly simple
to integrate [88]. We used this quantity extensively in [134,88]; it has the simple interpretation in the longitudinal
gauge of basically saying it is the Tolman combination e”*7’, which free-streams.

These equations are coupled to the transport equations for massless neutrinos, hot, warm and cold dark matter,
and baryons. Massless neutrinos obey a transfer equation identical to that for photons, except of course there is
no Compton coupling, only the Sachs—Wolfe and curvature sources. (If the relativistic particles are decay products
generated during evolution, there is also a Q(ETSZ decay SOUrce term [251].) Just as for photons, these equations are
solved by a moment expansion. For hot dark matter (light massive neutrinos), warm dark matter, etc. the transport

equation has the form

aT [Ahdm] + ZqinqA ' ]%kAhdm = (ghdm sw + ghdm curv) ) (194)

n

gl(zlenSW = _i%@'klf —o—(G-k)*a ", ¢"=V¢*+m?a

It is the semi-relativistic stage, when ¢/¢™ is not simply unity or ¢/(ma), that creates the difficulty. A straightforward
method is to solve this by moment expansion, one for each neutrino momentum, g. To feedback into the perturbed
Einstein equations one needs to appropriately sum over the momenta ¢, to get the energy density, velocity, pressure
and anisotropic stress — with an adequate number of moments and energy groups, and proper treatment of boundary
conditions in f-space, one can get away with only a few hundred extra coupled ODEs to be added to the already
formidable number of moment equations used for the photons [259,260]. In earlier work [194] we described another
method, expressing the metric equations as integro-differential equations — which had the penalty of integrating over
past time to get the current perturbed energy—momentum tensor of the neutrinos. To make the method practical
and indeed relatively rapid for CMB anisotropy calculations, optimal sampling of the past history [260] and a switch
into (essentially) cold dark matter equations once the particles were strongly in the nonrelativistic regime and the
wavenumber was much below the redshift-dependent Jeans wavenumber was helpful ( [134,2,232] and eqgs. (C44),
(C46)).

“The oft-used approach of viewing the CMB photon transport equation as one for the radiation brightness, the integral of the
distribution function over ¢ but not ¢, obscures this view. Also for most sources but Thomson scattering or for other particles
such as massive neutrinos, the g-dependence is very relevant.
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The mass and momentum conservation equations for nr dark matter and for baryons are (egs. (B10), (B12))

CDM:  Locam + ¢ + 3k*a™(¥y,cam + ¥,) = 0, (195)
a" Wy cam = v, (196)
baryons: %53 +o+ %kzc’fl(‘l/mB +%,)=0, (197)
. 4
My = v+ neor=tL a7,y (198)
3pB
relative velocity potential: ¥, g =V, , — ¥, 5. (199)

In eq. (198), the baryon pressure is neglected, a valid approximation for primary anisotropy calculations: it manifests
itself through the post-recombination baryon Jeans length, k! ~ 1h~'kpc, very small compared to the ~ 5h~*Mpc
damping scale for primary anisotropies [134]. For Thomson scattering with A; independent of ¢, the first few moments
of the photon distribution function are related to the density and pressure perturbations, velocity potential and
anisotropic stress by

s) _ 9y _ (0p)y (5) _ ks (8) _ 127ty
Ao =% T An =5 B =k,
and the first two moments of the Ags) Boltzmann transport equation are just the energy and momentum conservation
equations for photons:

photons: 14, + ¢+ k%@ (W, , +¥,) =0, (200)
a ', — HY, — (30, +v) + 2kPm = —neor ¥, 5, (201)

The right-hand side of eq. (198) gives the body force (i.e., per unit volume) from Compton drag felt by the baryons,
and the right-hand side of eq. (201) gives the equal and opposite body force felt by the photons:

1 d3q
{Forcep}c-drag = —g2/(27)33tq = —(py +py)neor(ve = v4),

{Force, }c-drag = —{Forces}c-drag - (202)

Compton drag effectively damps the gas motion down to z ~ 300 for CDM-type models if the universe remains
ionized, but lets up at z below ~ 1000 for normal recombination.

There are two kinds of limiting behavior in the baryon plus photon transport equations that simplify calculations.
The first is at the beginning of computations, when the photons plus baryons are tightly coupled, acting like a single
fluid, albeit with a shear viscosity and a thermal conductivity (section C3a). In this limit, the infinite hierarchy of
moment equations is not needed, but is truncated by assuming the ¢ = 3 term vanishes. The anisotropic stress m -
is then related to ¥, g, which also has a thermal diffusion contribution to it. To get these transport coefficients
accurately, ¥, ,p must be expanded to second order in 7. These are used until it is unsafe to do so (using a
conservative safety tolerance).

The full transport equations are then solved, with an algorithm for opening up the number of multipoles being
calculated: the main effect of transport is to propagate a pulse in f-space localized around ¢ = k7 from low ¢ to high
¢ as T increases to 79. In fig. 14, the nature of the pulse (smoothed in ¢, as described below) at its final location at o
is shown for representative (’s.’

A second regime, used long after photon decoupling and only if the curvature term and Qfg&v are negligible, is

free-streaming in the A; variable. It can be used to propagate from some stopping point 7, (k) to the present in one
step. This translates the (-space pulse from a location centered on ¢ ~ k7, to one centered on ¢ ~ k7o.

®The continuum limit of the moment hierarchy in ¢ — Appendix C 2 a, egs. (C27), (C28) — gives a wave equation for D(k7, Q) =

Agf) in the variables k7 and Q = ¢+ 1/2 with the wave solution Q*/?fn(Q — k7) which conserves the power 3 (2¢+ 1)|A$)|27
~ ffn2 (¢) dg. Here fn is a function describing the pulse whose form is determined by the power that is injected at the base of

the hierarchy, through the sources acting on ¢ =0, 1, 2. The Q71/2 prefactor is a little more complicated with curvature, but the
pulse description is still valid, D o fn(kdcurv arcsin(Q/kdcurv) — k7) for closed models, D o fn(kdeurv arcsinh(Q/kdeury) — k)
for open models. Thus it is the combination Q/(kR(x)) which is relevant for propagation of the ¢-space pulse, where R(x) is
defined by eq. (130).
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The hypersurface choice should be the one it is easiest to make the computations in. What often happens is
that the equations suggest best variables for numerical reasons which pick out the gauge choice. The perturbed
source function was derived in the comoving gauge of the baryons, then transformed to other gauges. Even with
evolution in the synchronous gauge at the beginning of a CDM-dominated evolution, after photon decoupling when
the radiation free-streams, a combination of the photon distribution function and metric variables is suggested which
turns out to be the Tolman combination e”*7’, in the longitudinal gauge. Quantities which are manifestly invariant
under infinitesimal coordinate transformations are also usually numerically preferred, such as the photon entropy
per baryon and differences in velocities (the most obvious of which is velocity relative to CDM). A crucial one for
numerical accuracy is the relative velocity of the photons and baryons.

In figs. 19 and 20, a few scalar perturbation mode functions are shown: fig. 19 shows relative density perturbations
as computed in the synchronous gauge, while fig. 20 shows some gauge invariant velocity potentials ¥, 5, ¥y, B cdm
and the metric variables ¢ and ¥, s. The behavior of the relative density perturbations in the longitudinal gauge
outside the horizon is dramatically different (see eq. (A38)):

6type,L _ 6type,S

——— = — — H"lfms . 203
3(1 + p/p)type 3(1 + p/p)type ( )

For 7 < 7¢y and kT < 1, HV, 5 is approximately constant, hence so are the relative perturbations. At late times
with k7 > 1, the HY, g is dominated by dtype,s, SO Stype,z & Otype,s. That is why one can compute transfer functions
for density perturbations in either gauge without hypersurface shifting. The quantities 0, = (1 + p,/p,) " 0y — 0B
(fig. 20) and (1 + p/ p)typeétype — 0cam are gauge invariant of course. The latter are useful for accurately following
scalar isocurvature CDM models (for small k).

A catalogue of mode functions with varying k are generated. Depending upon the accuracy one wishes anywhere
from many hundreds to many thousands are typical for a CDM calculation. The output of the Einstein—Boltzmann

calculations is therefore Agf)Q} ,(k,70) — even in open or closed FRW models, where k?/a? is the eigenvalue of Ol v
This allows one to form the k-space spectra for given ¢, dCEtS)Q} ,/dInk, which, when integrated over Ink, yield the

spectra CE?Q},Z. Figure 14 showed the standard CDM example for ¢ = 4,10,59,121. The ¢ = 59,121 cases have been
averaged over nearby (’s, from ¢ — ¢ to (+6¢, to smooth out the dominant rapid oscillation associated with the typical
j2 (k7o) behavior. If one has sparse k coverage, just a few hundred logarithmically spaced from (10~"h~* Mpc) ! to
(1h=! Mpc)~!, then 8¢ should not be too small. With many thousand, little smoothing is needed. Another approach
to smoothing is to wait until the In % integration has been done. Too much smoothing lowers the heights of the
Doppler peaks, too little leaves high frequency oscillations in C,.

Figure 21(a) shows the differential spectrum dC / d1In k for the quadrupole and a window, corresponding to typical
half-degree-beam anisotropy experiments, that probes the same k-band as many large scale structure observations.
The no-recombination CDM model has very little power at ¢ = 214 as expected. The nonzero A and standard CDM
models look similar except for a shift to smaller & for the nonzero A model associated with 7y being larger. Notice
that the quadrupole probes k’s whose wavelength exceeds the size of our Hubble patch, although unless the power
spectrum is rising rapidly to small k£, waves with k7p < 1 contribute very little to the observed quadrupole, and
even less to the octopole and higher multipoles. Still it is this behavior which allows one to set useful constraints on
“fluctuations bigger than the horizon”.

Figure 22 shows where the polarization power, C hes in (-space for scalar modes when there is standard recom-

bination and early reionization. Figure 21(b) shows dCQS} /dInk, i.e., where the polarization power lies in k-space, for
the ¢ choices of fig. 14. The polarization is a 10% effect in AT /T [134]. The polarization power spectrum can be used,
for example, to make theoretical polarization maps, [88] and Appendix C1. [165] has shown that there is a small but
interesting cross-correlation between polarization and total anisotropy maps which may be useful in differentiating
among polarization components. Given the strides in decreasing receiver noise, it seems quite plausible that the
10% effect (on selected angular scales) can be used to differentiate among models, in particular it could provide a
nice signature for early reionization models since the polarization power is concentrated at relatively low ¢’s, around
{ ~ 10 — 50, whereas it is a small angle signature with normal recombination. Of course, the presence or absence of
a Doppler peak in CS) (upper curves) is a more direct signature, but the more signals we have to select on primary
anisotropies the better.

As we have seen, after Compton scattering has become negligible as a source, at say 75(k), the solution to the

radiative transfer problem for the Tolman combination A(S)

Afq,k, 1) = e~ olm W)=k akto=r (D A (g, 7, (k)

85



10_2 ETTTT T llllllll T |||||||| T |||||||| =R |||||||| T |||||||| T |||||||| [P=
E  FLUCTUATION EVOLUTION =
[ 021 10,2005 h-0.5 §
-3 = = o]
10 Ek-'=1 h-'Mpe | k-1=5 h-!Mpc 3
n ’ B ;
S
— 10 = DHL
- E AN Mﬁ AT ‘
| \ m |
g 107 ¢ /| ““ |
b= = | [ / ‘
106 ’
S~
£
°© 10°*?
O
o 3
10 k-1=100 h~'Mpc E
= ]
N _ er v A 4
104 E- = / 3
- = 3 / E
%/ = / ] 74 N
10-5 ! ’
— E 74 £ / E!
= 74 3 4 3
. / : J ’
e / ] /
10 e E
4 ] E
Wty ( |IIIIIII 1 |IIIIIII 1 |IIIIIII 1 L] / |IIIIIII 1 |IIIIIII 1 |IIIIIII 1

105 10* 1000 100 105 10* 1000 100
(1+2) (1+2)

FIG. 19. The synchronous gauge evolution of scalar perturbations with the 4 wavenumbers shown for the standard CDM
model with normal recombination illustrates such basic physical phenomena as Hubble drag on the CDM perturbation growth
in the er-dominated regime after the wave “enters the horizon”, Silk damping of the baryon and photon perturbations, the
catch-up of the baryons to the CDM after photon decoupling. & = 1h™* Mpc is about the highest & one needs to go to get
an accurate computation of C,; for this model. Even so, by z = 100 one needs to follow multipoles up to ¢ = 460, and the
number of photon ODEs is twice this because of the polarization. After free-streaming to z = 0, one needs to go to ¢ about
6000. Although this is easiest to do with the one step free-streaming method, it is also quite feasible to do the full Boltzmann
equation integration numerically. For relativistic neutrinos, modes only up to ¢ = 40 were included, but once they exert a
negligible effect on the metric variables they are shut off.
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FIG. 20. The gauge invariant relative velocity potentials &_I\I/v,-,B, &_I\IIU,Bcdm = V¥, ps and the photon entropy per
baryon perturbations are shown for the standard CDM model with normal recombination for the 4 wavenumbers of the last
figure. They are all normalized to the amplitude of the CDM density fluctuation at the current time if linear growth prevailed.
The synchronous gauge metric variables a 'WU,s = &_I\IIU,Cdm,L and ¢s and the comoving curvature parameter pcom are
also shown: ¢s becomes negligible and @ *W,s o 7 at late times. The velocity potentials and ¢ are in units used for the
Boltzmann integration code, so the relative magnitudes are meaningful. (The physical and conformal time units of the code
are cty = 22.28 Mpc, 7, = 1280 yr, ty /7w = (a0)u = 56776.)
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FIG. 21. (a) dC¢/dInk for the scale invariant models listed, for the quadrupole and a ¢ ~ 200 multipole that lies within the
MAX and MSAM windows, which probes k extending into the large scale structure region. The vertical lines are defined by
k=t = ZCHJI and Tk~! = ZCHJI, when half a wavelength equals the horizon size. The extension beyond this line is what one
means when one says that CMB data can constrain fluctuations bigger than our horizon: a huge increase would be ruled out
by the quadrupole observations. (b) How the polarization power is concentrated in k for selected multipoles. The contribution
at low ¢ for the SR model is negligible.
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FIG. 22. Polarization power spectra for the models shown demonstrate that over a limited multipole band the polarization
power has signals about 10% of the primary signal. As experimental noise decreases, it can provide a signature for early
reionization models.
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FIG. 23. This illustrates the role of the integrated Sachs—Wolfe effect for scalar perturbations when there is vacuum energy
or when there is negative curvature. The vacuum effect was first considered by Kofman and Starobinski (1985). The h = 0.6
open model (almost degenerate with the z,., = 30 model over this range) also has an integrated Sachs—Wolfe effect, but uses a
scale-invariant initial condition from inflation which is naturally truncated at kdc.,» = 1; by contast, a h = 0.55, = 0.6 model
with the same 13 Gyr age turns down at low ¢. Also shown is a comparison between the C; from the full Einstein-Boltzmann
transport and the C; found using just 1/3 of the current gravitational potential.

T0
o
7o (k)
The first term represents the free-streaming of the temperature pattern at 75, to 7. The second term involving a
line-of-sight integral of (7 — ¢+ (92a=1¥, /971?)) is the integrated Sachs—Wolfe effect. This term vanishes for standard
Qpr = = 1 universes, provided we take Ts > Tgec, Teq- The classical ®5/3 Sachs-Wolfe factor (where ®y is the
Newtonian gravitational potential perturbation) is easiest to see in the synchronous gauge: vs = 0 defines the gauge,
¢s— 0and a™'¥, — L@y for 7, > Ty, hence the 9. [a~"¥,] term in A,ES) gives @y /3. Of course, photon bunching
and Doppler effects also have small influences even at low (. Figure 23 contrasts the shape of the spectrum that would

2-_1
M) ) (204)

—Co(ro|r) ,—ik-gk(ro—7) [ + _ .
dre e (I/ @+ 5.2

result if only @y /3 contributed with the exact result. The effective tilt in CISS) for this ns = 1 case is vap = 0.15, not
0 as the ® 5 /3 approximation would give.

The integrated Sachs—Wolfe effect is important if we try to take 7, (k) too close to 7., or if the gravitational potential
changes as a result of a change in the equation of state of the Universe, for example the period between 74, when
vacuum energy becomes important, and 79. For an initially scale invariant spectrum it causes an upturn in CISS) at
low ¢, as shown in fig. 23.

Not only do open models have a nontrivial integrated Sachs—Wolfe effect, there is also a direct effect of the curvature
on the mode function evolution, as is described in section C4. Of course whatever mechanism generated the ultra-
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large-scale mean curvature may well have had associated with it strong fluctuations on observable scales, so much so
that this is an argument against large mean curvature because of the absence of such effects in the CMB. Even if the
background curvature is determined by an entirely different mechanism, it should influence the fluctuation generation
mechanism. An open issue in open models has always been what is a natural shape for the spectrum for k near d_},, .
Power laws in kdeyry, \/(kdewrs)? — 1, etc. have often been adopted. The case shown in fig. 23 has equal power
per decade in the initial gravitational potential power spectrum (or more correctly in P, ), that would arise if
the fluctuations were generated by quantum oscillations during an inflation epoch subsequent to the mean curvature
generation, for tilt v, &~ 0 [244,243,304].

Spurred on by the promise of high precision space experiments [152,154], a considerable fraction of the CMB
theoretical community with Boltzmann transport codes compared their approaches and validated the results to ensure
subpercent accuracy [300]. An important byproduct of this was an emphasis on speed, since one hopes to constrain a
large multidimensional parameter space with the anisotropy data. The important issues for methods based on solving
the moment equations are discussed in various places in these notes; although the techniques were in place prior to
the COBE discovery, to get the high accuracy with speed has been somewhat of a challenge: e.g., if the number of
wavenumbers run is too small then smoothing is required, and this smooths the C; curves, but to run the number
needed to avoid smoothing is slow.

Although solving the hierarchy of moment equations became the standard approach for evaluating the transport
of photons and neutrinos, there are alternatives. One can cast the entire problem of photon transport in terms of
integral equations in which the multipoles with ¢ > 2 are expressed as history-integrals of metric variables, photon-
bunching (Aif))) Doppler and polarization (e.g., A( )) sources; and the problem of neutrino transport, massive and
massless, can be cast into history-integrals of metric variables only. This approach was used by [194,134,232,260] for
hot and warm dark matter to evaluate moments that fed into the metric equations (eq. C44). It was used by Kaiser
[265] to evaluate photon polarization. If applied to just the integrated Sachs-Wolfe term it can augment the one-step
free-streaming result and allow one to begin the free-streaming transport to the present shortly after recombination
without any loss of accuracy. It has now been used by Seljak and Zaldarriaga [305] to develop an accurate and fast
code for C, evaluation. One aspect of the speedup is that since Cp’s do not change that rapidly with ¢, one does not
need to evaluate the history-integrals ¢ by ¢, whereas with the moment hierarchy the A,’s are all coupled to each
other.

2. Tensor mode transfer equations

For tensor perturbations, and for flat universes, we have seen that for wavenumber k there are two independent ten-
(T{+,x}) ( (T{+,x}) _ =0, E(T{+,><})6ij _

(r )

type
tions, and the reduction of the (G) dynamical Einstein equation to eq. (171), h(re + 2Hah(T€) + K2 hrey =

sor modes defined in terms of two transverse traceless matrices, E
1)

satisfying k7 E;;

0). The expansion of hgj and the anisotropic stresses Iliype; in thls basis gives the h(T{+ x}) and 7 mode func-

167G Ny a*Pros 7rt(0t (for the flat case).

A (1)

The radiation field can also be expanded in these modes. The natural mode variables are A {LUV,Q}

in the expansion

N(Te E €) ik-x
AE]T) =w Z Z Z 8: 75 () Ei(]T)ek ak(T€)+cc.

(1) =t,Q,U,V e=+,x k E(w)
(205)

The &, are the tensor product combinations of the polarization basis ¢, eq. (185) and Appendix C, eq. (C3). In the

frame in which k is the pole and ¢ has polar coordinates (6, @), the E(Te) -&(y) terms are proportional to either cos(2¢)
or sin(2¢) and functions of u = cos(f) that are at most quadratic, and are given by eq. (C66) of Appendix C6. Apart
from an overall sign, these are the combinations first suggested by Polnarev [229] and which we used in [140]:

AgT) = —£§T+)(1 ©?) cos 2¢ — A TX)( 1?) sin 2¢

Ag) = ﬁg”(l + p1?) cos 2¢ + AQTX)(l + 1?) sin 2¢

Ag) = &%T+)2u sin2¢ — &%TX)Zu cos2¢. (206)
(T{+,x})

The source functions in these modes, G (,UV.Q} swo are also derived in Appendix C 6:
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Gisw = shere g{U\)/Q} sw=0, (207)
Gio) = =g (AT = Y(ry), G = -7 AL (208)
ggé) = —751(3(@” +T(rg), Gue) = —Tél(A(U )Y (ro),

T(Te) =

/ dp 51— ())2AT) = L1+ (1)22R09 + L(2p2A )
= 1RO LRI | 3RO L 3RO 0R(II 4 3 KL

Recall from section VIE1 that in the scalar case only Ags) and AQS ) can be excited, so two transfer equations are

required [134]. In the tensor case, E(Te) A(TE) and E(Te) can be excited, but the source for E(Te) + E(Te) has only

a pure damping term, so the combination will be unexcited in the early universe and will remain so — as will A(Te)

Thus, the four Stokes radiative transfer equations again reduce to two.
The back action on the gravity wave collisionless damping is from the anisotropic stress for the photons,

a9 =12(ZAG + £AG + ZAL9), (209)

with a similar contribution from extremely relativistic neutrinos. There will also be a contribution from hot or warm
dark matter in the er and semi-relativistic phase.

The main features of the solution can be readily understood by writing the transport equations in terms of a
combination that only has h(r.) as a source:

0 +ikp+ 7oA — A5 = Jhirg

(0 +ikp+15H)[AG ) =15 1 (210)
As in the scalar case, these equations are solved by expanding in Legendre polynomials [140]. The polarization induced
by the tensor mode is quite small (& 1%) [141]. To the extent that polarization and the small back action of the

anisotropic stress of the neutrinos and photons upon the gravity waves can be neglected, the solution (for the flat
background case) is simply

~ 0 i
A~ /0 e U dr jy(kx) $hro(r), x=10-T. (211)

The e=¢¢(7) implies that waves that entered the horizon before decoupling will not be able to develop anisotropy in
AETG) until after recombination, when the gravity waves will have already decayed as a result of collisionless dispersion,
as embodied in the spherical Bessel function behavior of iy.).

To go from the mode variable EEZ;) to angular power spectra, one must take into account the angular dependence

of E(Te) ~E(u)- For EETE), the angular power spectrum found by summing over k and polarizations is

A(Te)
cty) 1 2\ k% 1 Ay,
=1 7) (147 )ems 2 it oD

+,X
¢ ¥4 2
t t, 042
: + > (212)
1-5)0+3%) (1+50+3)

If we assume recombination is sudden at 7 = 74.. and use the eq. (211) approximation, this reduces to the classical

A(T&) A(Te)
+2

Abbott and Wise [224] formula for Ct(ZT ). With the full e—¢c (") included, the approximation is a good one compared
with the results of the full integration. Typical solutions are shown in figs. 12 and 7. The decline at ¢ above ~ 50 is
due to the loss of gravity wave power by decoupling. Note also the rise at £ = 2. Even though eq. (211) is simple in
form, the directional decay of k(s implies eq. (212) even for CéT), hence the ratio ;5 = CéT) /Cés), needs numerical
evaluation. The feedback of the anisotropic stress in relativistic neutrinos and photons upon the gravitational wave

evolution does have a significant (~ 20%) effect at ¢ 2 100, which is somewhat larger for smaller Q,,./Q.,, but by

then the power has fallen off sufficiently that it is unmeasurable. In fact, in fig. 7 the CéT) actually have both curves,
with and without anisotropic stress feedback, drawn, and on this scale one cannot see a difference. For open universes,
the influence of the gravitational radiation on the spectrum extends to higher ¢ because of the angle-distance relation
[304].
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VII. CONNECTION WITH OTHER COSMIC PROBES OF k-SPACE
A. Density power spectra and characteristic scales

A byproduct of the linear perturbation calculations used to compute AT /T is the transfer function for density
fluctuations, which maps the initial density fluctuation spectrum in the very early universe into the final post-
recombination one. From this, fluctuation spectra appropriate to the linear regime for the density, velocity and
gravitational potential can be constructed. Various (comoving) wavenumber scales determined by the transport of
the many species of particles present in the universe characterize these spectra. The most important of these for dark
matter dominated universes is the scale of the horizon at redshift €2,,,. /2, when the density in nonrelativistic matter,
Q,,63, equals that in relativistic matter, Q.,a =%,

ke, =57, b7 Mpe, Teg = Qnh[Q,/(1.680,)] 712, (213)

(It is defined by k1.q = m, where 7¢, is the conformal time at er/nr equality.) In [230], we adopted the functional
form:

P, (k) oc kK3 1 4 [ak + (bk)%/? + (ck)?]P}2/7, (214)
(a,b,c) = (6.4,3.0,1.7)T*h~* Mpc, p=1.13,
L~T e*(QB(1+QZ7}(2h)1/2)*0~06)

~ eq I

where I is an effective index. For I' = 0.5, this accurately fits the linear power-spectrum of the standard adiabatic
CDM model with Q,, =1, h = 0.5 and Q5 = 0.03 [134]. Although one does not expect that this fit will be highly
accurate if we change Q g, and indeed the best-fit parameters a, b, ¢, v do vary with g [134,88], it is usually sufficiently
accurate for large scale structure work to use a simple exp[—2({2p — 0.03)] correction factor for modest 25 variations,
even if h varies [249]; a further improvement [250] occurs for low €, if the 2 is replaced by (1 + Q!(2h)!/?), as
indicated. (The oft-used Q5 — 0 form given in BBKS [231], Appendix G,

12 [In(1 + ek)?

P, (k) E3+ns(k) {1+ ak + (bk)? + (ck)® + (dk)*} (k)2 ’

(a,b,c,d,e) = (3.97,16.4,5.57,6.85,2.39) T h~! Mpc,
f = Feq efQB(l‘%Q;;} (2h)1/2)

)

is best fit by I' = 0.53, and with the ' form the fits are at least as good as the eq. (214) form [249]. The coefficients
have been increased by (2.728/2.70)% over the BBKS values. For the standard CDM model, both transfer function
formulae fit to better than 3% to k= = 1h~! Mpc, with eq.(214) better over the crucial large scale structure region.)

To fit the APM angular correlation function using a power spectrum for galaxies described by eq. (214) requires
0.15 ST $ 0.3 [230] for ny =1 and 0.2 S ny $ 0.6 for I' = 0.53 [189,248]. More generally, dn, .rs(k)/dl’ = 2 over
the APM waveband, hence it is I + v /2 that should lie in the 0.15-0.3 range [6]. A recent estimate of I" using power
spectra from redshift surveys as well as from the APM data suggests I' = 0.23 fits best [249]. Figure 24 compares the
COBE-normalized ns = 1,I' = 0.5 linear density power spectrum with an ny = 1,I' = 0.25 and an ns = 0.6,I' = 0.5
spectrum.

To lower I into the 0.15 to 0.3 range one can [232]: lower h; lower €,,,; or raise Q¢, (= 1.68Q2, with the canonical
three massless neutrino species present). Raising 25 also helps. Low density CDM models in a spatially flat universe
(i.e. with A > 0) lower Q,,, to 1 — Q5. CDM models with decaying neutrinos raise €., [232,251]: [' = 1.08%,,,h(1 +
0.96(m, 74 /keV yr)?/3)~1/2 where m, is the neutrino mass and 74 is its lifetime. Decaying neutrino models have
the added feature of a bump in the power at subgalactic scales to ensure early galaxy formation, a consequence of
the large effective 2,,, of the neutrinos before they decayed. As we saw in section VIC, we expect a tilt in inflation
models, so we can probably relax the amount by which I' needs to be lowered. One could do it entirely by tilt by
invoking one of the inflation models of section VIC utilizing a deceleration parameter ¢ & —(ns 4+ 1)/2 or, for natural

inflation, the curvature in In H away from the peak of the potential, %zi PInH/0¢? =~ (ns —1)/2.
Generally, more scales are needed to characterize the spectrum than just kgeq:

Ky damp = 6 (0, (20)%) /2 (g1, /2)/* ™" Mpe, (215)
k;l];"ec ~ 4]‘ (Qn"“)_l/2 h_l MpC, (216)
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kg, ~ 3.8 Q) /2h™! Mpe, (217)
k7 hree  0.0016 (,,) /2 h~! Mpc, (218)
kL = dewry & 3000 [1 — Q40|72 Mpe. (219)

These are: (215) the collisionless damping scale for hot dark matter (massive neutrinos), with g,,, the number of
massive species (counting particle and antiparticle); (216) the horizon scale at recombination; (217) the Silk damping
scale; (218) the baryon Jeans length at recombination (below which the baryon power spectrum in CDM models is
effectively filtered, multiplying the power by approximately (1 + (k/kjprec)?/2)"2); and (219) the curvature scale for
open universes (in which case k is not exactly wavenumber).

One could try to mimic some of these effects on the power spectrum by modifying I'. In hot/cold hybrid models, there
is a stable light neutrino of mass m, contributing a density Q, = 0.3(m,/7.2eV)(2h)~2, combining with the CDM
and baryon densities to make a total Q,,, = 1. A I'-shape is not a very accurate representation of the entire spectrum,
dropping from about 0.5 for small k to T’ ~ 0.22(£2,,/0.3)~1/2 over the band 0.04-2 (h~* Mpc)~! of relevance to large
scale structure calculations [232,252,230]. For pure hot dark matter models, BBKS showed that a good fit is provided
by a I'-law — with Q., = 1.469, for one species of massive neutrino (hence I' = 1.07T.4,,,) — but with an exponential
filtering multiplying the I'-form of 77;/2: D, = exp[—0.32(kRy,) — (kRy,)?], where Ry, = 2.6(2,h)"* h=! Mpc. The
damping is dominated by the Gaussian part of the filter. If we define a characteristic Gaussian filtering length by the
radius at which the filtering function drops to 1/e?, then this radius defines k&, =1.1R #v. For the mixed hot/cold

vdamp

models, the ’P,y ? modification factor

(1+ (AK)? + (1 — m)ﬁlaer(Bk)‘*)]ﬁ
1 + (Bk)2 — (Bk)3 + (Bk)* ’
1 1.14
8= 1(5 —/25-24Q,), B = 10.73m,
(1+10.910Q,)/Q, (1 — .9465Q,)
(1+(9.269,)2)

D,,:[

A =69.06

is quite accurate [254], even for finite Qg [260].

For warm dark matter, I' is the same as for the CDM model and a rough fit to the influence of free-
streaming is provided by the exponential damping factor form D, = exp[—kRy, — (kRy,)?], where Ry, =
0-2(%)74/3(910@771111)71 h™! Mpec, where gy, gec is the effective number of particle degrees of freedom when the
warm-particles decoupled, typically about 60-300 for minimal grand unified theories over the range of decoupling
temperature 7' ~ 1-10'® GeV, and Qyarmh? = 1.0(guw,dec/100) ! (Muyarm /keV).

Scales characterizing the CMB anisotropy power spectrum include kgillk, k. and k;ﬁec (above which causal

1
curv?
processes cannot occur at the recombination epoch). In addition, we have seen that k;é ~ (5-10) Q;}ﬂ h~! Mpc,
the fuzziness of the last scattering surface below which destructive interference damps CMB anisotropies, is very
important. Associated with these physical scales are angular scales 1,5 ~ (3'-6') QY2 and Oyee ~ 2° Q,lz/f, evaluated
using the angle-distance relation 6(d) = 0.95°Q,, d/100h~! Mpc appropriate for an = €2, = 1 universe and for

an 2 =, < 1 universe.

B. The observable range in k-space

Figure 24 contrasts k-space filters Fyy (k) for representative CMB anisotropy experiments (characterized by ¢-space
filters W,) with the bands in k-space probed by large scale structure (LSS) observations and the bands associated
with the formation of collapsed structures such as clusters. The LSS probes shown are: the angular correlation of
galaxies wyq(0); the power spectrum and redshift space correlation function of galaxies £,4(r) as probed by redshift
surveys; large scale streaming velocities LSSV; and the correlation function of clusters &... The abundances of clusters
(“cls”) and groups (“gps”) provide information on slightly smaller scales. Abundances of galaxies (and quasars and
damped Lyman alpha systems) at high redshift provide valuable information on the power in higher k-bands, but these
probes are sensitive to gas dynamical processing which may obscure the hierarchical relationship between object and
primordial fluctuation waveband; indeed damping processes or tilted initial spectra may require some of the shorter
distance structure to arise from fragmentation and other nongravitational effects.

We can define a k-space filter Fyy (k) as one acting upon a k-space “power spectrum for AT'/T fluctuations” Pay(k):
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FIG. 24. Cosmic waveband probes. The bands of cosmic fluctuation spectra probed by LSS observations are contrasted with
the bands that current CMB experiments can probe. The (linear) density power spectrum for the standard n, = 1 CDM model,
labelled I' = 0.5, is contrasted with (COBE-normalized) power spectra that fit the galaxy clustering data, one tilted (ns = 0.6,
[’ = 0.5) and the other scale invariant with a modified shape parameter (ns = 1, I' = 0.25). Biasing must raise the spectra
up (uniformly?) to fit into the hatched wyy range and nonlinearities must raise it at k& 2 0.2h Mpc™! to (roughly) match the
heavy solid (v = 1.8) line. The solid data point in the cluster-band denotes the constraint on the power spectrum from the
abundance of clusters, and the open data point at 10h™! Mpc denotes an estimate from streaming velocities (for Q,, = Q =1
models).
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with dC,/d1n k evaluated at some post-decoupling time 7. Pay defined in this way is basically conserved through free
streaming [88] and [ PardInk gives the total anisotropy power. (The choice of Par is really up to the theorist; e.g.,
a filter acting on the primordial gravitational potential power spectrum can be constructed by choosing Par = Pa,, )
In [88], we showed that a rather good approximation to C; is obtained by putting the Pay (k) of eq. (220) in place
of Pgyg, (k) in eq. (125) and 6(7 — 75) in place of V, where 75 is the time at which Par(k,7s) is evaluated (which
should be well after decoupling). The k-filters actually plotted in the figure use the high ¢ approximation for the
Bessel function product:

(+1) _

Fw (k) = W,. (221)
1
it b/ (bx)? = (€4 32

The filters shown in fig. 24 are for the large angle dmr and firs experiments, with beams ~ 7° and ~ 3.9°, two filters
for the sk95 experiment, showing the k-space that it covers, and the Caltech OVRO 0v7 (1.8" beam) experiment. maz
and msam cover ranges between the sk95 points. CAT [151], WhiteDish [102] and a new OVRO (7' beam) experiment
(0v22) cover the region between sk95 and ov7. These experiments are all sensitive to primary anisotropies. The line
labelled SR shows the length scale below which the primary power is basically erased if hydrogen recombination is
standard; NR denotes the scale if there is an early injection of energy which ionizes the medium. These depend
upon 2., Qp etc. The light long-dashed filters at high k show the bands probed by very small angle microwave
background experiments, the VLA, the SCUBA array on the sub-mm telescope JCMT, and the OVRO mm-array.
Although their beams are too small to see primary CMB anisotropies, they will provide invaluable probes of secondary
anisotropies generated by nonlinear effects, including redshifted dust emission from galaxies and Thomson scattering
from nonlinear structures in the pregalactic medium.

The (linear) density fluctuation power spectra (actually their square roots, 73;/ *(k)) shown in fig. 24 are for three
(2, = 1) models normalized to the COBE dmr data (i.e., within the small-k hatched region which includes the
8% dmr error on overall amplitude): a standard I' = 0.5 CDM model with ns; = 1, one with the spectrum tilted to
ns = 0.6, and an ns = 1 CDM model whose shape is characterized by I' = 0.25. To fit the galaxy clustering data
requires 0.15 S T'+v,/2 $ 0.3. A biasing factor by is relied upon to move the curves up into the allowed wy, band (i.e.,
into the higher-k hatched region) and nonlinearities to bend the shape upward to match the (approximate) 1.8 law for
k=! < 5h~! Mpc (heavy line extending the hatched wg, region). Power spectra derived from the QDOT [234], IRAS
1.2 Jansky [235] and CfA2 [236] redshift surveys are compatible with the range inferred from w,, when account is
taken of redshift space distortions and biasing offsets between IRAS and optically identified galaxies. Cluster—cluster
correlations and galaxy—cluster cross correlations [239] also seem to be compatible with this inferred spectrum. Power
spectrum estimates derived from the abundance of clusters as a function of temperature [120] and from the Mark III
peculiar velocity catalogue [297] are also shown. There is a lesson to draw from an overview figure like this while we
concentrate on the LSS power issue that has led to intense research on variations in the scale-invariant minimal-CDM
theme for many years: the great success inherent in the extrapolation over so many decades from COBE normalization
to large and small scale structure formation suggests that scale invariance cannot be wildly broken and nonminimality
cannot be too extreme, even if the generation mechanism has nothing to do with inflation.

C. Relating the cluster-amplitude o and the dmr band-power

Apart from the shape parameters for P,(k), there is also an overall amplitude parameter, which we now take to

be <C£S)>dmr = (Ce) ynr/ (1 + 7s), where 7y = (CéT)>dmr/(C£S)>dmr. The band-powers obtained from the 4-year dmr
data as a function of the phenomenological slope var for each frequency channel and for the 53+90+31 A+B GHz
map were given in section IV E. The effective slope of the standard n; = 1 Q5 = 0.05 CDM model of figs. 7, 23 is
var = 0.15 over the dmr band; variation in Qp and Hy does not change this very much as fig. 8(b,c) shows; nor does
a change in the recombination history (fig. 7). Vacuum-dominated models do raise the slope to low ¢ because of the
time-dependence of the gravitational potential [110]: fig. 23 shows it is not well represented by a single power law,
but if we were forced to choose an effective index it would be vap =~ 0.

Before the COBE detection, normalization of the density spectrum was done using o, the rms (linear) mass
density fluctuations on the scale of 8h~! Mpc, or to a biasing factor b, for galaxies, which was usually assumed
to obey byos = 1 e.g., [134,242]. The COBE-normalized value of og is thus extremely important for deciding on
viability of any specific model of cosmic structure formation. Bayesian determinations of og from the dmr data for

96



§|t0= 13 (var

|- r
o Q,,.=0.95h=05 - v.=0,-0.151,=0
C JF Q5=0.05,h=0.
C H+C: ®(1+0.5(2,,/0.3)2) J& Q4. 1T .,

+
@)
[sv)
Il
—_
NN RRRINNEN

5 = s
]. T = [ ; """ e %ﬁ """""""""""
g 2 e | 7
0.5 :_l =" Els _::_ cls
C lower:v,=v, GW JC .
0 & | | == | | | | L]
-0.2 00 0.2 0.4
tilt v, =n_—1 Q..
- 1t -
2 b + E
15 F == =
5 - 3 -

o
T TT 77T
\

04 06 08 104 06 O
h h

FIG. 25. This illustrates the accuracy and utility of the fitting formula for og. Top left shows the average and 1o variation
of og against tilt for Q,, = 1 CDM models, with no gravity waves (upper) and with them. A reduction factor for hot/cold
hybrid models is also given. The heavy closed data points are og’s derived using the exact C;. The two vertical lines denote
two estimates of og from clusters. Upper right shows o8(Q2m.) for ns = 1 (upper) and 0.85 hot/cold models. Open circles
shifted left of the dmr points are og’s for the sp9/ data, open squares for the sk93+9/4 data. The lower panels show og(h) for
a sequence with fixed age, no mean curvature, and Quac(h) =1 — Qy,, the rising curve. The solid dropping curve is Qy,-h and
the almost indistinguishable dashed one is I', the error bars defining its likely range. The rising hatched regions are the two
cluster og estimates.
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a number of selected models can be used to calibrate a more general relation between og and the dmr band-power,
following [230,189,6]. Although we have seen in fig. 23 that the naive Sachs—Wolfe formula with dC;/dInk = 2¢(¢+ 1)
Po(k)j? (kXaec)/9 is not particularly good for the standard CDM model, we can use the scalings predicted by Pg to

parameterize the <Cz>;7/,jr /os relation:
L 125 10°(Coyln, QR0TTAT —0.03) g,

T8 Fow (L+720)1/2 (1+0.55(Q,/0.3)1/2) © ’
4yr(53&90&31)akb:  10°(Co)Y/2 ~[0.82 + 0.26(1 — .V;T)zs] « 1H0T

dmr

[-law: (222)

fsw ~ (140.120,,)(1+ 22 ) var = 0.15(1 — Quae) + v,

(1(_Vt}2) e 007w 671.99(1/5714) (1 _ 069?}(150) )
—

Here vy = ns — 1. The fit was originally made in ng with I' fixed at 0.5, and in " with n, fixed at 1, but it works
well even when both vary significantly from these standard values. The Q,,. = 0 formulae are the same as I gave
in [6,146]. How well the fitting formula does is shown in fig. 25. As expected, this calibration works well for the Hy
variation of fig. 8(c) and, using ' = Feqe’[QB(HQ;}(2}‘)1/2)*0'06], works well for the cases of fig. 8(b).

Although fsy = 1 takes into account some of the enhancements over the naive Sachs—Wolfe formula by normalizing

to the calculated agf(Cgﬁ{fT relation for standard CDM, it does not take into account the enhancement of (Cg)i{i,
associated with the time dependence of the gravitational potential when A dominates, hence for that case we expect
fsw to exceed unity. Using the ,,. dependences of fsw, var and 7y (section VID) allows good og fits, as the
lower panels of fig. 25 show. All models shown have Qgh?=0.0125, with the rest of the nr-matter in cold dark matter
(Qnr = Qeam + Q). For these sequences of models with a uniform age to, the variation of ,,. with Hubble parameter

(the rising curve in fig. 25) is

Tis = 5.4

h = hlﬂ_l/2 ln[\/ﬂvaC/Qnr + \/QUQC/QTLT + 1]
nr \/m :

Quac(h) ~0.9(0.3(h/h; —1)°3 4+ 0.7(h/hy — 1)°*). (223)

h1 = 0.5(13Gyr/to) ,

The latter is a rough inversion. The ages shown in fig. 25 bracket a recent estimate for globular cluster ages,
14.6ﬂ:g Gyr [111]. The Qyqc = 0 model with 13 Gyr age is therefore the Hy = 50 standard CDM model, and Hy = 43
for the 15 Gyr age.

For open CDM models, the COBE-determined og goes down with decreasing 2 (and increasing h). These models
are not so attractive because Q drops so precipitously with increasing h for fixed age. Equation (222) has not been
modified to treat open models (see e.g., [291]).

Section IV F showed that different combinations of cosmological parameters can lead to sufficiently similar spectra
that it will be quite an experimental challenge to differentiate among them [144]. In the near term, we must rely
on such important ratios as og/ <Cg>2{fr and the shape of the galaxy correlations to further constrain cosmological
parameter space. We can also hope to constrain parameters through observations of galaxies at high redshift and by
large scale streaming velocities. As is evident from fig. 24, to have a COBE-normalized power spectrum pass through
the error bars associated with the power spectrum from cluster abundances on the scale of ~ 0.2h™! Mpc and the
LSSV estimate at ~ 0.1h~! Mpc [296,297], and to satisfy the shape restriction, albeit with a free galaxy biasing factor
by, is like threading the eye of a needle, and clearly severely restricts the range of models. Much discussion in the
post-COBE era has been about which COBE-normalized models pass these tests. We now consider a few examples of
the use of eq. (222) in conjunction with the current large scale structure data. As an illustration here I will consider
the shape and cluster constraints and, to a lesser extent, the LSSV constraint, on models of fixed age with variable
tilt and Q4. In fig. 25, the dashed curve shows the power spectrum shape parameter I', almost indistinguishable
from the Q,,h curve, for the 13 and 15 Gyr model sequence. The rising curves with error bars denote estimates of og
from clusters. The upper rising regions also roughly denote the og behavior, as derived from optical galaxy samples,
in units of byos.

The mass enclosed within 8 h=! Mpc is that of a typical rich cluster, 1.2 x 10'°Q,,,. (2h)~! M. Because rich clusters
are rare events in the medium, their number density is extremely sensitive to the value of og. The abundance as a
function of cluster mass, velocity dispersion or X-ray temperature also depends upon the shape of P, (k) in the cluster
band of fig. 24, i.e., on n, and I'. Cluster X-ray data implies 0.6 < og < 0.8 for CDM-like Q,,,, = 1 theories, with the
best value depending upon I, ng, some issues of theoretical calibration of models, and especially which region of the
dnc/dTx data one wishes to fit, since the data prefer a local spectral index dInP,/dInk substantially flatter over
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the cluster region than the standard CDM model gives [120]. I believe a good target number is 0.7 and values below
about 0.5 are unacceptable, but because CDM spectra do not fit the data well, this normalization depends upon
whether one focusses on the high or low temperature end. Other authors who concentrated on the low to median
region found lower values for ny = 1 models, 0.57 £ 0.05 [292] and 0.50 £ 0.04 [293], but do not fit the high T'x end
well. (A small upward correction should be applied to these low estimates to account for the nonzero redshift of the
calibrating samples.) For Q5 # 0, a higher value is better [230,253]; [292] adopt Q,,9-°¢ as the correction, [293] give a
more moderate dependence, 2705310132 for nonzero vacuum models, Q70-4710-10%ar for open models. The rising
curves with error bars in Fig. 25 show the higher and lower og estimates from clusters. Allowed models would have
to lie in the overlap region between the cluster og and the dmr og.

There are many estimates of the combination ggQ%-5 that are obtained by relating the galaxy flow field to the galaxy
density field inferred from redshift surveys, which all take the form [b,03] 3,, where 3, is a numerical factor whose value
depends upon data set and analysis procedure: in [294], the rather varied estimations are reviewed, and raw averages
are given, 0.78 £ 0.33 for IRAS-selected galaxy surveys, 0.71 £ 0.25 for optically-selected galaxy surveys. (In this case,
the Q9-5 is the factor by which the linear growth rate D /D differs from the Hubble expansion rate a/a.) For this to be
a og estimator requires the simplifying assumption of linear amplification bias, and a choice for byos. It is usual to take
by ~ Ugl for galaxies, but b, can depend upon the galaxy types being probed, upon scale, and could be bigger or smaller
than og ! and certainly cannot be determined by theory alone. Recent estimates of parameters derived from the LSSV
data, in this case the Mark III velocity catalogue [295], are I' = 0.5 & 0.15, b, nearly unity and 05Q%:>% ~ 0.85 £ 0.1,
with sampling errors adding another ~ 0.1 uncertainty [296,297]. The emphasis in [297] is on P,(k) estimation
from the LSSV data since it allows a direct comparison with models in figures like fig. 24. For example, they give
Py/200:36 = 0481997 at k=1 ~ 10h~! Mpe, which compares with Py’ ~ 0.540%(1 — 0.65(I' + v,/2 — 0.5)) for tilted T
models. However, the 17% should be augmented by a theoretical “cosmic variance” sample error, which may be quite
large. In [298], parametric models give similar results, Pp/?00:36 = 0497007 550056 ~ .88 +0.15. (Earlier work on
LSSV concentrated on estimates of large scale rms bulk flows, e.g., over 40 and 60 h~! Mpc regions: o,(40h~! Mpc)
had the same 17% data errors, but there the cosmic variance fluctuations contributed 50% uncertainty; even so the
I' = 0.5 model needed ns > 0.83 with the typical gravity wave contribution and > 0.55 without [189].) Since the
peculiar velocity data relies on having spatially-independent and accurate distance indicators (e.g., the empirical
Tully—Fisher relation between luminosity and rotation velocity in spiral galaxies), how seriously we take the LSSV
constraints depends upon how reliable we think the indicators are — a subject of much debate.

Fig. 25 shows oy is a sensitive function of ns: for CDM models with 2, = 1, it is far too high at 1.2 for n,=1,
but too low by ns =~ 0.76 with the “standard” gravity wave contribution (v; = v,) or by ns = 0.60 if there is
no tensor mode contribution. However, the shape constraint wants lower ng. In [162], we marginalize likelihood
functions determined with the COBE data (and smaller angle data) using a prior probability requiring that " + v,/2
be 0.22 £ 0.08 and 3N%°¢ be 0.657033 in order to condense the tendencies evident in fig. 25 into single numbers
with error bars. Threading the “eye of the needle” this way is so exacting that the error bars are too small to take
too seriously. Sample numbers using only the 4-year dmr data and these priors are n, = 0.76f:8§::8g for h = 0.5 with
gravity waves, n, = 0.611’:82:83 without. For h = 0.7 and Q.. = 0.66, we get ns = 0.99f:83;:82; and when Hubble
parameters in the range from 0.5 to 1 are marginalized over, the preferred index is n, = 0.99f:83::é§ with gravity
waves, ns = 0.95??8;:}? without. These are of course significantly better than can be determined from dmr alone
(section IV E).

For the decaying neutrino model with ny = 1 to have og > 0.5 we need I' > 0.22, i.e., m,7y < 14 keV yr. The
hot/cold hybrid model formula in eq. (222) is for one massive neutrino species. As fig. 25 shows, an ns=1 hot/cold
hybrid model with 2, < 0.3 would have og > 0.8; however, even with a modest tilt to n, = 0.95 this can drop to 0.7
for Q, = 0.25. (See also ref. [254].) That is, little tilt is required, in contrast to the CDM case.

It is also evident from fig. 25 that the cluster data in combination with the dmr data stops h from becoming too
high for a fixed age, but also would prefer a nonzero A value, with Hy ~ 60 — 70 for 13 Gyr, and Hy ~ 50 — 60 for
15 Gyr. When the tilt is allowed to vary as well, the preferred values lower to very near 50 and 43, respectively, i.e.,
with little Q4.2 h < 0.70 at 20 with gravity waves, h < 0.56 with no gravity waves for 13 Gyr; h < 0.56 at 20 with
gravity waves for 15 Gyr. For the hot/cold models, the values near 50 and 43 are preferred even more, even with very
little tilt.

The redshift of galaxy formation cannot be too low or we would get too few z ~ 4 quasars and too little neutral
gas compared with that inferred using the damped Lyman alpha systems seen in the spectra of quasars. A fairly
conservative estimate of the redshift of galaxy formation is [189] zy5 &~ 1.300.59,2?* =1, where 095 = 5,(0.5h™! Mpc)
is the analogue of og but at a galactic mass scale rather than a cluster mass scale and D/a = Q9?3 for the linear
growth rate D(t) at high redshift has been used. This suggests 2 < 00.50,°2% < 5 or so. For the I' models with
tilt we have roughly o5 ~ 6.40ge”*(['/0.5)%4%, (If we characterize galactic scales by the baryonic mass then we
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should use o1 mpe = 0,(1 Mpc) rather than than o5 in the z,; estimation if gh? is treated as fixed by primordial
nucleosynthesis. For the I' models with tilt, o1 mMpe ~ 00.5/(2h)°3.) The z,; requirement leads to serious constraints
on ns in standard CDM models: ns > 0.76 with gravity waves, ns > 0.63 without. With I' < 0.5, the restrictions on
the primordial spectral index from galaxy and cluster formation are even more severe (for 2, ~ 1), but the Q%23
factor ameliorates the situation for A # 0 models. The z;; constraint is also the Achille’s heel of hot/cold hybrid
models with Q, 2 0.3 [232,254]. Observations of the CMB on small scales could in principle help to normalize the
power spectrum there; e.g., using sub-mm sky observations as in fig. 15 (if one could get redshifts by other means).

D. The future

A consistent story that accommodates all of the current data on the CMB, large scale structure, the Hubble
parameter, the ages of stars, the deceleration parameter, clusters, lensing, etc. does not yet leap out at us. With the
large Sloan and 2df redshift surveys, we will have a wealth of LSS data to compare with the evolving CMB spectrum,
and many of the current puzzles will be definitively answered. As we have seen, if just the shape of the density
power spectrum over the LSS band and the amplitude of the power spectrum on cluster scales are considered to be
known, then the range of inflation and dark matter models is restricted considerably when combined with the COBE
anisotropy level (and indeed the anisotropy levels of intermediate angle experiments). Whether the solution will be
a simple variant on the CDM+inflation theme [232], involving slight tilt (or more radical broken scale invariance),
stable ev-mass neutrinos, decaying (>keV)-neutrinos, vacuum energy, low Hp, high baryon fraction, negative mean
curvature or some combination, is still open, but can be decided as the observations tighten, and, in particular, as
the noise in the C, figure subsides, revealing the details of the Doppler peaks, a very happy future for those of us who
wish to peer into the mechanism by which structure was generated in the Universe.

Although there are undoubtedly many surprises in store for us as the anisotropy data improves, we should be very
encouraged by how far we have come since the COBE discovery. We are now beginning to map the sky’s primary and
secondary anisotropy signals. It is fitting to end by pointing back to fig. 11 that shows the anisotropy at low resolution
as revealed by COBE, and forward to the interferometric arrays (VSA, CBI, VCA), long duration balloon experiments
(ACE, Boomerang, Maxima, Top Hat,...) and especially the all-sky satellite experiments (MAP, COBRAS/SAMBA),
that will tell us the parameters defining how cosmic structure formed in detail.
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APPENDIX A: THE ADM FORMALISM AND PERTURBATION THEORY

The ADM treatment of the Cauchy problem in relativity [166] is well covered in MTW [195]). The ADM formalism is
the natural language for numerical relativity, so there has been intense post-MTW development; in particular, Jimmy
York’s highly influential 1979 Batelle and 1982 Les Houches lecture notes [167,168]. The approach to perturbation
theory which I ascribe to [194,2,191] is based upon this 341 split. I usually use either the synchronous gauge or the
longitudinal gauge, but with liberal use of transformation to other variables and hypersurfaces if it simplifies analytic
or numerical calculations or helps in understanding. This approach underlied Bardeen’s influential 1980 paper and
many of the main papers in the subject. However, there was also excessive zeal for the “gauge invariant approach”
that made sacrosanct the perturbation to the lapse and the inhomogeneous scale factor in the longitudinal gauge.
These variables refer to just one choice of time slicing, which is sometimes a rather bad choice from the point of view
of hypersurface warping. By contrast, the much-maligned synchronous gauge — for which the hypersurfaces are those
on which cold dark matter is at rest — is often excellent and a great workhouse in General Relativity, e.g., Landau
and Lifshitz [178]. Bardeen’s China lectures [177] redress the balance, giving a clear compact enunciation of the issues
starting from the ADM formalism in a paper which deserves to be better known in cosmology.
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The main equations for perturbation theory are given in sections A 2, B4, C2, C3a, C3b, C4 for scalar modes
and in sections A 3, C6 for tensor modes. The other sections develop these equations from first principles.

1. The ADM equations

A foliation is a set of spacelike 3-surfaces {(3>g} that fills spacetime, for which a closed 1-form 2 exists which is
normal to the surfaces. It is therefore locally exact, i.e., can be written as 2 = dr, where 7 is a time coordinate
labelling the hypersurfaces. The metric can be decomposed into the ADM form in terms of the lapse function N, the
shift (three) vector N, and a spatial metric () g;;:

ds* = —N2dr? + @ g,;(de’ + N'dr)(dz? + N7dr), (A1)
goo = —N?+ N N* | goi = N; = Glg N7, gy =gy,

1 . N? . . N'NJ g _
9% = Nz 9% = N2 g7 = (3)9” NN’ (3)9” (S)ij =0 -

Here, z* are local coordinates on the 7 = constant surfaces and (3) ¢/ is the contravariant spatial 3-metric.

One can refer tensors to the coordinate basis, dz® and its dual basis 9, = 9/dz® or to a more general contravariant
basis (tetrad), e,, and its covariant dual basis, e®, where a = 0,1, 2,3; for the spatial components with respect to
the basis I shall use I, J, K, .... It is natural to choose the 4-velocity e, = N~'9y — N~ N%0; as the timelike basis
vector (and e” = N dr): it describes observers comoving with the flow of time (section VIB1). The spatial triad
{e1,e2,e3} is chosen to be perpendicular to e ((e”,e;) = {e,,e!) = 0). Thus, {e;} is invariant under the action of
the projector L%’= ¢g®% 4+ e%e”. Tetrads are not usually expressible as coordinate bases (i.e., are nonholonomic),
but components of tensors with respect to tetrads often have more direct physical meaning than components referred
to coordinates. With the e; chosen to be perpendicular to e,, to go from spatial coordinate components of a tensor

Ty to triad components T#7 " , one just forms T, efe’e Ik(e f ; 3-space spatial covariant derivatives with respect

to the 3-metric )g;; are denoted by Tkz...|m or by ®v, T . w1th T | OF )V T4 denoting the action

of the covariant derivative (®)V ., on the tensor. If 7 is invariant under projection, then [®)V]T = [L V]|T, where
(YV is the covariant derivative with respect to the 4-metric (4) gij. The 3-space metric coefficients in the e; basis is
Blg;; = e -ey, eg., 87 for an orthonormal choice. Considered as matrices, (e/) = [(e‘]j)”]’l. The matrix eJJ is
sometimes called the deformation tensor since eJJ dr? gives the proper length of an element of coordinate length dr?.

In the following equations, we shall refer the time components to the basis e,,, using the subscript n. For the spatial
components, because e; and e! are just linear combinations at each point of the 9; and 9, independent of e, and
e”™, the transformation to basis components involves changing i,7 to I,J (with some care for the treatment of the
shift; also note that although e,° vanishes, e/, = 6’/ Nje does not for nonzero shift — however, e, does vanish.)
It is useful to introduce a modified basis e.; which “takes out the expansion of the Universe” frorn e It e = Atel,
ex; = Aey. Here A(x,7) is a “conformal factor” that should reduce to a(7) for homogeneous backgrounds, but also
could be spatially dependent for fluctuations if it results in simplified equations.

The only nonvanishing components of the extrinsic curvature (with respect to the basis) are

A]J:€]€Jjﬁ (_ or J +N1+NZ]> (A2)
A 1 K
= ——NA(S[J 2N(6AJ€ I+6II\ *J) 2N6[ €J ( ]‘1+Nl|])

The last form assumes the basis is orthonormal, and is explicitly given to show (with zero shift) that this is just the
familiar matrix relation for the shear tensor in terms of the deformation tensor when one maps from Lagrangian to
Eulerian space in Newtonian dynamics in the expanding Universe.

We define an inhomogeneous Hubble parameter in terms of the trace of the extrinsic curvature K = K} and a
hypersurface anisotropic shear in terms of the anisotropic part of the extrinsic curvature, (K');;. Letting

a(x,7) = [det( P g)]'/% = exp [% Traceln (3)gij] ) (A3)

we have
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K 181na ].].()

H=0=—— = — - VN_nl ——BN]
3 N or 3N enllna] -
A 11, . 11
= — - ,lf' '___N4
NA T3NOES i T 3N
UIJE_(I(I)I‘]E_(I(IJ_%(g)g[JI() (A4)
]- i i 1 i 1 LI
= <§(5KJ6*1 +oike.;) — _61Je*1{> Nefi
1
eJ N < (Nijj + Ny )_ 1@ )ngNUc) ) (A5)
11 . gij/a 1 /1 1
Oij = 2N ZT;_N< ( z|]+N]|) ()gz]Nk>'
Just as the stress— energy tensor was decomposed in eq. (154), so the Einstein tensor G? can be decomposed
into {Gpn,G GII, Grj— = ( )g[JG -}, and the 10 Einstein equations written in this form. The energy constraint

equation can be re- expressed as an inhomogeneous Friedmann equation, which is also the general relativistic version
of the Poisson—Newton equation:

WG = 5(PR+ 3K — (K') 1y (K')') = 87G n prot (A6)
ie., H?> = %WGNptot + 0 é (3)R, o’ = %O'IJO'IJ. (A7)

The momentum constraint equation is
DG = OV ((K')7 — 2K O g) = 81Gx T - (48)

The isotropic dynamical equation (G1/3) is

2 21 . 1 ., 1
Zen[K]+ == OVIN - ZK? - (3)R—— KN = 871G npro
36[]+3N 3 5 (K") 17 (K" = 817G xprot
(A9)
The curvature term in eq. (A6) can be eliminated by forming the combination R”, = — (G, + GY%)/2 equation, which
is the Raychaudhuri equation for this zero vorticity hypersurface flow (w? = fwyjw!’ = 0):
. . . 1 .
3en[H] + 3H? 4+ 2(0? — w?) — ~ CIVZN + 47Gn (p + 3p)tor = 0.
(A10)
The anisotropic dynamical Einstein equations ((G')¥) are
. . 1 . 1o
Y a8’dAY) 3 1 3 1 (3 2 (3 2
—en[(K") ]+ K(K') ! + ®(R)} - ~ (< IAVAICA v 305 v )N
1, 1 ,
- N(A”)f GV, N + ~ E)i BV Nk = 87G y (Mior) | - (A11)

I now give a few examples of the stress—energy tensors which we shall have occasion to use. The stress energy of

a classical fluid can be decomposed into a comoving density peom = U, T*U,, momentum current J(“e Jeom Pressure

Peom, and anisotropic stress 122 defined by eq. (154) but with U the 4-velocity of the fluid in question. The fluid

may be imperfect, with shear and bulk viscosity, 7, {, and a thermal conductivity «, obeying the constitutive relations
[263,195]:

Pcom = p(pcomaT) - Ce(U) ) H(clgm = _2770El[l}) ) (A12)

Tewy = —kT Ly (WV[InT] + Awy) (A13)

where 7' is the fluid temperature and p(p,T’) is the equation of state. The fluid’s acceleration is A, = OV,
where the subscript (U) indicates projection with respect to U, e.g., 0y = J_‘(’U)b Tbe L(v)ca- The stress energy
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derived from a distribution function is given by eq. (B6) below. A last example is a scalar field, ¢, interacting through
a potential V (¢, ...); projecting onto U = ¢,,, we have

po = 3(enld))’ + @ g erldleso] + V7, (A14)
Tyo = ~Tigyn = =g enldles(d],

po = 5(eald])? — §¥ 9" erlglesd] -V,

sy 17 = esldles[d] — 2 @ gy @ g"Me [dlen[d].

The scalar field evolution equation, (YV2¢ = 9V/dé, is

scalar field momentum: I1(®) = ¢, [¢], (A15)
en[II9) — K11 — B gle i In Nles[g] — PV + Z—‘; =0.

One can split the 20 independent components of the spacetime curvature tensor (¥ Ryj.q into 14 that just depend
upon the properties of the 3-geometry, as embodied in the space curvature tensor (3)Rijkm, and upon the extrinsic
curvature and its spatial derivatives,

(4)Rijkm = (B)Rijkm + (KK — Kim K1), (A16)
@ Rijpn = OV Kip, = OV Ky, (A17)
O Ryyom = @ g DRy — go G Ry 4 g R,

— @y @R, +1OR ((3) Gim @i — D gy © g].m) 7

and into 6 dynamical components that depend upon how the extrinsic curvature changes in time, i.e., dependent upon
(3) G-evolution:

W Ripjn = K KF+ N1 OV, OV, N (A18)

N {%A - LIV OV, + K OV, N 4 K, <3>vim]} |
Eqs. (A17), (A16) are called the Gauss—Codazzi equations in the differential geometry of surfaces.!

Normal coordinates have N' = 0. In perturbation theory this defines time-orthogonal gauges. Because the equations
simplify, this has also often been adopted in numerical relativity. Gaussian normal coordinates have N =1 (or @) as
well, defining the synchronous gauge. There is a gauge which maximizes the 3-space volume, one with K = 0, which
was used to retard horizon formation in black hole calculations, but is of little interest for cosmology. Constant K
hypersurfaces are used to characterize the outcome of inflation calculations, and have been generally advocated for
inhomogeneous numerical cosmology because they are singularity-avoiding, e.g., [171]. However, this positive feature
is a negative one if we are interested in following the collapse of cosmic structures such as clusters. Other choices
that have been used in black hole calculations share this singularity-avoiding characteristic. There is also a large class
of comoving hypersurfaces, one for each “type” of matter present, and one on which the total energy current J(ae)’tot
vanishes. These are very useful for deriving source functions, etc. and are sometimes useful for calculations.

Perturbation theory beyond first order in General Relativity depends upon exactly what spacetime we expand about.
It is often useful to take out some aspect of the dynamics via a conformal transformation on 4-space (gas = Q%gag)
or on 3-space ((3)gij = A? (B)g*ij). In the usual cosmological perturbation theory, it is A2 = a2 or Q2 = a? which is
removed, but inhomogeneous parts could also be transformed. The spatial metric (3)gij can even in the nonlinear case
be decomposed into terms that we can identify with scalar, vector and tensor (transverse traceless) components, but
the nature of these depend upon exactly what we pull out in A or 2 and the Einstein equations couple them — unless

the metric coefficients and the conformal factors are all treated fully linearly. Nonlinear choices of some interest are
Q= N(x,7) and A = a(x,7) = (det((® g))*/6.

'Many of these quantities are most naturally expressed in terms of Lie derivatives: e.g., K7 is the Lie derivative of ) gq
with respect to €™, the term in curly brackets in eq. (A18) is the Lie derivative of K;; with respect to €™, Lcn K;j, and the term
in square brackets is the Lie derivative of Kj;; along the shift vector NKeK, which vanishes for zero shift.
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2. Scalar perturbations

In the following, unperturbed variables and covariant derivative operators have bars over them. For scalar pertur-
bations, we have

Ptype = Ptype + (6P)type = /_’tyPE(l + 5type) )
J(e),type] = Ttype nl = _(ﬁ + p)type (3)v1‘llv7type )

(3)gij = (3)gij(1 + 2¢) — a*( (3)vj BV, + BV, (3)vj)1/,, (A19)
Joo = _N2(1 + 21/) ,  Goi = Ni = N(3)Vl‘11n s (AZO)
e =—-N1+v), e.’=N"11-v), e’ = —(3>7\1/n,
=2
a .
UV, =V, + =1, A21
+ 20 (a21)
1 B .
(OH) = ~3(6K) = =¢ — Hv - 3 Chvat 7 (A22)
ol = —(K'); = —(WT' OF, - L5t OF)w, (A23)
@R, = —[OF OF, — 152 OF")p (A24)
=2 ke
(5(3)3) = 40y - (3)32% GR = 6d2 =t (A25)
(
(

Utype[ = _(B)vlqjv,tymh Ptype = ptype + (6p)type ’
fluid acceleration: Ay, = —(B)VJ\I’A,type,

1.
\I].A,type = F\I/v,type -V,

hypersurface acceleration: A, ), = GV,v, (A28)
thpeij = ((3)71- (3)7]' - % (B)Eij (3)v2)ptype77t7type )

scalar field: ¢ = +3d¢, VU, 4= (e,][¢]) 'd¢. (A29)
(6p)tot = p_tot(stot = Z ﬁtype(stype i

type
Uy tot = ZtyPE(ﬁ_+ p)_type‘llmype , (A30)
(P + D)tot
Jie)tot 1 = Thotnr = — (P + D)ot (3)vflllv,tot . (A31)

Thus ¢ fully parameterizes the Ricci 3-space tensor (k. = 0,+1 gives the 3 FRW curvature possibilities). The
velocity potentials for “type”-matter are W, ¢ype. It is also convenient to define a total velocity perturbation through
eqs. (A30), (A31). ¥, is like a velocity potential for the shift, and, as we shall see, only the combination ¥, , which
is a potential for the anisotropic shear of the hypersurfaces O’;, enters into the equations of motion. The anisotropic
stress for type-matter can also be expressed in terms of a scalar potential, m; type. It vanishes for scalar fields, as
eq. (A14) shows, and also for perfect fluids, including CDM and the baryons. It does not vanish for photons and
relativistic neutrinos. The acceleration of a fluid moving with velocity U is A(yy; = a 'U"ey[alU;] + e;[In N to first
order, and is e;[In N] to all orders for the time surfaces (as is shown in Appendix B), yielding eq. (A28) expressed in
terms of an acceleration potential. The acceleration, VU, is from nongravitational forces only, hence the + ®)V ;v
term is there to take out the gravitational acceleration derived from geodesic motion.

The expansion of (3)gij is based on the removal of the 3-space conformal factor @ rather than some inhomogeneous

function. We define V in terms of the (3)§ij without the a? taken out, so that OV = g2 (3)gij8j (with (3)gij =69
for a flat Universe) has extra @ terms designed to confuse the reader. So does the Laplacian ®%?. One of the
advantages in working in an orthonormal basis is that the correct @ multipliers enter into the expressions (e.g.,
GV, =a='9/9z" for a flat Universe).

The energy constraint and (the first integral of) the momentum constraint are

_ 2 oy— 1 _
2H(3H) - 5 3%, — = OR2p = 8”§N (5p)s0t (A32)
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1 —2 1 _
SHY+ OV U, = —p - H
( )+3 &¢—Hv

o 1
= —4nGp Z(p + p)type‘ll%type T a

6
type

GRW,. (A33)

It is sometimes better to work with a modified form of the energy constraint equation, found by inserting the relation
for (0H) from the momentum constraint equation into eq. (A32):

— _ 1 _ _
~ OV o+ BY,) — 1 DR2Ap + HY,) = 47Gy (50) com ot (A34)
(6p)com,tot = ((6p)tot + 3-H(ﬁ + p)totqjv,tot) ] (I)H = 2 + H‘Ija )
involving the energy density in the frame in which the total energy current J.) o, vanishes and Bardeen’s gauge

invariant ®p, which is also ¢ in the longitudinal gauge: ¢ = ®p.
The Raychaudhuri equation, slightly reworked, is

1 aN(éH) aln(]\_f_ld2) — 81? — 1 =2 (3)—2
e 5y + 57 N(6H) o Nv 3]\7 Vv
4G
= — 5 ((6p) +3(8p))rot - (A35)

Note that N(0H) is negative: a growing density perturbation slows the expansion rate. The (G')! simplifies consid-

erably when expressed in terms of the potentials:

1. i
F\I/g +HY, + (p+v)=-81Gy Zptypeﬂt7type . (A36)

type

Although for scalar perturbations, the constraint equations together with the matter conservation equations form
a complete system from which the dynamical Einstein equations follow by taking appropriate time derivatives and
linear combinations, sometimes it is worth it to solve the Raychaudhuri equation, extra time derivative and all, or
the anisotropic G, equation in the place of one of the constraint equations. In a gauge with ¥=0, the Raychaudhuri
equation becomes a simple ODE for N(§H) at each point in the space. The momentum constraint equation is an ODE
for ¢, but it turns out that only ¢ enters the matter evolution equations and its expression in terms of the velocity
potentials can be substituted. This is the usual approach taken for solving scalar perturbations in the synchronous
gauge, and is the one adopted in the Bond and Szalay and Bond and Efstathiou papers [194,134,88].

Although it is fine to solve eq. (A35) for the evolution of matter and radiation through photon decoupling and
free-streaming to the present, intractable numerical problems arise in inflation calculations with scalar fields [191]: a
robust solution strategy for solving synchronous gauge fluctuations does exist: the momentum constraint is treated
as an ODE for ¢, and (6H) is then fixed through the energy constraint equation.

For the synchronous gauge, the anisotropic G;; equation follows from a combination of the matter evolution
equations and the other Einstein equations and is not usually separately solved for. It is an algebraic relation for
zero shear hypersurfaces (¥, = 0), e.g., for the longitudinal gauge (with ¢y = ¥,, = 0). For example, if there is no
anisotropic stress (e.g., universes with only perfect fluids and/or scalar fields), then v, = —py,. In [191], we also solved
for scalar field fluctuations in the longitudinal gauge, using eq. (A36) and a sum of the Raychaudhuri and energy
constraint equations, a dynamical equation of second order in ¢;. For the CMB problem, the standard approach
[138] has been to also use a constraint equation, the Poisson equation, eq. (A34), relating the total comoving energy

. =2 . L . . .
density to @V vy, [259] use the momentum constraint equation instead of the anisotropic shear equation.

Under scalar mode gauge transformations [170,177], Thew = Tola + I, xflew = xfﬂd + a2 (3)viL, where T" and L are
scalar functions, we have

1 ONT

N or ’
a2 . _

@Z’new = wold + L7 \I[nnew = lI/nold - ﬁL + NT

\I]a,new = \Ilo,old + NTa \I]v,type,new = \I/v,type,old - NTv

(0H)new = (0H)ora — HT — L OV°NT

$new = Pold — HNTv (A37)

Vnew = Vold —
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0H)inew = (0H )wora + (1 + @) H* NT',

5p)tot.new = (0p)tot,old + 3H (P + D)ot NT,
6P)typemew = (6P)typ8701d - btypeT7

6p)type,new = (6p)type7old - ibtypeTa Tt,new = Tt,old »

(
(
(
(

\I[A,type,new = \I].A,type,old )
scalar field:  (00)new = (00)ola + En[O]NT .

The modified inhomogeneous Hubble parameter H., is defined by eq. (167). Notice that the “acceleration potential”

of a fluid is gauge invariant. The unperturbed momentum of the scalar field is &,[d].
To transform from the synchronous to the longitudinal gauge:

_ 1. _
NT =-¥,5, ¢AEVL=ﬁqja,S7 Sy =9, =9ps+HY,; s,

\I/v,type,L = \I]v,type,s + \I]U,Sv \I/v,cdm,L = \110'757 (A38)
dln piype =

6type,L = 6type,5’ + ﬁ H‘llcms )

scalar field:  (0¢) = (6@)s — €,[B]Vs s . (A39)

®,4 and ®y are gauge invariant. Some other gauge invariant quantities that are often used are:

(0p) 1ot
=p+ 12 A40
=T+ D (A40)
(pcom = QD - H\Ilv,tot 9 (A41)
1.
(6p)com,type = (6p)type — ﬁﬁtypeqjv,typev (A42)
ﬁtype
(6p)type - = (5P)type : (A43)
type

Also gauge invariant are any differences between quantities which may themselves not be gauge invariant, such as
velocity and appropriately normalized density differences:

v

v,type, type, = \pvytypel - \I/v,typez ’ (A44)
(00)type, _ (00)type,
(ﬁ + p)typel (ﬁ + p)typez

(Ad5)

Examples used below are the relative photon-baryon velocity potential, ¥, ,p and photon entropy per baryon per-
turbation, 6, = %67 —0gB.

3. Tensor perturbations

For tensor perturbations, we have

g = Pgiy = el +h™"), go=-N?, goi=Ni=0,

i i L) gk
(0H)=0, o;=—(K')!= —thj o,
@R = BT LRI L @R I G R=0. (A46)

The tensor mode is already gauge invariant. Only the anisotropic dynamical Einstein equations are needed: multi-
plying both sides by 2N? gives

ﬁETT)j n 8IH(C_L3/N)
or 4
= 167Gy N? (Iyor)? - (A47)

PTG _ g2 ORI 1]\72 BRI
7 4 3 ¢
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With scalar fields only, there is no anisotropic stress, hence the gravity waves are freely propagating. Of course they

can still be generated by quantum noise in the hE]TT) field. Anisotropic stresses from neutrinos and photons can lead
to gravitational wave generation, but this is a very small effect. Cosmic strings decay by emitting gravitational waves,
generated in response to their anisotropic stress.

APPENDIX B: TRANSPORT THEORY IN GENERAL RELATIVITY
1. The distribution function and the BTE in GR

The theoretical framework used to calculate the anisotropies and distortions of the CMB is general relativistic
polarized photon transport theory. Kinetic theory in general relativity was actively developed in the late sixties
and early seventies (e.g., Ehlers 1971 and Stewart 1971). For the cosmological transport problem, we need a set of
Boltzmann transport equations for single particle distribution functions. Due to the nonlocalizability of position and
momentum, one must be careful in defining the distribution function. For flat cosmologies, the eigenmodes are plane
waves, momenta are Fourier transform variables conjugate to positions, and a Wigner distribution function can be
defined (in terms of a two-particle equal-time propagator). If the particles have spin (or polarization) labelled by s,
then the Wigner distribution function is a matrix in spin space:

fS’S(q7 X,T) = Z eik-x<a117q_k/2 (T)as7q+k/2 (T)> ) (Bl)
k

where (---) denotes a (nonequilibrium) ensemble average, the operator a, qi/2 annihilates a particle with spin s of

momentum q + k/2, and al,’q,k/z
-1

space, fi(q', x%) = 5 s [ss, is the mean occupation number of the state of momentum ¢' in the neighborhood of the
spacetime point . f; defined this way is not a positive definite quantity and so the interpretation of f; as phase
space density is invalid.!

Coherent effects — such as the modification of the photon propagator by collective plasma effects — must be taken
into account by appropriately defined quasiparticles which have these collective interactions included, but this is not
of importance for the AT /T problem. In the classical limit — when spatial inhomogeneities of f; and gravitational
field curvature are both of long wavelength compared with the typical de Broglie wavelength of the particles, ¢~ —
localizability is a good approximation, f; is positive definite, and the quantum evolution equation for f; reduces to a
Boltzmann transport equation. The transport model considers the particles propagating along geodesics in spacetime.
The particles may undergo absorptions or emissions or scatterings at single points. For such a description of collisions
to be valid it is also necessary that the interaction regime be small in spatial and temporal extent compared with the
scale of inhomogeneity in fys. Also, in order for the equations to be closed off at the single-particle distribution level
(rather than requiring e.g., a full Liouville equation or higher moments in a BBGKY hierarchy), the only correlations
allowed to be explicitly included are those due to the particle statistics, Bose—Einstein or Fermi—Dirac. The equation
for the evolution of the distribution function is

creates a particle with spin s’ of momentum q — k/2. The trace of fy in spin

! A natural way to get a positive definite distribution is to discretize phase space into cells of size (27%)3 and centers (X, Q).
The uncertainty principle implies further localization within a cell is not possible. The photon field can be expanded in
annihilation and creation operators a.xq, aZXQ, with associated wave functions (x|X, Q) which are zero outside of the spatial
part of the box and which are box-normalized plane waves, exp(iQ - x), inside. These form a complete orthonormal set.
The relative degree to which the boxes are spatially elongated is at our disposal provided the quantum volume constraint is
maintained. By shrinking the spatial directions at the expense of increasing the separation between wavenumbers one recovers
the delta function wavefunctions of the position space representation of quantum mechanics; by shrinking the momentum
directions one approaches the continuum plane wavefunctions of the momentum space representation. The occupation indices
of each such fundamental phase space cell can be used to define the distribution function: f,,(Q,X,7) = (al,xQ (T)asxq(7)).
Compared with the usual Wigner distribution, there are disadvantages (does not have a continuous dependence on position
and momentum, boundary terms involving transport from one box to another are complicated) and advantages (emphasizes
the fundamental graininess imposed by quantum mechanics on phase space, and coarse-graining of phase space only involves
making the boxes of much larger volume than that required by the Heisenberg uncertainty principle). Both approaches give
exact quantum evolution equations which reduce to the usual form of the Boltzmann transport equation in the classical limit.
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where Sg, s, [f] is the source function. fy s is a general relativistic scalar under coordinate transformations of the
position coordinates and of the momentum coordinates. ¢°Ss,s,[f] also transforms as a general relativistic scalar,
which conveniently allows transformation from one gauge to another.

Although eq. (B2) is not manifestly covariant because the summation in the second term runs over spatial indices
only, it is actually covariant — a consequence of the momentum being constrained to lie on the mass shell, ¢* ga,gq'@ =
—m?. Any other 3 parameters labelling the mass shell instead of the coordinate momenta ¢* would also do. Thus,
for the transport problem selecting a gauge involves choosing a spacetime coordinate system and a momentum space
coordinate system, and these can be chosen relatively independently of each other if we wish. Coordinate momenta
q" are generally not very physically meaningful. It is usually better to use spatial momentum components relative
to an orthonormal tetrad e®(z#): ¢! = elg® ., often along with further momentum-gauge transformations beyond
this to simplify analytics or numerics, in particular one that makes the momentum a comoving one [194]. The
transfer equation in the triad momentum variables! looks similar to eq. (B2), and is easily obtained by appropriately
transforming it:

_ o 9f

b Of ="Slf), where eo[f] = €55 o]

a I _a
q“ea[f] —Tana“q 2l =

(B3)

and the I'}; are connection coefficients relative to the tetrad e,, defined by the expansion Ve, = I'¢,e.. To reduce
this to a usable but quite general form, we use a little more of the machinery of differential geometry. The I';, are
often termed Ricci rotation coefficients (and denoted by w¢,), and are related to the structure coefficients C¢, of the
basis,?

[ea, €] = Clpee, by oy = —2g°ealga] — €s[gaa] — €algan]}
—3C5, — 9avg Cf — gaag™ CFy) . (B4)

Let us first introduce an orthonormal basis, e,, e;, where e¥goze® = 1., = diag(—1,1,1,1), so I'¢, only involves the
aYaBCq g ab

c

<. If p* is the momentum in the e, basis, then p“pbl"ﬁbg)—lfl = p“pbnadéucgbg—pf“ often easier to calculate. The

momentum p = (p!d;p’ )1/ 2 will redshift as the universe expands, so it is not the momentum we finally wish to work
with. Since we have seen that the equations greatly simplify with the introduction of a comoving momentum, we
introduce ¢/ = Qp!, hence ¢ = Qp, ¢’ = p! and ¢" = /¢% + m2Q2, where the function (x,7) is at our disposal,
except that it should be a(7) for the unperturbed case. The transformation of the action of the vector e, on f from
the space in which p is fixed to the space in which ¢ is fixed is simply shown to be

€alp[ft] = €alq[fi] + €a[In Qg0 fi/0q .
Note that ¢df;/0q = q4'0f;/dq". For the basis e, es, we have
rTLLI:_C}Ln:e][lnN]v C?JZO,

_ 1 .
¢y =~cf = el ele+ el

CII‘J = ez[er]elf — eJ[te]e?’.

f the geodesic motion is 2%(\), ¢’ (1), where X is an affine parameter, then the geodesic equations ¢* = e%dx®/d\,dq" /d\ =
—1'L,q%¢® applied to Df/d\ = (Df/d))cour, where (D f/d\)eou describes the change in the distribution function as a result of
local interactions, yields the transport equation.

The commutator of the differential operator [eq,es] is defined by its action on a function f: [ea,ep](f) = (eaaeb’?a -
er*es o)0f[02?. To define the sign conventions I use here, the curvature tensor is R(eq, €b, e, e?) = (e, R(ea, ep)ec) = R,
hence R%,, = e.[I'%) —eb[Ffa]-l-Fbeda —F{aF‘;b—C({bFff where C¢, = I'f, —I'¢,. Here the operator R(eq,e) = YV, Wv,, —
(4)Veb (4)Veu + (4)V[eu,eb]. The Ricci tensor, scalar, Einstein tensor and Einstein equations are: R. = R%,,, R = ngRcb,
Gep = Rep — %Rgcb, Geop = 8nG N Te. The connection and curvature forms are wy = I}, e?, 9‘3 = dwg + w,‘f A wg, obeying
dgab = Wb + Wha, Where wgp = ¢g“°wy, and the first and second Cartan equations, de® + wyp A e =0 (or % torsion) and
0d = %Rfabe“ A eb. Here A is the exterior product and d is the exterior derivative of forms. The latter 3 equations are all that
is needed to compute connection coefficients and the curvature tensor for a metric in any basis, and is usually simpler than
using direct ', calculation in a given basis.
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An example of the use of this is the computation of the acceleration 4-vector of the timelike hypersurfaces: A,, vanishes
and AT =TI =Ggl/ion = (3)g”eJ[lnN]

As in section A1, we use the 3-space “conformally transformed” basis, el = A~le!, e.; = Ae;, with A(x,7)
reducing to a(7) for the unperturbed case, but possibly inhomogeneous in the fluctuation case. This means the
momentum is ¢* = QA(e%,p). As we shall see, it turns out to be most desirable to have = A to ensure that
there are no terms representing the redshifting of the radiation for the unperturbed background. It is this ¢* and
its ¢ which is the inhomogeneous generalization of the comoving momentum introduced in section III A. Because of
the ﬂexibility in the spatial dependence of A, it is not unique. The way the basis change manifests itself is through

efe,le)] = ele,lel )] — 6§{en[ln A]. In terms of ¢ and e, ,, the transport equation becomes

TL

ealft] — q 6U dren[In(A/Q)] + T L eiJ[lnN]

g 1. . ik ;
_ q_anJqu*K[ln Q] - qu*Ai{en[e*J] +

q. 1 i i
+ q_nQKQMZe*Ki{e*J[e*M] —e.umle, 1}

Sea IV}

15 6" 1) es i ) = SA. (B5)

2. Number, energy and momentum conservation equations

A first application of this equation is to derive the energy and momentum conservation equations for “type”-

matter. Just as the stress energy tensor can be decomposed into (pff(fe),p7 II7)type, sO the number current 4-vector
Jiype Of particles of a given type with respect to a flow U“ can be decomposed as j;jcyw = NgypeU" + J(“nt ) where
Loa J(nt = 0. Similarly the “type”-entropy 4-vector ‘7(itype) can be decomposed as j(‘ztype) S(type)U " —l— J(Stype)

(In the comoving frame of an imperfect fluid moving with velocity U, j(]sWM_) = T_lj(]e)type, given by eq. (A13).) If

U is the flow of time, e, and we use the basis ey, these various densities and currents are related to the distribution
function by

p—zﬂ fe, p=< ZQ 4— s (B6)
Ntype = ZQ 3qnft7

= — ZQ—B{ft In fy — (£)(1 £ fi) In(1 + f,)},

1
- -39
=T Sy = S
qs

qs

I
Il = 29‘337{ft Info — (£)(1 % f) In(1 % £)},
qs

2
ZQ AIAJ iélj)q_fv Z/

n
q spin

Here (+) is for bosons, (—) is for fermions. A sum over spins (or polarizations) is needed because of the way f:

has been defined. (For a general basis, the form for J; involves Q-3 (=W g)1/24*/(—q,) and for Tk, involves

Q=W g)/2¢%¢* /(—qy), where g, is the covariant time component of the momentum.)

Consider the limit of the BTE eq. (B5) for nr-matter, for which ¢ — mQ. We take Q = A = @ and ignore
q/q" terms. The BTE and the zeroth and first order moment equations w.r.t. q which give mass and momentum
conservation are then:

I of, i _
enlf] + Localfil = mecs NI 3 + et fenle. ]
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[pQ]-I—lek][J()Q‘L]— Qe {enle. ] + ekJ[N]} mZS

eV s 2L = i),

enlJ (o2 +a e s [(p0" + H”)Q51 + p361 e, [In N] — (J(Ie)efi

+ J( )QAMe ") {enle. ]+ e*J [N']} = ZqIS (B7)

The nr-transport equation does indeed take the form of a Boltzmann equation with a gravitational force —mV In N,
with In N the gravitational potential perturbation. The last term in eqgs. (B7) is a shearing term related to the
extrinsic curvature. The general equation for semi-relativistic matter can also be obtained this way, but it is more
easily derived from the ADM formulation of the energy and momentum conservation laws for type-matter:

enlpl = K(p+p) — (K10, + OV, IL
+2J5) OV, InN =) p"S,
ps

enl (o) = K Ity = 2(K) Ty + OV, (0 Pg" + 1)
+((p+p) @ + IOV, N + I OVNT =5l

The physical interpretation of the different terms is clear.
The perturbed energy and momentum conservation equations for nr-type particles follow from egs. (B7). More
generally, we shall keep in the terms of order p/p to have a generally valid result:

ﬁtype
3(5 + ﬁ)type
i (0p — PO)type Zps P"Stype — P Stype(l + dtype)

=2
€n [6type] + 3én[<p] - (3)v (‘Ijv,type + ‘lla_)

(ﬁ + ﬁ)type (P_ + ﬁ)type

p_type [(1 ptype ptype
e e—CT) + ) v,t, e] - SH \I]v,t e
(P + Ptype Ptype ' Peype "

—2 _
(0P)type + (% ®OV” + % (B)R)ptypeﬂ'tytype
(ﬁ + ﬁ)type (P_ + ﬁ)type
OV POV, v p ( Siypels + Seype OV q;mype)
- (5 + P)eype '

; (B8)

=v+

(B9)

The perturbed energy conservation equations for the total energy and momentum are the same, except that the sums
over sources Syo, vanish: the total energy and momentum are conserved.

The nonrelativistic limit of eq. (B9) is Prype/Prype — 0, p* —> Mmyp,. The energy equation, eq. (B8), is handled by
Writing pnr = N (M + €nr), where my,,., 1y, and €,, are the mass, number density and thermal energy per nr-type
particle. Terms of zeroth order in m;;! give the number conservation equation and terms of first order give the thermal
energy conservation law, which is just de,, + pmdn;} = Trdsy,,, where ds,, denotes the entropy generation in the
nr-matter in time dr, T, the temperature. These laws are:

én[én,nr] + Sén[ﬂo] - (3)v2( ’U ,T + \II ) 71 (6877,1” - 3nr(sn nr)7
Ps

(B10)

pZ
=y (08nr = Suruynr) - (B11)

OP)nr (2T + LOR)p, 0

mTLTﬁTLT mTLTﬁTLT
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For cold dark matter we only need eq. (B10) and eq. (B12), and this is all we need for baryons as well if the baryonic
pressure and heating can be neglected, which is the case if we only wish to follow the development of primary
anisotropies.

3. The transport of extremely relativistic particles

We now turn back to the transport equation to apply it to radiative transfer. Instead of using ¢/, we shall change
to ¢,¢’ and define a derivative with respect to ¢’ = §; by

0 0 0
o = cjza—q + q_la_qf : (B13)
The reason for this separation is that while terms involving derivatives with respect to ¢/ are very relevant for the
bending of light, i.e., lensing, they are not relevant for most issues in primary and secondary anisotropy development
(they can contribute if there is large scale mean curvature). We shall call the source associated with the first term
Sisw and the source associated with the second Sipeng. Note that q}é)/&jl = 0. Instead of repeating the Boltzmann
equation, we shall write this in terms of the A; notation introduced in section IIT A:

1+ Ay = (¢/Te)/In(f £1),  (+) BE, (=) FD,

1 -
en[Ad] + ;anlze*l[ﬁt] = N"YGisw + Givend + Gic) , (B14)
- oA 1 .
3w = |14 8= gt ] [gud et fenfel) + e V)
q g1 q .;1
——§° —eg[In N+ =¢" —e.s[InQ] — e, [In(4/Q)]| , (B15)
q A A
— _ 8At AT ~ qn ].
N 1 on 1J _ ] J e, In N
Gibend = 3l (5 q'q )[qu-J[n ]
— L2 linA] - e feale ] + ews [N}
ane*J n dKE€y i16n e*J Ne*J
q. .1 i
+ L g Sel feusfeudi) — conle ) (B16)
2
NG ronree = Sl +2) | (B17)

(q/Tc*)(fc + Aft)(l + (fc + Aft))

For light massive neutrinos and photons whose spectrum is frequency dependent, it is better to use either (1 + A;)~*
or In (f, ' £1), which is akin to a dimensionless generalized chemical potential, for the transport.
For massless er-particles, the components of the stress—energy tensor are related to A; by

e, 17 s,
for Ber Soer Db = [T+ A0HLLEL G - 0
Per Per  Per  Per 47

The radiation brightness perturbation is defined to be g 'dpe,/(d2;/4).
In [194,2], T used @ = A = a, conformal time, N = a, and a triad orthogonal to linear order in the metric
perturbation h;; = a=2(®)g;; — ®)g,;), where (*)g,; is the unperturbed (flat) spatial metric:

el =060+ %h‘]iv e, =6,/ — %hliv (3)$7ij =a’dy; . (B18)

Raising and lowering of indices is here done with respect to d;; = e; - e;. We now concentrate on massless particle
transport (¢ = ¢) in a flat unperturbed Universe for which the bending source is of second order, take Q@ = A = a
and assume A; is g-independent, as for Thomson scattering of a Planck distribution. To linear order in hqg and A4,
eq. (B15) can be written as
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=—q qjihij +q' ¢ 0hoi + §q]8jh00 (= A +7'0:A) . (B19)

4. momentum space gauge transformations

There are two kinds of gauge transformations that operate on f;, coordinate and momentum. For Thomson
scattering problems, we usually restrict ourselves to classes of momenta for which df; /97 vanishes in the unperturbed
state, so f; is a function only of ¢; in that case, § f; changes only under momentum gauge transformations. However,
since we usually tie the momentum variable choice to the coordinate system choice (using a triad e’ perpendicular
to the flow of time), the two are intimately related. We now discuss the general situation, where we allow the new
momenta to be arbitrary functions of the old: ¢f., (¢/,). This accompanies the transformations of time, Thew =
Toid + T, and space, xi . =z, + L', coordinates.

The class of momentum transformations we have been discussing so far are conformal transformations of an or-
thonormal basis, hence ¢%,,, = QL¢qby, where L¢ is a Lorentz transformation. We can therefore identify a velocity

vector v, a gamma factor v = (1 — v - v)~ /2 and a rotation matrix RY such that

Q0 )
G = anv: RY(qha — vaiav” + (v = 1)qota - 907) . (B20)
0.

The old hypersurface as seen on the new hypersurface is moving with velocity v. To linear order, we have the following
transformations

Qnew — (]- + 0ln Q)R(qold - chﬁdV) ) (B21)
Gnew = {old + qolcl(sln Q- qgld {jold b ) (B22)
Qnew = R(Qold - Toid (V - {jold : Vquld)> ’ (B23)
Gold
af_ Gnew — {Gold af
5new=60 - — | 5T B24
fe Jtola — ¢ 30 dma 5 (B24)
of n of
= 6ft01d - q_f <6 InQ— qoiquld N ’(AJ’U) - |:_fT:| ) (B25)
9q qold or
Atnew = Atold + M
Gold
4old ~ o 8f/8T ]
= Aga+ (o —doldg gy ) 4 [ LT pl B26
Id < nfY— -2 ot vv) [8f/8lnq (B26)

Notice that it is only the redshifting associated with the conformal factor or relative flow that enters in the transfor-
mation of f. If we restrict ourselves to the class of comoving momenta, then the terms in square brackets vanish.

We know how the velocity v and the scale factor transform (Gpew = Gold + HN T). Although we have restricted
ourselves to momenta that have Q reducing to @ in the unperturbed case, we have some freedom in deciding how
(@=1Q) transforms. Therefore, for the combined coordinate and gauge transformation of the radiation distribution
function for scalar and tensor perturbations we have

A = AS L FENT + GGV INT + |In 7(6_19)“‘” (S)
tnew told (6,71 Q)old )
_ (T)
T T (a IQ)new
A=Al + {ln (m)] . (B27)

For the most common choice for 2, namely @ = a, we see that, as expected, the angle average of 4A§S) transforms
as a density perturbation and the first moment with respect to ¢’ transforms as a velocity, while all higher moments,
including that for the anisotropic stress, are gauge invariant. And AET) is gauge invariant. Looking at eq. (A37), we
see that the following quantity is gauge invariant,
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AP — g, -l v, = AR (B28)

as are many other combinations. Equation (B28) relates the distribution function in the longitudinal gauge to that
in the synchronous gauge.

A pure momentum gauge transformation with @ 'Quq = 1 and @' Quew = €” gives Apew = Aglg + v. This turns
out to be a more relevant combination for the longitudinal gauge. The synchronous gauge combination is:

A 4 —glo =A 4. (B29)

When we solve the transport equations in the synchronous gauge, it is this quantity which free-streams after the
photons have decoupled [88].

The momentum gauge transformation can be quite decoupled from coordinate transformations: it is worthwhile
to show explicitly the remarkable flexibility that it allows. We can discuss this entirely in terms of a~'Q which we
now allow to be an arbitrary function of ¢, ¢’. In particular, it can be expanded in spherical harmonics to induce the
following transformation:

ln(ailg)new = ln(ailg)old + Z Zm (q01d7 X, T)nm (quld) ) (BSO)
Im
Anew = Aold + Z Z0m (qdd)nm ((j) - (BS]‘)
m

We are therefore allowed to perform gauge transformations on Ay beyond ¢ = 0,1 if we wish, although these are not
connected to coordinate transformations. Indeed, it appears to be possible to use the momentum transformation to
completely remove the distribution function perturbation. Of course, tensor, octopole and higher multipoles in the
momentum gauge transformation modify the transport operator: G;sy transforms as well and if we allow an order ¢
term to appear in A, the ¢79;A; term in the transport operator will induce a term of order £+ 1 in ¢ in G;sy. Since
Gisw and the Compton source function have terms that are at most quadratic in ¢, it would seem wise not to induce
terms cubic and higher order in ¢. This restricts the class of momentum transformations on A; to have only ¢ =0,1
terms. Consider how we would get the combination eq. (B29) in the synchronous gauge: we would make a pure mo-
mentum gauge transformation, In(a=1Q)ew = 1 — ¢/07¢. In practice one doesn’t usually think of it this way. Rather
one takes the transport operator and G,sw and shuffles terms from the right-hand side to the left-hand side if it looks
convenient to do so. That is how we decided that the combination Ay + 1) — /97t was useful computationally [88].

If we change the momentum variables for one species, but not another, then the interpretation becomes more
complicated. For example, we should require that such physically meaningful quantities as the entropy per baryon
perturbation %67 — dp and the relative velocity v, — vp be gauge invariant under the combination of spacetime and
momentum coordinate changes. However, all species present will have distribution functions, and they can all be
transformed. Thus, for example, just as the photon density transforms to &, + 4v under a='Q = e¥, so the baryon
density transforms to dp + 3v.

For the flat unperturbed case, we can do a Fourier expansion of the distribution function and the Sachs—Wolfe
source. In the frame in which k is taken to be along the 3-axis and (8, ¢) are the polar angles, the Sachs—Wolfe source
terms under the standard momentum gauge choice are

(Q = a) scalar: gﬁﬁ@v = —ikpv — ¢ — 12k2a ", , p==k-q, (B32)
tensor: ggav = —%(ji(jjhz;T
= —(1— 1) (G153 cos(20) + Gl&y) sin(20) )
G = Lhirey, hyryy = S —has), Bz = hus. (B33)

There is of course no effect on the polarization components. Under a further pure momentum transformation, the
distribution function and Sachs—Wolfe scalar terms transform to:

da~ 1w, -
Q=a <]. + v+ GT — q“&-d“l&,) , (B34)
T
AP =AW 1 v+ Lafj" — g9y, (B35)
. 0%,
¢S =v—p+ L1 (B36)

orz "’

while the tensor terms remain invariant.
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APPENDIX C: POLARIZED TRANSPORT FOR THOMSON SCATTERING
1. The polarization matrix and Stokes parameters

The off-diagonal components fs,s,, s2 # s1, of the distribution function contain phase information, describing
the probability amplitude for propagation from a state of spin s; to a state of spin s,. For photons, there are two
polarizations, hence a 2 x 2 “polarization matrix” [257] transverse to § ® § is required for photons in the direction g.
Consider linear polarization. If we expand the polarization distribution function in terms of the basis consisting of
the Pauli matrices 0¥, i = 1,2,3 and the identity ¢(©) = diag(1,1),

(fss') Z Fyo® (C1)

then the 4 real distribution functions f(,) correspond to conventional Stokes parameters, except that they are defined
for distribution functions, as described in section III:

foy=f, foy=fv, foy=Ffv, fe=1Ff.: (C2)

By using polarization vectors one can define an object in the combined position and momentum space, f, which has
properties similar to a spatial tensor of rank two for fixed momentum. Consider a photon travelling in the direction
¢ and two polarization vectors €, 2 perpendicular to ¢ and to each other. The €5 will be functions of ¢ and possibly
of x or k. To make a tensor out of the 2 x 2 matrix, f(H)a(“)/Q, we use the tensor product basis

th%(€1®€1+52®52) EQZ%(51®51_52®62)’

EU— (€1®€2+€2®€1) EV:—%i(€1®€2—€2®61),

AB
ie., E(H) = Z 50(u) EA @EB - (C3)
A,B=1,2
For observations, the basis € 4(§, x, 7) would, for given ¢, be defined with some axis convention on the celestial sphere;

the tensor f = Ei:o fw)€(w) is independent of polarization basis orientation, with f(,) transforming under rotation
of the polarization basis in a complementary way to £,). It is useful to also use a polarization basis whose orientation
is defined with respect to eigenmode variables in the expansion eq. (147). For the flat case, a wavenumber k can be

used to label the eigenfunctions, €4(q, k ,7) can be a function of k independent of x, and a mode expansion can be
made:

f:wa((j)/l)E(“)QkM(x,T)akM +cc. (C4)
Mk

We can also expand f in the basis {e;} of the time hypersurfaces, f = f//e; ® e;, which makes the spatial tensor
aspect manifest. Just as ®) gi; is expanded in scalar, vector, and tensor modes, so can f;;. For scalar perturbations,

we project onto 9;; and I%il%j — %61-]-. As we show below, we can choose g5 L k as well as L G, which implies f((JS) =0

and f‘(/s) = 0. For tensor perturbations, we project using Ei(-TE) of eq. (170):

Mo Y Y5 ~m 5(@ B9 a0 + cc.

(W=tQ.U,V e=+,X k )
(C5)

The quantities f((i;e) or equivalently KEZ; )

in section C6.
Thomson scattering is conservative, hence in the comoving frame of the baryons, the photon energy out equals the
photon energy in. The scattering function that enters the Boltzmann transport equation can then be written as

are the natural mode functions for tensor perturbations. These are evaluated

85231 (X7 7,4, qA) =
- Z (/dﬂé’R52sl;s’2$’l (Xv7-7Q; {j — {j’)fszm (X77-7Q7 {j)

1ol
5152

/dQ RS’251 ;8251 (X,ﬂQ;@’ — qA)fs’Zs’l (X777q7qA’)> .
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Denote the total scattering rate (per unit conformal time) by

TC _TLO'TU/—Z/dQ ngslss(XTqvq_)Q) (06)

5185
and define a phase function by
Ps’zs’l;szsl (X7 T35 qA’ — qA) = 47TTCRS’25’1;5251 (Xv 7,4, qu — qA) (07)

(independent of the magnitude of ¢ for Thompson scattering). Instead of proceeding with the polarization matrix
language, let us go over into the Stokes parameter language, noting that we can expand any symmetric matrix in spin
space in terms of o(#),

o)

5 ) (08)

Ssas1 = S(u)

in particular, we can expand the source function. The phase function P((:)) maps the distribution from a §’-orthogonal
system to a g-orthogonal system. We can then write

S(M) (X7 7,4, d) = _T(;l <f(u) (X7 7,4, qA)

+ / z P((:)) (X7T7 qu - qA)f(V) (X7T7 qqu,)> . (09)

Our goal is therefore to calculate P((:)) , or equivalently the spatial tensor map

3
P= Z P((:))g(p,) ({j7 X, T) ® 6‘(1/) (qu X, T) (C]'O)

w,v=0

expressed in terms of sky orientation (or via mode expansions).
The calculation of P((:)) is done through a sequence of “rotations” of the Stokes parameters which progressively

take us: from (1) a linear polarization basis Ej , perpendicular to the photon direction ¢' before the scattering and
referred to the sky reference frame; through (2) a linear polarization basis €} , in a plane perpendicular to ¢', which,

for convenience also has ¢}, perpendicular to k; into (3) a polarization basis €},2 in a plane L ¢', and also e L ¢,
a natural basis for action on the distribution function by the scattering phase matrix, with the result re-expressed
in terms of a new polarization basis e 2 spanning a plane L § with ez L ¢’; through (4) a linear polarization basis
€1,2 in a plane perpendicular to ¢ with e perpendicular to k as well; and, finally, into (5) a linear polarization basis
E1 2 in a plane perpendicular to ¢ referred to the sky reference frame. The transformations are all designed to get
the distribution function into the correct form for step (3), in which the familiar action of Thomson scattering of
light linearly polarized in a direction perpendicular and parallel to the scattering plane (that spanned by ¢' and §)
can be performed. The bases in steps (2) and (4) are suited to the free transport between scatters, since they are
a natural polarization basis for the independent modes of the system. The rotations (1), (2), (3) leave f(¢',x,7)
invariant and the rotations (3), (4), (5) leave f(g,x, ) invariant, with the entire action of the scatter expressible as
the transformation step from ¢’ to ¢, in terms of the mapping P(§' — §):

P —q) = (1+(q 0)){(e2(q) ® e2(q)) @ (e2(q") @ €3(0))}
+32¢ - 43{(e2(d) @ e2(q) @ (e3(d) @ €1(¢))
+ (e2(9) @ ea(9)) @ (€1 (§) @ e3(4))} - (C11)

This relatively simple expression demonstrates the utility of the f approach, although for it to be usable e/, and
ea must be expressed in terms of the mode-bases ¢/, and €4 and sky-bases E, and Ea, which is where the work
lies. Chandrasekhar [199] develops the Stokes parameter equations in his section on Rayleigh scattering, which has
the same angular scattering dependence as Thomson scattering, by doing these rotations, but using a more classical
language and approach.

The full sequence of operations can be expressed in terms of a total phase tensor
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P = [P0 [P [Pucar] ) [P2)(2) (P11 5] (C12)
acting on the distribution function f(,)(x,7,¢’). However, since the computational method to solve the transport
equation uses the modes of the system, f(;)(k,7,q’), we actually do not need to do step (1).

In linear perturbation theory for an Einstein—deSitter Universe, the modes are plane waves, labelled by the comoving
wavevector k. A linear polarization basis in which &5 is perpendicular to k as well as ¢’ is ( [88], Appendix 5)

kxq b— (%
T =i xe=
(1= (k-g))/>

Thus {e],¢5,¢'} is an othonormal triad for the incoming photon state. For given k and ¢, the incoming Stoke’s
parameters are in this coordinate system. Similarly, {e1,22, ¢} with ¢ replacing ¢’ in eq. (C13) is an appropriate triad
for the outgoing (scattered) photon state, but after the polarizing action of the scatter is taken into account.

In the scattering frame, we define

~ !
o = ) (C13)

ey
(1= ()27

A~ Al

a—q4-4'q b= x{ = qgxq
(1—(g-q)2)rz> 271 (1—(q-q))v*°

Thus, €] = ¢’ x e, and, very importantly, e, is L ¢, i.e., is perpendicular to the scattering plane. By interchanging ¢’
and ¢ we get the outgoing triad {e1, e2,§}, with polarization basis differing from the incoming one by sign changes:

[
€1 =

(C14)

€2 =—€5, e1=(Xey. (C15)

The angular dependence of Thomson scattering on the Stokes parameters is described by the phase tensor

[Pacarl() = [Pecarl(s) = 31+ (a-3)%)/2 ,
[Pacatl(s) = [Pecatl(y) = =21 = (- 1)%)/2,
[Psca,t]gg = [Pscat]gg = %@ qu - (016)

The rest of the components vanish, thanks to the particular e}, e, basis choice with e, perpendicular to the scattering
plane. This gives eq. (C11).

But we wish to use the incoming mode-basis, £} , and outgoing basis €1 2. A rotation about the direction ¢’ by an
angle ' takes €} 5 into €} 5, where

cosz//:&"z'e’z:é"l'e’l: q 49" q . (017)
(L= (G- @)1= (k-q))/?
The effect of the basis change on f(,(k,¢’,7) is encoded in the action of the 2 x 2 rotation matrix
o . ! H !
e = cos( Yo + sin(y')ic® = CO.S(w ) sin(w) (C18)

—sin(y’) cos(¢)

acting on the left of the polarization matrix and its inverse (adjoint) acting on the right:

i o2 —iyp 0@
LR ) e = €7 L (kg m)o ) e
Bl =[P)5) =1,
(B = [P]) = cos(2y),  [B]) = —[B];) =sin(2¢).

The rest of the [Pz]E“) vanish. The rotation by angle ¢ from the triad {e1, ez, ¢} to the triad {1,e2, ¢} gives a phase

tensor [P4]EV; identical in form to [Pz]( ¥)

interchanged.

if we replace ¢’ by —, where cos® is similar to eq. (C17) with ¢ and ¢

We now have all of the ingredients to get P((‘;; = [P4]E§;[ scat] [Pz](,y) To make the form useful, we need to express

G,d, k in some coordinate basis. Let us choose polar coordinates with & the pole and § = (0,¢) and ¢’ = (0',¢"). P
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is then a function of p =k -G, ' =k-¢, and §-§ = V1= 2\/1— 2cos(¢p — ¢') + pp'. The phase tensor can
be expanded in terms of cos(m(¢ — ¢')), sin(m(¢ — ¢')), where m = 0, 1, 2 terms appear. Thus we have a sequence
of products such as cos(m¢) cos(m¢’) and cos(me) sin(me’). The conventional approach is to expand the incoming
distribution function (or equivalently the temperature fluctuation A,)) in cos(m¢') and sin(m¢') terms and the
outgoing distribution in cos(m¢) and sin(me¢) terms; i.e., into scalar and tensor terms, and vector terms denoted by
“vec” which we ignore:

Av(q,k) = A () + vee + AT (u) cos(26) + A () sin(26)
T><)

Ag(g, k) = E? (u)—f—vec—}—A (,u) cos(20) + Ag, sin(2¢)
Ap(d.k) = A () + vee — Aff +<u>sm<2¢>+AT”(u)cos@qzs)
Ay (d,k) = AP (1) + vee — AT () sin(20) + AV (1) cos(26)
(C19)
In the same way, we can also expand the source function S, for f(,) — or G, for A(,), defining

g((f)) (1), g((;/)c (), Q(T+ x) (). The reason for the different sin and cos combinations for A%TH, A(QT+) is that the
phase tensor expansion couples + to + and x to x but not + to x: i.e., the modes are independent. Using the
3-tensor A and the 3-tensor map P, we do not go through this intermediate step of defining AES)H S , but rather

go directly to variables &EZ){"_’X}), which have a further p dependence removed from them. For Agi)) there is no

difference.

To calculate the polarization a detector would observe, we must choose a fixed frame on the sky, say Galactocentric
coordinates. Since —¢ points outward in the radial direction, the two polarization vectors on the sky F;, Fs = E7 X §
form an orthonormal basis for the celestial sphere. An angle ¥k defines the rotation to {e1,c2}. It is the angle
between the fixed F; and k, where k; = k —k - 4q, is, as we look out upon a specific spot on the celestial sphere,
the projection of k onto it. The phase tensor [P5]E:§ is identical in form to [R;]E;; with ¢ replaced by vy which acts
on A, (k,q,7) to give

A(Ahereno)—/dg—kA(kA )
t\q, ) W) = (271_)3 t\K,4q,70),
R d*k . .
Aqg(§,here,now) = / W(AQ(I{,{LT@) cos(2¢k) + Ay sin(2¢y)),
A3k

Ay (g, here,now) = / ( (—Aq(k,q, o) sin(2¢k) + Ay cos(2¢k)),

27)3

N d’k .
Av(q,here,now) Z/WAV(kquTO)'

~ ~

cos(2¢k) = —Es; E»;j 1- (/; - 4)2)

(k —k- qq])elmnqun
(1= (k-

where the summation convention on repeated indices has been used and €;,,, is the completely antisymmetric Levi—
Cevita symbol. Because of the k dependence of the phases implicit in Ag(q,k, ), etc. we cannot do the ¢k
integration in eq. (C20). A strategy for making small angle polarization maps using this formula and knowledge of
the polarization power spectrum is described in [88].

sin(2¢x) = —E2 E»; , (C20)
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2. Scalar perturbation source terms
a. Thomson source functions

For the scalar components of the phase function, we have

[Pslg) = 213 — u? — (1) + 32 ()],
[Psle) = 2[3u2 = 1][(u)? = 1], [Ps](y) = &[u? - 1][3()* — 1],
[Ps](s) = §[3 = 3u® = 3G:)° + 32 (0], [Ps](3) = 3o

with the rest vanishing. In terms of an expansion of Ais) and Ag)

to Legendre polynomials [88]

in angular moments, AEZS) and Agg, with respect

AD vk T) =320+ 1) (=) AFD oy (6, 7) Pl ) (C21)
l
we have
7068 = —AF + A 1Pk ¢ (AL +AS) + A5, (C22)
10Go0 = —AY) + 11— Pk - §) (AL + AS +a8)), (C23)
TCch =0, (C24)
oGy = —AF + 2k gAY (C25)

This equation was derived in the comoving baryon gauge, but the transformation of Ags — A,Eg ) to a frame in which

)
the baryons are moving with velocity V(BS) can be done using eq. (B26), which only modifies eq. (C22):

cGie) = =07 + ARG +4-vE — SR (AL + AG + A%) - (C26)

()

In eq. (C26), the source term proportional to Ay;’ arises because of the angular dependence of Thomson scattering
This quadrupole amsotropy is also responsible for the generation of polarization. The Sachs—Wolfe source term Qt S

) —

is given by eq. (B32); ngU,v gw all vanish. Since A%, = 0 in the early Universe and there is no coupling through

QVSC nor through gravity to excite it, it remains zero and an evolution equation for V is unnecessary. Although
A( )(q, k,7) also vanishes, hence the power spectrum dCUZ)/dlnk =0, A(S) (4,x,7) does not vanish since it appears
when one rotates from the polarization basis fixed by ¢, k to one defined relative to sky coordinates: A% )(q, x,7) is
a random field determined from the nonzero power spectrum %ngz)/dln k. (See eq. (C20).)

b. The moment equations for photons

The moment equations are explicitly (for flat universes, see section C4 for nonflat modifications):

=0 AD + kA = —¢ - Li2a 'y,

S S S
(21 A KA - 380
ki)

= k%l/ — ne.oTa (Aif — %
(-2 AP -kl - 1a)
= 2K 10, — neora 5 (9A%) — ALY — AR,
14 (S) (+1 (S)

A (S
£=3 AEZ)_k(%H T

)> = —n.ora Agf).
(C27)
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The moment equations for the polarization are:
(=0 ALY +kAY) = —neoral(al) — A5 - A%,
(=1 Agl) - k(%Ago) - %A(QSZ) = —neaTaA(Qsl) ,
A (S 2 A (S s
t=2 AL} —k(ZAG) - 2A5))
= —neora (9A%) — Aly) — ALY)

10

A(5) NG) t+1 s \_ (5)

J4 Z 3 AQZ - k(mAQ(Zl) - THAQ(Z+1) = —NeoT0 AQZ .
(C28)

We can rewrite the ¢ = 0,1 photon and neutrino moment equations using photon—fluid potentials:

1oy + ¢+ 3Ka (Vs + 0,) =0, (C29)
a W, — HU,, — (20, +v) + 2k%m = —neor ¥y 45, (C30)
relative velocity potential: ¥, ,p=9¥,., - ¥, 5. (C31)

The photon density, velocity potential, isotropic pressure ((dp),) and anisotropic stress (7 ) perturbations are related
to the low order moments by

0 (p) s) k¥, (S) "
A =2 = T8 AP 2Ty AR 2T €32
to 4 4p7 ’ t1 3a ’ t2 12 ( )
_ ) ; (S) > (8) A8 _ A9 >
Under (2 = a)-gauge transformations, ¢, and ¥, , can change, but m, ,, A,,” for ¢ > 2, At >, = A Ay’ +3ig

l%AEf), and Agg for ¢ 2 0 do not.

c¢. CDM and baryon transport

These are coupled to the equations for the other types of matter present. The equations for cold dark matter and
for the baryons are of the form of eqs. (B10), (B12), with the proper Thomson scattering coupling included in the
latter case.

CDM:  Ldcqm + ¢ + 3k%a H(Tycam + To) =0, (C33)
(_171‘111,7647,1 =v, (034)
baryons: %53 +o+ %k2a_1(\11v73 +%,)=0, (C35)
. 4
Efl‘I/v’B = 1/—|—neon—p—7(fl‘l/v7.,B. (C36)
3pB

Overall momentum conservation of the photon—baryon fluid determines the form of the Compton drag. The baryon
pressure and anisotropic stress from electron—ion viscosity have been neglected. In dealing with the combined photon
plus baryon system, as well as ¥, -, it is useful to consider the equations for the entropy per baryon and for the
momentum current of the combined (v + B)-fluid:

entropy per baryon: §s = %67 —0gB, (C37)
ds, + ka1, .5 =0, (C38)
a 'V, 5 - HysVe 5+ Uy (v+B))

=—(yrc) " @ "Wy + 30, — 2K°m,), (C39)

(Py +Py)Voy + BV

(v + B) vel. potential: ¥.,p = — (C40)
i (p'y + Py + PB)
_ 4p 273 L
pPBA o, [(gp—; + 1) Vo (v+B)| = (p)y — %kgpvﬂ'tﬁ + (%pv +pB)V,
p 4p -
where yp = % = (——7 + 1) . (C41)
Py + Dy +PB 3pB
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The entropy generation equation, eq. (C38), takes the form of a conservation law. The combined momentum current
dissipates only because of the viscous anisotropic stresses in m; , = m; (44 ). In computations, we evolve ¥, , g instead
of ¥, .. We shall see that ¥, - p goes to zero linearly with 7¢ at high redshift (section C3a). For isocurvature baryon
perturbations, d,  is a useful variable to solve for [215], while for isocurvature CDM perturbations, the manifestly

gauge invariant %(5., — Ocam and 0 — dcqm are useful for small k, but not for large k [214].

d. The transport of massless neutrinos

Massless neutrinos and any other freely-streaming extremely relativistic particles (denoted by fer) obey the same
transport equation as for the photons, except there is of course no Thomson scattering source, and usually the spin
(or mixing of neutrino types as in oscillations) does not need to be treated. If they are stable, then, once neutrino
scattering is negligible when the temperature drops below an MeV, only the Sachs—Wolfe source term needs to be
included. The initial conditions at time 7, (assumed to be < 7., i.e., safely in the er-dominated regime) for the
neutrino distribution function are found by expanding it to order k7;, which implies only terms up to ¢ = 3 are
needed, Age, & 2320(26 + 1) (=) Afer o Po(q - k). For example, for adiabatic perturbations in the synchronous gauge
the initial conditions are

Afer(kvuvTi) ~ %6fer7i (ﬂ + 3(]- - 5)#2)(1 - ik/“-i/g) )
Afeno(k77—i) ~ %6)”6772'7
9— 45
60
1-—
6fer i Afer,‘o’/k = -

a_llllv,fer(vai) = 3Afer,1/k =

1-5
10

( ) + 9pfer tot(Tz)

Py(7i) + 19D ser,tot(1:)

6fer,i Ti,

B

6ET1 (8]
70 CferaTi

Afer2—]_k Tt,fer = — Q=+

8= (C42)
Here pfer tot(7:) is the total density of extremely relativistic particles that are freely streaming at time 7;. For three
relativistic neutrino species, frer ot (7:)/ By (1) = 3 x 2 x (7/16) x (4/11)*/® = 0.6813 and 8 = 0.3984. The starting
time is assumed to be < 7.4, i.e., safely in the er-dominated regime. These initial conditions contrast with those for
the tightly coupled photons: with 7¢(7;) & 0, we have Ay 0 = 1674, Yoypi # 0, a 1, ~a 'V, g &~ 56,7,
and A 40~ 0 for € > 2. As well, 6, ~ 0, hence dp; ~ 34, ;. For CDM, the defining condition of the synchronous
gauge is W, c4m = 0, and the density perturbation starts off the same as that for baryons, dcam,; = 36 . The initial
conditions for the metric variables in this gauge are ¢ = —185, ;7,, k?a='¥, = —3(1 — ﬁ)éwr 1. (The initial

2
conditions for the relativistic neutrinos follow from expanding the past-history integration, eq. (C44) given below.)

e. Hot and warm dark matter transport
For scalar perturbations and hot or warm dark matter
Andm = (Ghdm sw + Ghdm curv) » (C43)

ban ? q a= n —
ghdmsw_—Z;Q'kV—so—(q'k)% ", gt = VP +mPa

Q\|2\

Or [Andam] + iqinkd k

It is the semi-relativistic stage, when ¢/¢™ is not simply unity or ¢/(ma), that creates the difficulty. Thus, it is
perhaps worthwhile to make a brief aside on the numerical methods used in [134,2,232,252,258,254,259-261] to solve
collisionless damping equations for semi-relativistic particles. Just as for photons, a hierarchy of moment equations
can be written for Apgm ¢, Awdm,e- For massless neutrinos, the moment expansion became our preferred method in
[134]. For hot and warm dark matter, the number of equations to be solved is the product of the number of multipoles
that are being followed times the number of momentum groups, which then must be summed over with appropriate
weights to get the neutrino stress—energy tensor for the source side of Einstein’s equations. In [194], we described
an efficient Gauss-Legendre integration method using as the integration variable g, where dg = —(xdf/0x) 2 dx,
x = q/(@Tham), which gives all momentum groups significant weights in the energy group sum: 24 groups give accurate
results. The moment expansion with truncation is called the “P-N" method, and it requires many moments to give
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accurate results amd so is expensive. However, with a a suitable boundary condition in ¢ space, Lithwick and I [260]
showed that high precision can be achieved with just 20 moments for high k& and 10 moments for low £, a very modest
numerical cost. One can also lower the number of multipoles to 2 in the very nonrelativistic regime. This seems to
be the best approach to this problem now [259-261]. Another method is to discretize the BTE in angle as well as
energy, which reduces the problem to a set of ODEs with total number equal to the number of momentum groups
times the number of angular bins. Durrer [258] used this “S-N” method to solve for massive neutrino transport.

In Bond and Szalay [194] and subsequent work on hot and hot/cold models [134,232,2], we adopted a history-
integration method. Since this is very different than the moment approach I shall discuss it in a little detail. We
are not interested in the detailed angular distribution of neutrinos as we are for photons, but only in the density,
pressure, velocity, anisotropic stress and the action these have upon the metric variables. The transport equation can
be integrated and low order moments taken, which expresses the result in terms of momentum integrals of spherical
Bessel functions with momentum-dependent arguments:

Ah,dm,l (Q7 kv T) = thml (Q7 kv T) - / dT,{Qb(kv T’)jZ (kAW)

2UC+1) -1 |
@i-1)i 1) kA
(e+1)(+2)
20+ 1)(20+3)

q" , (2 (+1
- k; v(k, ') <m]z—1(kﬁﬁ) - m]ﬁ—i-l(kAn)) } ,

+ k2a_1‘lfg(k,7')<

(¢ 1)

— 5y o2 (FAn) —

20—1)(20+1) ”“(Mn))

(C44)

An = 77(an) - U(q,T'), where 77(qu) = / dr q
0

ﬁ:/TdTL (qm>—M =1.2
b - 2 r b - ) VAR
0 /<q>2 + m2a2 fq dqf
(q) 7Ca . 34
- = — = 3.151 fermions, = —— = 2.701 bosons.
alhgm  2C3 (3

The explicit numbers for the average momenta assume unperturbed f=(e?” @) 4 1)~ distributions for the light
fermions and bosons. Recall that for light neutrinos aTy,, = 1.95 K. The Dhgm,e(q, k, 7) describe the evolution of the
initial conditions. For example, in the synchronous gauge for an adiabatic mode we have v = 0 and [194]

Dham,o(a, k. 7) = 20ham (¢, k, 73) [Jo(kAm:) — 2(1 — B)j2(kAns)]

9— .
Dhiam,1(g, k,7) = %%dm(q,k,ﬁ)[ ﬁ(]l(kAUi)

T Yhrjo(kAn)) — 8(1— mjgacAm)} ,
An; =n(q,7) —n(g, 7). (C45)

The complication in this equation (C44) is the integral over past time 7’ of the metric variables, turning the metric
ODEs into integro-differential equations, not by itself a great numerical problem, but for speed some care is needed
to efficiently yet fully sample the past history. In [260] we show adaptive (Romberg) integration makes this method
competitive in accuracy and numerical cost with the moment method. Even with less efficient sampling, the speedup
in the [134] neutrino code, which was also applied to hot/cold hybrid models in [2,232], was considerable. Past-history
approaches are now also being used to great advantage for rapid computation of A, for the radiation [305]. The
Sachs-Wolfe metric part of this is similar to eq. (C44), except the optical depth exp[—(¢] enters in the obvious way.

The Compton terms associated with the source gt(é) have similar j; expansions, but now the low order moments of
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AES) enter into the integral. One of the features of the past-history method is that one does not have to calculate

A( z) at every (, whereas this is necessary because of the way the equations are coupled for the moment method.

For the hot or warm dark matter, one can also save by shifting into P — 1 equations once the particles are strongly
nonrelativistic and the wavenumber is much below the Jeans length, kjpim(a) = (47Gy ppra? /057 a2y~ a2,
where c; pam ~ a~! is the adiabatic sound speed. I shall sketch this since it exercises some of the equations derlved
earlier. The energy and momentum conservation laws for hdm, eqs. (B8), (B9) with no source terms, Spgm = 0,
are generally valid of course, but to close off the equations, a model is required for the pressure fluctuation (dp)ndm
and the anisotropic stress m; p4m. This relation is complex because of collisionless damping, but at late times the
hdm obeys an equation similar to cdm. To roughly model residual effects of the random velocity dispersion, we can
introduce fudge factors akin to variable Eddington factors to close off the hierarchy:

(0P)ham = Cp hdmPhdmOndm ,
—2 —
(2 OV 4+ 1 (3)3)7& hdm = Cr, hdmOhdm,
Onam + 3¢ + K2a~ (¥, hdm + ¥o) + 3H(Cp hdm — 1)%C§7hdm5hdm =0,

a Uy ham = v+ (Cp hdm + Cry hdm) ¢ 205 hdm5hdm )

. . 3 Phdm 5 (4%
“adiabatic sound” speed: ¢? =- =_ — _
P Shdm =3 pdm 3 3m?, a?

ohdm (20 1/2 20 v
Cs,hd :( 775273) = 0.85 fermions, < <5<3> = 0.89 bosons;

@ i 2702 27¢2

M hdm @

P —1 eqgs. are used for cg pgm(a) < TOLyp,, k < TOL; kjpam(a),

and (Cp pdam + Cr, hdam) is set to 5/3. (C46)

The fudge factor is arbitrary: the 5/3 choice is arranged so that it is the adiabatic sound speed, ¢ pam, rather
than the isothermal sound speed, because compressing neutrinos that are gravitationally bound would be better
approximated this way (The Riemann eta and zeta values are 15, (;.) The pdV term on the neutrino energy density,
~ H(Cpham = 1) ,4Ohdm, is not important. Although one could get more sophisticated by better modelling
Cp ham, Ct,hdm and thus the damping (see [299] for a nice nr analytic model of neutrino-damping), it is better to deal
with the damping by the full past-history integration or with a hierarchy of moments. Thus the tolerance factors are
chosen to be quite conservative. The “very nonrelativistic” tolerance factor, TOL,,,, should be quite small (< 0.05)
and the Jeans tolerance factor, TOL;, should be at most a tenth.

3. Numerically useful regimes for scalar perturbations
a. Tight-coupling, shear viscosity and thermal diffusion

Tight coupling equations adequately approximate the hierarchy prior to a (k-dependent) redshift z;.(k). These are
obtained by first developing a two-fluid treatment of the photon—baryon interaction, which is adequate provided the
Compton timescale 7¢ is short compared with all other timescales in the problem, in particular, the light-crossing
time across half a wavelength 7k~!, and the Hubble time at that epoch. In the [134,88] code, we choose z;. to be at
least 2000, and also required that k7c < 0.01 and Haro < 0.01 to remain in tight coupling: the results are insensitive
to considerable relaxation of this criterion.

Two-fluid equations are obtained from the infinite hierarchy of moment equations (eq. C27) by setting Ag ) to zero

(S)

in the ¢ = 2 equation, thereby truncating the hierarchy, and neglecting Atz . The polarization is also assumed to

change quickly enough so that AL 0o and AQ 5 are in the steady state found by setting the right-hand side of the £ =0
and ¢ = 2 equations to zero:

AG)

S S S
Sh=3AE), AL =-1al). (C47)

Thus, the ¢ = 2 equation fixes the anisotropic stress (total quadrupole anisotropy):

Loy =k 208 = 2 e, + 0,) (C48)
157,
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4 py
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Identifying this result with the form of eq. (A13) for scalar perturbations gives the photon’s shear viscosity 7,. The
photon kinematic viscosity is 1, /(py + py), hence is (5f,) tarc. Weinberg’s classic text [263,264] gives the f, =1
result. (He restricted himself to the approximation that Compton scattering was angle and polarization independent.)
The bulk viscosity for photons vanishes. To determine the thermal diffusion coefficient, we must identify terms in these
equations with the defining relation for k., eq. (A13), which involves the fluid acceleration as well as the temperature
gradient. The temperature gradient is a projected one, so that it has no component in the direction of the fluid’s
velocity U i.e., it reduces to a spatial gradient in the fluid’s comoving frame. In the frame defined by the time-surface
velocity e%, it picks up a time component: J_’(’U)I (WVy[InT] + Awy) is G)V;[InT] + U"e,[U;]. For scalar photon

perturbations, this reduces to (3)V1[i(5., + HY, . ]; thus,
(S = =k Ty (3)VI(%67 + AV, +v—a ')

defines the combination we are looking for. With appropriate multiplication by p, to relate to the energy conservation
equation, we get Weinberg’s [264] result for x-: the photon entropy per unit volume times 7¢. Of course, it is unaffected
by f, which arises in the anisotropic shear stress. Indeed, the potential for (J(¢), )z is just 27, (V. 5+ (@1c) "t £k me ),
i.e., basically ¥, g, but with the anisotropic stress contribution to it removed.

The two-fluid equations are obtained from the ¢ = 0 and ¢ = 1 equations, and the baryon mass and momentum
conservation equations. They are eqs. (C35), (C36), (C29) and the ¥, - p equation, (C39), with 7 , substituted into
it. Alternatively one can use the 557 and \i/v,(7+ B) equations instead of the §p and \ilv, B equations.

The tight coupling equations are a one-fluid (v + B) approximation in which the two-fluid character is encoded in
diffusion and viscosity coeflicients. They are obtained by creating a “constitutive relation” for ¥, ,p by expanding
ypTca "' W, B in eq. (C39) in powers of yp7c. Even if one is only interested in first order ¢ effects in the evolution
equations, the expansion of ¥, ,p must go to quadratic order:

__ 4 __
a 1\I]v77B = _yBk27'(27 15f,,a 1(\I]v73 +¥,)
+ yBTC(%(Sy + H\IJMB) [1 — (3 —YB +pe)yBTch_L]
+yp7é((¢+ 1)(Ha)*a 'V, 5 + $k*a 'V, g+ a(dH)), (C49)
. . . . N~ 3 2 _
(v + B) kinematic shear viscosity: = ——"— = —c? aro ,
tpy+op 5y S0P
(v + B) sound damping rate: I' = lc‘z_1k2c2 B Te =l + BplyB ,
2 s(y+B) 5f,  4p,
din(Ha
where ¢ = —M, pe = —dInY./dIna.
dlna

The term in @' ¥, g of order yp7é is from the shear viscosity, while the yp7c and (yp7c)? terms together are the
thermal diffusion contributions (the nonnegligible (yp7c)? terms come from the fluid acceleration which enters the
thermal diffusion expression). Three tight coupling equations are then to be solved: for entropy generation, 557, and
for (v + B) mass and momentum conservation. In practice, we solve the 5., equation and the ‘i/v7B equation, (C36),
instead of (C40).

We saw in section V B 1 that the transfer equation can be recast in terms of Tcﬁt, with 7¢ the Compton trans-
parency, and leading sources Vcigy, —§' OV, Voa~'¥, p, and the integrated Sachs-Wolfe term. Because the source
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term Cjt(g‘),v (eq. (B34)) vanishes if the gravitational potential is constant, it is sometimes useful to regroup the ¢ = 0,1
photon transport equations, and the 2-fluid and tight-coupling equations following from it, to exploit this in searching
for analytic solutions:

L0.[0,] + th*a~" 0, = G5y (C50)
87[a71@v77] + %57 + %k%’tﬂ = —n.or¥, B.

(To put all density and velocity perturbations on the same footing, we should also transform the momenta of baryons,
massive and massless neutrinos, cold, warm and hot dark matter to ¢, which yields gauge-invariant quantities; e.g.,
10 =10p+v+0.[a'V,], ¥y =V, +V,.)

A WKB analysis of these equations gives the usual damped oscillation behavior, e.g., [130,264,263,8]. For a mode
of wavenumber k, we have

%gw o (1= yp)'/* o i [ heciyamdr o~ [Tadr

358
K 4py
diffusion. (Without the acceleration correction, ¥, -, in eq. (C49), the correct yp multiplier in the diffusion term
of the damping rate is not obtained.) The Silk damping scale factor op defined in [2] is related to I' by 0%, =
(kTgec) 2 [7*“Tadr. The integrand ~ aP<T°/2dlna is a very steeply rising function, so to truncate the integral at
precisely age. (defined by eq. (71)) will provide only a rough estimation of the overall factor; assuming the region near
decoupling dominates so we take pe = pe dec, Which is also a crude approximation,

F ! (1+ 15f,05y5/(160))
D15 (e + )pe +2)  (L+3p5/(4p))

With f, = 3/4 and 7 S pe,dec S 12 (from fig. 3(c)), we have 0.02 $ op < 0.03 in the small Qp limit. For the low
g values inferred from nucleosynthesis, the shear viscosity is by far the dominant damping term, and op o f; 1/2,
the inclusion of polarization therefore results in a 10% increase in op over the value that is obtained if polarization
is not included. Thus, apart from the intrinsic interest in polarization [265,134,88], it is clearly important to include
it because of the enhanced damping.

The photon—baryon fluid equations are coupled to those for CDM, the Boltzmann equations for massless neutrinos
and massive neutrinos or warm dark matter if applicable, and the metric equations to obtain ¥, and ¢. In a typical
run, we begin evolution when the waves are far outside the horizon and also in the relativistic dominated regime
(so the initial conditions can be integrated analytically). For the photons and baryons, we start off with the tight
coupling equations. For massless neutrinos. we solve for typically 40 moments, and shut them off once the energy
density becomes negligible. After z;.(k), we solve the full moment hierarchy equations up to some ¢4, (7), which we
increase according to an algorithm based on a monitor of the radiation power in high ¢-modes (¢,,,. scales with kr.)
Special care must be taken with the computational procedure and time-stepping through recombination. We either
integrate the full equations forward to the present — which can often mean we are just generating Bessel functions by
ODE solvers, not the most straightforward nor accurate method, or, for many models and wavenumbers, we can do
this more accurately in a single step using free-streaming equations. Before turning to these, it is worthwhile to note
how well one can do with just two fluid or tight coupling equations.

Two-fluid and tight coupling equations dominated theoretical explorations of the sixties, seventies and even into
the eighties, with the notable exception of the expansion of the transport equation in angular bins by Peebles and Yu
[130] and unpublished earlier work using a moment expansion by Bardeen. For example, among others, [266,267,143]
used two-fluid models to calculate transfer functions for matter, for which it is often quite accurate, and to estimate
CMB anisotropies, which Seljak [143] has recently shown to come reasonably close to a full transport solution.
Tight coupling equations have not only been used to begin full transport calculations when the equations are very
stiff. They have also been used successfully in calculating transfer functions, estimating Silk damping by WKB
solutions for baryon-dominated models, and have also been extensively used to make estimates for Gy, G; used in
the approximate equations of section V A, e.g., [131,2,268-270]. Keeping only the tight coupling equations to lowest
order in 7¢ has a solution which can be expressed in terms of hypergeometric functions [268] plus a special solution
of the inhomogeneous equation driven by the metric variables. Since hypergeometric functions are not very useful for
calculations, searching for WKB solutions is usually more profitable. In [2], I used the approximation of (1) tiny pg,
(2) a constant gravitational potential v;, through photon decoupling, a limiting case for CDM-dominated universes,
to elucidate the role that the Sachs—Wolfe effect, electron bulk flows and photon compression had on the development
of anisotropy in both adiabatic and isocurvature models. Doroshkevich, Starobinsky and collaborators included finite

(if metric terms are ignored). The 4/(5f,) is from viscous shear, while the smaller yp part is due to the thermal

(C51)
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pp effects. None of our results could be viewed as particularly accurate, especially at high ¢. Hu and Sugiyama [270]
explicitly included models for the metric variables in the finite but small pp cases and showed that one can use the
Go, G1 results to get the spectra even at high ¢ to within about 10% accuracy. Of course, if back action of the photon
and baryons upon the metric variables becomes important, this will not work so well. These semi-analytical methods
still require computation of Bessel functions to large order to get the C;’s, but this is quite fast. However, with current
computing power, full Boltzmann transport calculation of an entire model runs very quickly, measured in hours on
DEC alphas for enough k-mode coverage to get good accuracy.

b. Free-streaming

Either by direct rearrangement of the transfer equation or by the use of inhomogeneous momentum transformations
of the sort used to get eq. (B34), we can rearrange terms in the transport equation to give the modified distribution
and source

A=A +v+0,(@',) - ¢®Va v, —nor¥, .5,
826*1‘110 8neUT‘I!v,VB

or? or
—neorai Po(k - §)(As + Mgz + Ago) — neoral

G + 0 =

> (C52)

The distribution function perturbation ﬁt is gauge invariant. (Taking the n.or¥, yp term into the modified dis-
tribution function is not really important, since it is expected to fall to zero quite quickly after photon decoupling,
especially for normal recombination. With this form, the Thomson source falls even more quickly to zero.) In [88],
we identified this variable, expressed in terms of adH for use when ¢ was negligible, as the one of relevance for
free-streaming (but without the n.or¥, ,p term.)

If the metric source terms become small beyond some time 7, (k) (redshift z;(k)), the radiation free-streams:

Ai(k, G, 7) = e KON A (K, ¢, 7o (k) - (C53)

The numerical output at redshift z,(k) is Ay (k, 7s), including multipoles up t0 Lz (7s), from which ﬁtg can be
constructed. Expanding the plane waves e~ **(7=7<(¥) in terms of Legendre polynomials and j,(k(T — 74 (k)) and
integrating over p gives a direct relation involving Clebsch—Gordon coefficients that allows one to get Age(k, 7o) at
the present time 7y in a single step (Eq. (4.5) of [88]):

Ave(k,m0) =Y (—1)EH =972 (00 0|L0Y* (20 + 1), (hxs) Aer (K, 72) - (C54)
'L

The Clebsch—Gordon coefficients, (¢mt'm'|LM), use standard notation (e.g., deShalit and Feshbach [262]). Note that
|6 —¢'| <L <{+{ and L must be even (odd) if £ + ¢’ is even (odd). The spherical Bessel sum has to go to very high
L, t0 Lyaw(7s) + Linaz(70). The former may be only a few hundred, but the latter will be at least 3000. Spherical
Bessel functions can be evaluated to £ ~ 6000 and higher with accuracy using Miller’s method on a recursion relation.

As we have seen in eq. (A38), v, — ¢ = s — ps. The time derivatives of these terms go to zero when the
anisotropic stress becomes negligible (so v, = —¢,) and the gravitational potential becomes constant: this occurs
for Q,, = Q = 1 universes well after radiation—matter equality 7.,. We would typically take zs(k) ~ 100 for standard
CDM models with normal recombination, although for accuracy long waves are integrated to the present, which is
a trivial computational burden; in reionized models there is persistent damping down to low redshifts so a z; near
or at the present is needed for accuracy for high k as well. (The streaming formula can be modified to take the
dominant damping effect into account.) The potential terms ), — ¢, are nonzero at late times if the universe becomes
vacuum-dominated [110], but these effects have little influence on high k’s, so although for low k’s one evolves the
equations forward to the present, for high k’s one can still use the free-streaming prescription.

As a last aspect of this free-streaming, we described “small-angle” approximations in section V A 4 that have been
used to speed up the evaluation of correlation functions and power spectra in the past; they are not used anymore
for primary anisotropies because the techniques and computing are well in place for doing full Boltzmann transport.
A conceptually useful way of thinking of the free-streaming transport which connects to section V A is to treat the
radiation pattern itself as the source, with a delta function visibility at some time 74:

g(q7 {jvva) = V(T)Et(qquvas) ) V(T) = 6(7— - Ts) :
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With G so defined, one just applies eq. (129) with either Pzz(k; xs,0) being proportional to (|£t(kg,,ug,73)|2>, where

e = Ky /ke and k, = 1/% + kﬁ — a DSZ [131] style approximation — or one isotropizes, with Pz proportional to
WE(k;7s) = 20 ,>,(20+ 1)(|Age(k, 75)|2), a nearly-conserved quantity which is what the second approximation method

exploits. For example, the way it was used in [88] for CDM-type models was to integrate the Boltzmann equations
down to redshift z; = 200 or so, construct W2 (k; 75), then use eq. (129) to get C; (e.g., fig. 7 of [88]).

4. Modifications with mean curvature

In the seventies and eighties, when approximate methods were still being heavily used for anisotropy calculations, it
was usual to free-stream the radiation from an early time when the curvature was unimportant to now using flat model
results, but with an angle-distance relation appropriate for the curved model, eq. (130). The results for open CDM
and isocurvature baryon models were then used to constrain parameters with data from the small and intermediate
angle CMB experiments of the time, e.g., [134,135,215,242].

Now the calculations are being done precisely. When there is mean curvature, one cannot expand in plane waves.

The modes Q¢ are eigenfunctions, —a? (3)72Q1w\4 = k2Qn 1, of the background Laplacian. Although plane waves
are not solutions for curved FRW spaces, spherical waves o Yy, are solutions, with radial wavefunctions Xy (x/dcurv)
which go to spherical Bessel functions j,(ky) when k is large compared with d_;. , and which, like Bessel functions,
can be generated by solving various recursion relations.! This suggests multipole expansions are indeed the way to
try to solve the equations. One wants this to be as close to the flat case as possible. Let us define a polynomial of

order ¢ by poly,(zu,r?) = 2°Py(u). In the curved case, just as in the flat case, we can write?

A (x,7,q) (C58)

= >0+ 1)(Au(k,7) k) (—k)poly, (@' DV a2 DT)Qum(x),
4

¢ — .
. . B)Rag?
KZ,tZHFCZ, Kle_(gz_l)w, Ko=K1 =1.
¢'=0
The A, correspond to AS}QU’V}?Z, Acrye, ete. and G Ra? = £6d2., . The product of #,’s in the denominator helps

to regulate the hierarchy of moment equations in the presence of curvature [302-304]. When we express the hierarchy
equations for neutrinos and photons in terms of Ay(k, 7)/ke,: they remain the same as for the flat case, e.g., egs. (C27),
except an effective source term is added to the right-hand side:

(+100+2)®Ra* (s
A+1 6k Al (€36)

gcurv,l =k

The ®)R corrections to the metric equations must be included as well of course. For numerical solution, one should
rewrite the equations explicitly in terms of A,(k, 7). In that case, the Geyro,¢ is absorbed into the left hand side, with

k¢ terms now appearing in the coupling of A,_1y, Apyq) to Ag:

. 1 (+1
Az —k <THK/[A(Z_1) — THKZ+1A(2+1)> = usual RHS. (057)

IFor open FRW universes the spectrum of the Laplacian has kdeyr» = 1, and the radial functions are

1
(4=
Xre(z) = \/g(kdwm)lf’_ﬁ( T2)(cosh(w))sinh71/2(w), z = x/dcurv,
-3

where the P}(z) are associated Legendre functions (e.g., [133]). .

2This expansion format suggests that we define generalized potentials U;; by A; = El(—)l poly,(§®V;, a* (B)VZ)UM/KLt,
so that Uy, = dillllvﬁ,, Utz = 5K2,¢7t,~/12 and the higher ¢ equations become more like the energy and momentum conservation
laws.
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(Sources in the ¢ = 2 equation also have to be multiplied by k2, and, to the extent they explicitly involve Ay, rewritten
with the correct ¢+ factors.) Because the angle-distance relation for open universes results in the typical ¢ associated
with a given wavenumber being much larger than in a flat universe, being able to free-stream from an early time to the
present is very useful to speed up numerical evaluations, but this can be done efficiently with the recursion relation,
just as in the flat case [304]. The full numerical problem for open universes was first tackled by Mike Wilson [133],
was picked up again by [138], and, more recently, by [244,243,304] for open CDM models and by [286] for texture and
other isocurvature seed models; closed models are addressed in [303,304].

In the absence of knowing what the generation mechanism is for the fluctuations, it is usual in cosmology to consider
“natural” spectral shapes such as power laws. What complicates matters is that the phase space for curved universes

goes like 32d3, where 3 = \/(kd.yuro)? — 1 for scalar perturbations and \/(kd.,,)? — 3 for tensor perturbations, with
the spectrum of 8 going from 0 to co. (In closed models, 8 = \/(kd.u:rv)? + 1 for scalar perturbations, v/ (kdeurv)? + 3
for tensor perturbations, with § > 0 but in this case the # spectrum is discrete.) It is unclear a priori whether the
power law should be in kd ., 3, volume or another combination.

In inflation models with mean curvature, if the generation mechanism is the usual zero point quantum fluctuations
in scalar or gravity wave fields, the equations of sections VIC and VIB5 describe the development. In [244,243], it
was shown that d_.}  (kdeury) 2 (3+ (kdeury)?)? ((Edewry)? —1)~1/? is an inflation-inspired analogue of the k' Harrison—
Zeldovich energy density spectrum for flat Universes. This looks complicated but has a very simple physical interpre-
tation: just as for the flat case, this translates to equal power per decade of wavenumber in the gravitational potential.
Thus, it is advantageous to use power per logarithmic waveband to express this. Actually the scale independence is
in the gauge invariant variables ¢ or ¢com (section VIB 3), which are o« &y = —®p, the gravitational potential, on
large scales. With tilt v, Pe(k) ~ (kdeuro)” is suggested by the absence of curvature effects explicitly appearing
in the equation for scalar field perturbations, eq. (176). The analogue for tensor perturbations for which curvature
corrections explicitly appear in the gravitational wave evolution equation, eq. (169), is Paw (k) ~ ((kdeyrv)? — 2)"¢/2.
In realistic inflation models there are further small corrections near 8 = 0 [304].

5. Lensing

Even though one usually linearizes in the metric variables to treat gravitational lensing in cosmological contexts, in
transport theory it is a nonlinear process: Gipend involves the transverse derivative to the instantaneous direction of
the photon path, —9A;/3¢' F!, where F! is a linear combination of the perturbed metric variables, v, p, ¥,. What
complicates this is that under linear gauge transformations, A; can get new components o< ¢V, where V; involves
metric components; thus terms F'V; of quadratic order in the metric components are induced. The situation can
be clarified by recognizing that, in the absence of interactions with matter, the Boltzmann equation is just a book-
keeping device saying that the mean photon occupation number (or phase space density) is conserved along photon
trajectories and the photon trajectories can be solved with linearized potentials. As expected dg!/dr = F!.

The expressions for the angular power spectrum derived in this section are meant to exercise some of the machinery
and approximations given previously in these appendices. The relationship between C'*"*(w) and C;o7'*"* is equivalent
to an expression given by Seljak [279] whose numerical results are described below; see also [274].

It is customary (e.g., [272]) to work in the longitudinal gauge for lensing, with metric variables v, = ®5 and
¢, — —®y once anisotropic stress can be neglected, so one’s Newtonian insight into the potential ®x can be applied.
In terms of these variables,

0A ] 5
Gtbend = 8qut (0" ="' ¢7)ewslve — oLl (C58)

To relate this to the equations of motion, the expressions in the footnote in section B 1 are evaluated using the Ricci
rotation coefficients eq. (B4). For each geodesic there is an affine parameter A “clocking” changes. We can also
measure changes by transforming to conformal time 7(\) or, as is done here, to comoving radial distance y(A) which
is set to zero (as is A) at the end of the photon trajectory; i.e., here, at xo, and now, at 79. In terms of the photon
momenta ¢/ that gives us the gauge-invariant A, variable (ie., withinQ=Ina+v,,InA=1na+ py), the geodesic
equations are

1 dlng
N dr

1 dg’ Tagy L
N dr = —(5U - quJ)ae*J[VL -]

= énlvL — o1
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dr — A qn
dr — q" e 2L —(vL+eL)
NG - — q, dx/d\—e q. (C59)

(Note that a surface of constant conformal time is not a surface at a fixed comoving distance in this gauge when one
takes the perturbations into account.) The photon position as it meanders back and forth under the action of the
metric obeys

= _q0X7

/ d / ax' (0 — 4 ¢ euslvr — o). (C60)

There are many similarities to the Zeldovich approximation, with the unperturbed photon trajectory r! like the
unperturbed (Lagrangian space) position, with the deviation from that trajectory s’ like the displacement field, and
with the true trajectory x! like the “true” (Eulerian space) position. One can use the same methods for solving
this problem as is used to map from Lagrangian space to Eulerian space in 3D cosmology. A flat Universe has been
assumed. Thus we can use Fourier transform methods to find the solution. For example the correlation function at
time 7y can be expressed in terms of the radiation pattern on the surface a distance ys; away by

C'e"* (@) = (Ay(do, %0, T0) At (Gh, X0, T0))

oy el ixe (em R (k7 k- ) A (kT K- L))
k
(C61)

Here as usual w = §o — ), §s and ¢, are the directions of the photons at xs, and As =s —s'. The ensemble-average
encompasses the statistics of both the radiation pattern at ys and the distribution of the clumped matter lying between
Xs and us which is responsible for the bending. In practice it will be an excellent approximation to assume they are
statistically independent of each other. As a further simpliﬁcation along the lines of the “small angle approximations”
described in section C3b, we replace (Ar(k,7s, k- Gs) A7 (K, 7o, k - ¢1)) by the DSZ approximation, (|A,(k, 7y, i)[?). In
the usual DSZ approximation, i = k- (Gs +¢%)/2. In principle the average lensed polar direction, (s + §%)/2, could be
shifted considerably from the unperturbed direction (go + G)/2 on the sky. Still, as a first approximation we replace
ii by its ensemble average, i = k- (o + G45)/2, invoking [88] who showed that one still gets a good approximation by
going one step beyond DSZ by isotropizing <|£t(k, Ts, 11)|%).

For small angles we can also use a Fourier transform approximation to the power spectrum, utilizing a split into
components transverse and parallel to the average line of sight, which sets the unlensed 2D wavenumber to be

QO = kJ_Xs:

Clens(w) ~ / d2Q0 eiQO"W( —iQo-(s—s")/xs > Cno lens . (062)
(27)2 Q"

As usual, Qo = |Qo| = lo + 3. The statistical average (e~*Q0*A%/X+) is the characteristic function for the random
variable Qg - As, expressible in terms of all of the connected N-point correlation function of it. A subject which
is interesting to explore is the extent to which non-Gaussian features will manifest themselves. To date the papers
have focussed on simplified approximations to get an idea of the magnitude of the effect. The leading term for this
average is a Gaussian approximation, exp[—% >ap QoaQos(AsaAsg)/x?], where A, B = 1,2 for the two components
of the transverse vector. If the separation |w| is small, then Asy can be expanded in terms of the “shear tensor”
eap = —90As4/0(xsw?). (Strain tensor rather than shear tensor is the more appropriate name.) For the basis of the
illustration of this section, we shall just consider the isotropized version of ((Qo - As)?), i.e., $Q3(As - As), which I

define to be lQOs @?x?. In the small angle limit of the isotropized version, 2 = §6ABEAB
We can use Fourier methods to determine the rms displacement. In the p;, = —®y limit, [279,272]
d? 272
L2 & / / D ) AP, (%) (1= x/xe)?. (C63)
0 s

In the small w limit, ¢ is w-independent as expected. For this constant ¢ case, the Fourier transform of the correlation
function can be done explicitly:
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Céens — /dZQO eXp[_|Q - Q0|2/(Q )] Qz Cno -lens ) (064)

m(Q3e?) Q"

Q is the lensed angular wavenumber and Q = ¢ + % The total power is conserved — the logarithmic integrals of
Clens and CZJO'ZE”S are the same — but it is rearranged via the convolution, which is a smoothing in ¢-space. If (w)
is changing slowly with angular scale @, £(Q,') is reasonable to use. Seljak [279] has used realistic gravitational
potential power spectra — linear theory on large scales with a good approximation to nonlinear effects on small scales,
thereby enhancing the lensing effect — to estimate €. A rough fit, covering a range from arcsecond scales up to tens
of arcminutes, is £(f) ~ 0.2 — 0.031n(6/1") for a CDM model with og = 1 and ~ 0.14 — 0.031n(f/1") for a Q4. = 0.8
model. Thus the spread around ¢y, Al/ly ~ ¢, is not very large, ~ 0.2 at a few arcminutes, less for larger scales;
note also that ¢ is changing slowly with 6, with a local power law index < 0.2 for arcminute scales, so the constant
€ approximation is not even too bad. The net effect is that the higher Doppler peaks and troughs are smoothed out
enough so that one must take the lensing effect into account in some happy future where we have an extremely well
determined C,.

6. Tensor perturbation source terms

As we saw in eq. (C5), the natural variables to use for tensor perturbations are &g? V.01 defined by the expansion
~ E )
T Te Te) ik-x
M- ¥ Y S A g e
(W)=t,QU,V e=+,X kK Ew
The polarization basis for k-modes is eq. (C13), with ¢ replacing ¢':

g2 = (—sin ¢, — cos ¢, 0), €1 = (—pcosd, —usin g, /1 — u?). (C65)

To determine ﬁgﬁv@, we need the 2 x 4 transformation matrix of inner products

(E(T{+7X}) ) g{t7U7V7Q}>

ELuv,Qy  E16,u,v,Q)
[ @i ontan oy o
—(1 = p?)sin(2¢) (1 + p?)sin(2¢) —2ucos(24) 0

E(T+) .
7&? = (e1)1(e1)1 — (e2)1(e2)1 — (e1)2(21)2 + (e2)2(g2)2

e.g., o fq

= (14 p*) cos(2¢) . (C66)

Note that there is no A 79 One can also expand the source functions G(T),; ~ and G(T),; sy in modes:

T
G 5w

E(Te) .

& _
= ;(Te) (1) (Te) ikx
- w Z Z Z g (1) {C,SW} W B e ak(re) + ce.

The evaluation of g )SW is simple, with the result eq. (207): 'g'g;& = %h(TG), with the rest vanishing.

To get the Thomson scattering source functions eq. (208) for §‘Tf> is more work. A straightforward route is to
isolate the cos(2(¢ — ¢')), sin(2(¢ — ¢’)) terms in the phase tensor components [P](V) Let us denote the perturbation
variables in an expansion in cos(2¢) and sin(2¢) by Ag)f ), ¢T9) without the tilde. The relation to the tilde

(w){C,sW}>
variables is

AT = (1= AT, ALY = (14 AT, AT = 2R
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and similarly for Q((Z;)SW and Q((Z;)O, which is given by

7'CQ(Te = AETE) +(1- uz)T(Te) , €=+4,X%X, (C67)
Tog( 2 = _A(QTE) - (1 + uz)T(Te) )

1005 = =AY + 20X 1y,

el = -

Trg =3 / B’ [5(1— ())AFY = 51+ (1))AG + 520 Ay ).
Although the derivation of [P]E’: ; was done in the comoving baryon gauge, the tensor terms Ag; ) are all gauge
invariant, so are valid in any gauge.

The classical route is to have the form of [P]E compel one to first transform to variables AET;) which take out the

cos(2¢), sin(2¢), then be compelled by the form of eqs. (C67) to introduce the Polnarev combinations AE ;) Note

that Age) obeys pure damping equations with no source terms, hence remains unexcited by gravitational waves, and
so vanishes identically, a result which follows directly in the tilde representation.

The AEYI})VQ obey the simplified transfer equations

0 ~ € ~ N(Te €
5o AT 4+ VAT = bhirg — 15" AT 415 T (C68)

0

N(Te ~ N(Te —1 A (Te — N(Te N(Te
5807 + - VALY =~ ARG 1 Ty, AQ = AT,

Tiro = %/%du' (21— (W))2A) + LA +6(u)* + ()AL,

Tirg = 5809 + 1A79 + 3R] 4+ 3R — 6AT9 4 AT

As for scalar perturbations, these two transfer equations are solved by expanding in Legendre polynomials, Pp(u) [140].

The moment equations are identical in form to those for scalar perturbations, except that only the ¢ = 0 equations

have nonzero sources for both AE{;)Z Higher moments have only the usual Tglﬁge)

damping and grow only as a
result of the flux from lower ¢’s through the ¢ - l%ﬁg;) propagation term. The ¢ = 0 source feeding the development
of total anisotropy is %h(Tf) + T51T(T€). The polarization growth is fed by Tc_lT(Tf) in the ¢ = 0 equation.

Given h(Te), there is an exact solution for ﬁng) - ﬁge), which is a free-streaming solution including damping
(associated with the Thomson depth (). The polarization is quite small [141], so this is also a good approximation

for ﬁgTﬁ), the solution when the Y () feed is neglected:

~ ~ ~ TO - ~ .

AT = AT AT = / e~ gr e~ Ly 1 (7)), (C69)
0

AEZTC) ~ ﬁnge) _ &8;36) - / e—Ce(m) dez(kX)%h(Te) (1). (C70)
0

Although working with the 4+, x quantities has some advantages, for derivations it is useful to use the expansion

167

AT = -
15

ROV, oo, AT = L (R _ A1) (C71)

7

Here cc denotes complex conjugate. This explicitly shows that an £ = 2 tensor component is the leading term coming

out of gravity waves, whereas for scalar modes there are (gauge dependent) ¢ = 0 and ¢ = 1 terms. We also introduce

TG)

the notation hg = (h(ry) — ihrx))/ V2 for the analogous gravity wave contribution. To go from Eﬁ to multipole

components on the sky and the angular power spectrum, we make use of
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YVZﬂ:Z ,u/v ZD:I:Zm nm()7 p/:];qu

(20 + 1)Y2i2(uv 0) Pe(p)
= 3" VB0 + 1) (2000]¢0) (2 £ 2¢' — (£2)[00) Yersa(11,0)
m

= \/SZZ %\/§¢(2e' V=D +1)( +2)

Oper 42 _9 Ooer N O or—2
QU+ +3) - DEI+3) @ -0+ 1)

gf%m( a, 3,7) denotes the irreducible rotation tensor of rank ¢ for a rotation with Euler angles «, 3,~, with here

o = 0 and 3,7 the polar angles of k. The (¢m¢'m/|LM) are Clebsch-Gordon coefficients [262]. Thus the multipole
coefficients are

at h = Zpﬂm (k)\/ 20+ 1)/ (€ =Dt + 1)(( +2)

AS) ALY Al
2 ) )
{(2@ )i+ i@t Tty ey 3)] e

and the differential angular power spectrum is

~(TG)
dc'} 1 2. k3 A
1 Bl VG [l N PO U S
amr - VA= F) +€)27r2< (1——)(1+2,Z)
ALY A 2>
+2 7 + : . (CT72)
1-9)0+3) (C+g5)0+5)

When we use the brick wall approximation for e=¢¢(7) unity after recombination, zero before, in eq. (C70) we obtain
the Abbott and Wise [224] approximation for tensor mode microwave background fluctuations. Keeping the full
e—<e(7) improves the approximation. Obtaining the power spectra for the polarization is more complex because the

multiplying functions going from A(QTE to the ng) variables are not simply Ya4o.

[1] Ya.B. Zeldovich and R.A. Sunyaev, 1980, Ann. Rev. Astron. Ap. 18, 537; R.A. Sunyaev and Ya.B. Zeldovich, 1981,
Space Physics Reviews 1, 1.

[2] J.R. Bond, 1988, in: W.G. Unruh, ed., The Farly Universe, Proc. NATO Summer School, Vancouver Is., Aug. 1986
(Reidel, Dordrecht).

[3] J.R. Bond, 1989, The formation of cosmic structure, in: A. Astbury et al., eds., Frontiers in Physics — From Colliders
to Cosmology (World Scientific, Singapore) p. 182.

[4] G. Efstathiou, 1990, in: A. Heavens, A. Davies and J. Peacock, eds., Physics of the Early Universe, Scottish Universities
Summer School Publications.

[5] J.R. Bond, 1994, Cosmic Structure Formation and the Background Radiation, in: T. Padmanabhan, ed., Proceedings of
the [IUCAA Dedication Ceremonies, Pune, India, Dec. 28-30, 1992 (Wiley).

[6] J.R. Bond, 1994, Testing inflation with the cosmic background radiation, in: M. Sasaki, ed., Relativistic Cosmology,
Proc. 8th Nishinomiya-Yukawa Memorial Symposium (Academic Press) astro-ph/9406075.

[7] M. White, D. Scott and J. Silk, 1994, Ann. Rev. Astron. Ap. 32, 319.

[8] P.J.E. Peebles, 1993, Principles of Physical Cosmology (Princeton University Press, Princeton, NJ), especially chapters
6 and 24.

[9] R.B. Partridge, 1994, 3 K: The Cosmic Microwave Background Radiation (Cambridge University Press, Cambridge).

[10] The Evolution of the Universe, Dahlem Workshop Report ES 19, ed. G. Borner and S. Gottlober, (John Wiley and Sons).

131



[11] J.C. Mather et al., 1994, Ap. J. Lett. 420, 439.

[12] D.J. Fixsen et al., 1996, Ap. J., submitted.

[13] A.A. Penzias and R.W. Wilson, 1965, Ap. J. 142, 419.

[14] R. Weiss, 1980, Ann. Rev. Astron. Ap. 18, 489.

[15] H.P. Gush, M. Halpern and E. Wishnow, 1990, Phys.Rev. Lett. 65, 537.

[16] T.F. Howell and J.R. Shakeshaft, 1966, Nature 210, 1318; 1967, 216, 753.

[17] A. Kogut, 1991, in: S.S. Holt, C.L. Bennett and V. Trimble, eds., After the First Three Minutes, AIP Conference
Proceedings, Vol. 222 (AIP, New York).

[18] D.G. Johnson and D. Wilkinson, 1987, Ap. J. Lett. 313, L1.

[19] M. Bensadoun et al., 1993, Ap. J. 409, 1.

[20] G. Sironi et al., 1990 Ap. J. 357, 301; 1994, 1995, in Astrophys. Lett. and Comm., 32.

[21] S. Staggs and D. Wilkinson, 1995, in Astrophys. Lett. and Comm., 32.

[22] M. Bersanelli et al., 1995, in Astrophys. Lett. and Comm., 32.

[23] G. Herzberg, 1945, Molecular Spectra and Molecular Structure (Prentice Hall, New York).

[24] P. Thaddeus, 1972, Ann. Rev. Astron. Ap. 10, 305.

[25] D.M. Meyer and M. Jura, 1985, Ap. J. 297, 119.

[26] K. Roth, D.M. Meyer and 1. Hawkins, 1993, Ap. J. Lett. 413, L67.

[27] P. Crane, 1989, Ap. J. 346, 136; 1995, in Astrophys. Lett. and Comm. 32; E. Palazzi, 1990, Ap. J. 357, 14.

[28] D.P. Woody and P.L. Richards, 1981, Ap. J. 248, 18.

[29] H.P. Gush, 1981, Phys. Rev. Lett. 47, 745.

[30] J.B. Peterson, P.L. Richards and T. Timusk, 1985, Phys. Rev. Lett. 55, 332.

[31] T. Matsumoto, S. Hayakawa, H. Matsuo, H. Murakami, S. Sato, A.E. Lange and P.L. Richards, 1988, Ap. J., 329, 567.

[32] R. Sachs and A. Wolfe, 1967, Ap. J. 147, 73.

[33] A. Kompaneets, 1957, Sov. Phys. JETP 4, 730.

[34] Ya.B. Zeldovich and R.A. Sunyaev, 1969, Ap. Space Sci. 4, 301.

[35] R.J. Gould, 1984, Ap. J. 285, 275.

[36] C. Burigana, L. Danese and G. DeZotti, 1991, Astron. Ap. 246, 49.

[37] Yu.E. Lyubarskii and R.A. Sunyaev, 1983, Astron. Ap. 123, 171.

[38] R.A. Windhorst, E.B. Fomalont, R.B. Partridge and J.D. Lowenthal 1993, Ap. J. 405, 498; R.A. Windhorst et al.1995,
Nature 375, 471.

[39] C.G.T. Haslam, H. Stoffel, C.J. Salter, and W.E. Wilson 1982, Astron. Ap. Supp. 47, 1.

[40] P. Reich and W. Reich 1988, Astron. Ap. Supp. 74, 7.

[41] M. Jones 1996, preprint

[42] J.R. Bond, B.J. Carr and C.J. Hogan, 1991, Ap. J. 367, 420 [BCH2].

[43] E.L. Wright et al., 1991, Ap. J. 381, 200.

[44] F.-X. Desert, F. Boulanger and J.L. Puget, 1990, Astron. Ap. 237, 215.

[45] J.L. Puget and A. Leger, 1989, Ann. Rev. Astron. Ap. 27, 161.

[46] J.S. Mathis, W. Rumpl and K.H. Nordsieck, 1977, Ap. J. 217, 425.

[47] W.J. Barnes, 1994, MIT Thesis, A Model of Galactic Dust and Gas from FIRAS.

[4

[4

[

[

[©9

] W. Reach et al., 1995, Ap. J. 451, 188.

=)

] J.-L. Puget et al., 1996, Astron. Ap. 308, L5.

50] J. Dorscher and T. Henning, 1995, Astron. Ap. Reviews 6, 271.

51] S.-H. Kim, P.G. Martin and P.D. Hendry, 1994, Ap. J. 422, 164.

[52] E.L. Wright, 1987, Ap. J. 320, 818.

[63] D. Layzer and R. Hively, 1973, Ap. J. 179, 361

[54] F. Hoyle, 1980, Steady State Cosmology Revisited, (University College Cardiff Press, Cardiff, Wales).

[65] F. Hoyle, G.R. Burbidge and J.V. Narlikar, 1993, Ap. J. 410, 437; 1994, M.N.R.A.S. 267, 1007.

[56] N.C. Rana, 1979, Ap. Space Sci. 66, 173; 1980 Ap. Space Sci. 71, 123; 1981, M.N.R.A.S. 197, 1125.

[57] E.L. Wright, 1982, Ap. J. 255, 401; I. Hawkins and E.L. Wright, 1988, Ap. J. 324, 46.

[68] E.L. Wright et al., 1994, Ap. J. 420, 450.

[59] P. Guhathakurta and B.T. Draine, 1989, Ap. J. 345, 230.

[60] P.J.E. Peebles, 1968, Ap. J. 153, 1.

[61] Ya.B. Zeldovich, V.G. Kurt and R.A. Sunyaev, 1969, Sov. Phys. JETP 28, 146.

[62] D.R. Bates and A. Dalgarno, 1962, in: D.R. Bates, ed., Atomic and Molecular Processes (Academic Press) p. 245.
[63] W.J. Boardman, 1964, Ap. J. Suppl. 9, 185.

[64] D.E. Osterbrock, 1974, Astrophysics of Gaseous Nebulae (Freeman, San Francisco).

[65] J.H. Krolik, 1990, Ap. J. 353, 21.

[66] B.J. Carr, J.R. Bond and W.D. Arnett, 1984, Ap. J. 277, 445.

[67] W.H. Press and P. Schechter, 1974, Ap. J. 187, 425.

[68] J.R. Bond and S. Myers, 1996, The peak-patch picture of cosmic catalogues I: algorithms; II: validation, Ap. J. Supp.

132



103, 1; IV: analytic methods, preprint.

[69] M. Tegmark, J. Silk and A. Blanchard, 1994, Ap. J. 420, 484.

[70] M. Fukugita and M. Kawasaki, 1994, M.N.R.A.S. 269, 563.

[71] P.J.E., Peebles, 1987, Ap. J. 277, L1.

[72] J. Bartlett and A. Stebbins, 1991, Ap. J. 371, 8.

[73] T.P. Walker, G. Steigman, D.N. Schramm, K.A. Olive and H.S. Kang, 1991, Ap. J. 376, 51; M.S. Smith, L.H. Kawano
and R.A. Malaney, 1993, Ap. J. Supp. 85, 219.

[74] S. Ikeuchi, K. Tomisaki and J.P. Ostriker, 1983, Ap. J. 265, 583.

[75] J.J. Levin, K. Freese and D.N. Spergel, 1992, Ap. J. 389, 464.

[76] J.P. Ostriker, C. Thompson and E. Witten, 1986, Phys. Lett. B180, 231.

[77] J.P. Ostriker and C. Thompson, 1987, Ap. J. Lett. 323, L97.

[78] C. Thompson, 1993, private communication.

[79] M.G. Hauser et al., 1991, in: S.S. Holt, C.L. Bennett and V. Trimble, eds., After the First Three Minutes, AIP Conference
Proceedings, Vol. 222, (AIP, New York) p. 161.

[80] M.G. Hauser, 1995, in Unveiling the Cosmic Infrared Background, ed. E. Dwek, AIP Conference Proceedings, (AIP, New
York); 1995, IAU Symposium 168, Ezamining the Big Bang and Diffuse Background Radiations, ed. M. Kafatos and Y.
Kondo (Kluwer, Dordrecht).

[81] J.R. Bond, B.J. Carr and C.J. Hogan, 1986, Ap. J. 306, 428.

[82] J.R. Bond and S. Myers, 1993, in: M. Shull and H. Thronson, eds., The Evolution of Galazies and their Environment,
Proceedings of the Third Teton Summer School, NASA Conference Publication 3190, p. 21.

[83] A. Franceschini, L. Toffolatti, P. Mazzei, L. Danese and G. De Zotti, 1991, Astron. Ap. Suppl. 89, 285; G. De Zotti et
al., 1995, in: Dust, Molecules and Backgrounds: from Laboratory to Space, Planetary and Space Science, in press.

[84] C. Bennett et al., 1994, Ap. J., 436, 423.

[85] C. Bennett et al., 1996, Ap. J. Lett., 464, 1; and 4-year DMR references therein.

[86] A. Kogut et al., 1996, Ap. J., submitted.

[87] G. Hinshaw et al., 1996, Ap. J. Lett., 464, 17.

[88] J.R. Bond and G. Efstathiou, 1987, M.N.R.A.S. 226, 655.

[89] J.R. Bond, 1995, Astrophys. Lett. and Comm., 32, 63.

[90] G.F. Smoot et al., 1992, Ap. J. Lett. 396, L1.

[91] R. Kneissl and G. Smoot, 1993, COBE note 5053.

S. Tanaka et al., 1995, submitted to Ap. J. [ max5].

[101] E.S. Cheng et al., 1993, Ap. J. Lett. 420, L37 [msam2 (g2),msam3 (g3)].

[102] G.S. Tucker et al., 1993, Ap. J. Lett. 419, L45 [ wd2, wd1].

[103] S.M. Gutteriez de la Cruz et al., 1995, Ap. J. 442, 10; S. Hancock et al., 1994, Nature 367, 333; R. Watson et al., 1992,
Nature 357 660 [ ten].

[104] J.E. Ruhl et al., 1995, Ap. J. Lett. 453, L1 [ py].

[105] P. de Bernardis et al., 1994, Ap. J. Lett. 422, L33 [ ar].

[106] M. White and M. Srednicki, 1995, Ap. J. 443, 6.

[107] T.N. Gautier et al., 1992, AJ 103, 1313.

[108] A. Kogut et al., 1996, Ap. J. 460, 1.

[109] E.T. Vishniac, 1987, Ap. J. 322, 597.

[110] L. Kofman and A.A. Starobinsky, 1985, Sov. Astron. Lett. 11, 271.

[111] B. Chaboyer et al., 1996, Science, in press.

[112] S. Coles and N. Kaiser, 1987, M.N.R.A.S., 233, 637.

[113] R. Schaeffer and J. Silk, 1988, Ap. J., 332, 1.

[114] W.K. Gear and C.R. Cunningham, 1995, ASP conference series 75, 215, (Multi-feed Systems for Radio Telescopes, ed.,
D.T. Emerson and J.M. Payne).

[115] S. Church et al., 1993, M.N.R.A.S., in press.

[116] E. Kreysa and A. Chini, 1989, Proc. Particle Astrophysics Workshop, Berkeley (World Scientific, Singapore).

[117] J.R. Bond and S. Myers, 1991, in: D. Cline and R. Peccei, eds., Trends in Astroparticle Physics (World Scientific,
Singapore) 262.

[118] M. Markevitch, G.R. Blumenthal, W. Forman, C. Jones and R.A. Sunyaev, 1992, Ap. J. 395, 326.

133



[119] J.G. Bartlett, A.K. Gooding and D.N Spergel, 1993, Ap. J. 403, 1; J.G. Bartlett and J. Silk, 1994, preprint.

[120] J.R. Bond and S. Myers, 1996, The peak-patch picture of cosmic catalogues I1I: application to cluster X-ray emission
and the SZ effect, Ap. J. Supp. 103, 1.

[121] S. Colanfrancesco and N. Vittorio, 1994, preprint.

[122] R. Scaramella, R. Cen and J.P. Ostriker et al., 1994, Ap. J. 416, 399.

[123] R.B. Partridge and D.T. Wilkinson, 1967, Phys. Rev. Lett. 18, 557.

[124] E.K. Conklin and R.N. Bracewell, 1967, Nature 216, 777.

[125] P.E. Boynton and R.B. Partridge, 1973, Ap. J. 181, 243; R.B. Partridge, 1980, Ap. J. 235, 681.

[126] J.M. Uson and D.T. Wilkinson, 1984, Ap. J. Lett. 277, L1.

[127] F. Melchiorri, B.O. Melchiorri, C. Ceccarelli and L. Pietranera, 1981, Ap. J. Lett. 250, L1.

[128] I.A. Strukov, D.P. Skulachev and A.A. Klypin, 1987, in: J. Audouze and A.S. Szalay, eds., Proceedings I.A.U. Symposium
130 (Reidel, Dordrecht).

[129] R.D. Davies et al., 1987, Nature 326, 462.

[130] P.J.E. Peebles and J.T. Yu, 1970, Ap. J. 162, 815.

[131] A.G. Doroshkevich, Ya.B. Zeldovich and R.A. Sunyaev, 1978, Sov. Astron. 22, 523.

[132] M.L. Wilson and J. Silk, 1981, Ap. J. 243, 14.

[133] M.L. Wilson, 1983, Ap. J. 273, 2.

[134] J.R. Bond and G. Efstathiou, 1984, Ap. J. Lett. 285, L45.

[135] N. Vittorio and J. Silk, 1984, Ap. J. Lett. 285, L39.

[136] N. Vittorio and J. Silk, 1992, Ap. J. Lett. 385, 9.

[137] M. Fukugita, N. Sugiyama and M. Umemura, 1990, Ap. J. 358, 28.

[138] N. Gouda, N. Sugiyama and M. Sasaki, 1991, Prog. Theor. Phys. 85, 1023; 1991, Ap. J. Lett. 327, 49; N. Gouda, M.
Sasaki and Y. Suto, 1989, Ap. J. 341, 557.

[139] K.M. Gorski, R. Stompor and R. Juszkiewicz, 1993, Ap. J. Lett. 410, 1.

[140] R. Crittenden, J.R. Bond., R.L. Davis., G. Efstathiou and P.J. Steinhardt, 1993, Phys. Rev. Lett. 71, 324.

[141] R. Crittenden, R. Davis and P. Steinhardt, 1993, Ap. J. Lett., L13.

[142] S. Dodelson and J. Jubas, 1994, Phys. Rev. Lett. 70, 2224.

[143] U. Seljak, 1994, Ap. J. Lett., in press.

[144] J.R. Bond, J.R. Crittenden, R.L. Davis, G. Efstathiou and P.J. Steinhardt, 1994, Phys. Rev. Lett. 72, 13.

[145] J.R. Bond, R.L. Davis and P.J. Steinhardt, 1995, Astrophys. Lett. and Comm., 32.

[146] J.R. Bond, 1994, Phys. Rev. Lett. 74, 4369.

[147] K. Ganga, L. Page, E. Cheng and S. Meyer, 1994, submitted to Ap. J. Lett..

[148] J.O. Gundersen et al., 1995, Ap. J. Lett., 443, L57 sp94.

[149] C.B. Netterfield, N. Jurosik, L. Page and D. Wilkinson, 1995, Ap. J. Lett. 455, L69. sk94.

[150] C.B. Netterfield, M.J. Devlin, N. Jurosik, L. Page and E.J. Wollack, 1996, Ap. J., submitted sk95.

[151] P.F. Scott et al., 1996, Ap. J. Lett. submitted cat96.

[152] C. Bennett et al., 1996, MAP experiment home page, http://map.gsfc.nasa.gov

[153] M.A. Janssen et al., 1996, preprint, astro-ph/9602009.

[154] M. Bersanelli et al., 1996, COBRAS/SAMBA, The Phase A Study for an ESA M3 Mission, preprint.

[155] J.O. Berger 1985, Statistical Decision Theory and Bayesian Analysis (Springer-Verlag, New York).

[156] C.W. Therrien 1992, Discrete Random Signals in Statistical Signal Processing, ISPN0-13-852112-3 (Prentice Hall).

[157] E.F. Bunn et al., 1994, Ap. J. Lett. 432, 75.

[158] M. White 1996, Phys. Rev. D53, 3011.

[159] L. Knox 1995, Phys. Rev. D 52, 4307.

[160] M. Tegmark, and G. Efstathiou 1996, M.N.R.A.S. in press.

[161] G. Jungman, M. Kamionkowski, A. Kosowsky, and D.N. Spergel, 1996, Phys. Rev. Lett. 76, 1007.

[162] Bond, J.R. and Jaffe, A., 1996, CITA preprint.

[163] J.R. Bond, G. Efstathiou and M. Tegmark, 1996, CITA preprint.

[164] L. Knox 1996, CITA preprint.

[165] D. Coulson, R.G. Crittenden and N.G. Turok, 1994, Phys. Rev. Lett. 73, 2390.

[166] R. Arnowitt, S. Deser and C.W. Misner, 1962, in: L. Witten, ed., Gravitation (Wiley, New York) pp. 227-265.

[167] JW. York, 1979, in: L. Smarr, ed., Sources of Gravitational Radiation (Cambridge University Press, Cambridge) p. 83.

[168] J.W. York, 1983, in: N. Deruelle and T. Piran, eds., Gravitational Radiation, 1982 Les Houches Proceedings (North-
Holland, Amsterdam) p. 175.

[169] E.M. Lifshitz, 1946, JETP Letters 16, 587.

[170] J.M. Bardeen, 1980, Phys. Rev. D 22, 1882.

[171] T. Piran, 1988, in: W.G. Unruh, ed., The Farly Universe, Proc. NATO Summer School, Vancouver Is., Aug. 1986 (Reidel,
Dordrecht).

[172] H. Kodama and M. Sasaki, 1984, Prog. Theor. Phys. Suppl. 78, 1.

[173] H. Kodama and M. Sasaki, 1986, Intern. J. Mod. Phys. A1, 265.

134



[174] J. Bardeen, P.J. Steinhardt and M.S. Turner, 1983, Phys. Rev. D 28, 679.

[175] G. Chibisov and V.F. Mukhanov, 1982, M.N.R.A.S. 200, 535; V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger,
1992, Phys. Rep. 215, 203; D.H. Lyth, 1985, Phys. Rev. D 31, 1792.

[176] V. Mukhanov, 1988, JETP 94, 1.

[177] J.M. Bardeen, 1988, in: A. Zee, ed., Proc. CCAST Symposium on Particle Physics and Cosmology (Gordon and Breach,
New York).

[178] L. Landau and Lifshitz, 1971, Classical Theory of Fields (Addison-Wesley, Reading, MA).

[179] A.A. Starobinski, 1986, in: H.T. de Vega and N. Sanchez, eds., Current Topics in Field Theory, Quantum Gravity, and
Strings, Proc. Meudon and Paris VI, Vol. 246 (Springer Verlag) p. 107.

[180] D.S. Salopek and J.R. Bond, 1990, Phys. Rev. D 42, 3936; 1991, Phys. Rev. D 43, 1005.

[181] D.S. Salopek and J. Stewart, 1994, preprint.

[182] E.D. Stewart and D.H. Lyth, 1993, Phys.Lett. 302B, 171.

[183] A.R. Liddle and M.S. Turner, 1994, Fermilab preprint, astro-ph/9402021 FERMILAB-Pub-93/399-A; E.W. Kolb and
S.L. Vadas, 1994, Fermilab preprint, astro-ph/9403001.

[184] D.H. Lyth and E.D. Stewart, 1992, Phys. Lett. 274B, 168.

[185] D. La and P.J. Steinhardt, 1989, Phys. Rev. Lett. 62, 376.

[186] E.W. Kolb, D.S. Salopek and M.S. Turner, 1990, Phys. Rev. D 42, 3925.

[187] A.D. Linde, 1983, Phys. Lett. B 129, 177.

[188] K. Freese, J.A. Frieman, and A.V. Olinto, 1990, Phys. Rev. Lett. 65, 3233.

[189] F.C. Adams, J.R. Bond, K. Freese, J.A. Frieman and A.V. Olinto, 1993, Phys. Rev. D, 47, 426.

[190] L.A. Kofman and A.D. Linde, 1987, Nucl. Phys. B 282, 555; L.A. Kofman and D.Yu. Pogosyan, 1988, Phys. Lett. 214
B, 508.

[191] D.S. Salopek, J.R. Bond and J.M. Bardeen, 1989, Phys. Rev. D 40, 1753.

[192] J. Ehlers, 1971, in: R. Sachs, ed., General Relativity and Cosmology (Academic Press, New York).

[193] J.M. Stewart, 1971, Non-Equilibrium Relativistic Kinetic Theory, Lecture notes in Physics 10 (Springer Verlag, Berlin).

[194] J.R. Bond and A.S. Szalay, 1983, Ap. J. 277, 443.

[195] C.W. Misner, K.S. Thorne and J.A. Wheeler, 1973, Gravitation (Freeman, San Francisco).

[196] G. Baym and L. Kadanoff, 1962, Quantum Statistical Mechanics (Benjamin).

[197] R.K. Osborn and S. Yip, 1966, The Foundations of Neutron Transport Theory (Gordon and Breach, New York).

[198] U. Fano, 1954, Phys. Rev. 93, 121.

[199] S. Chandrasekhar, 1960, Radiative Transfer (Dover, New York) pp. 1-53.

[200] J.R. Bond, 1987, in: C. Dyer and B. Tupper, eds., General Relativity and Astrophysics, Proc. Second Canadian Conference
on General Relativity (World Scientific, Singapore) pp. 310-314.

[201] M. Jones, 1994, in: F. Durret et al., eds., Clusters of Galawzies, Proc. XXIXth Rencontre de Moriond (Edition Fronti¢res).

[202] Y. Raphaeli 1995, Ann. Rev. Astron. Ap. 33, 541.

[203] M. Birkinshaw, 1990, in: N. Mandolesi and N. Vittorio, eds., The Cosmic Microwave Background: 25 Years Later (Kluwer,
Dordrecht) p. 77.

[204] M. Birkinshaw, J.P. Hughes and K.A. Arnaud, 1991, Ap. J. 379, 466.

[205] M. Birkinshaw and J.P. Hughes, 1993, Ap. J..

[206] T. Herbig, C.R. Lawrence, A.C.S. Readhead and S. Gulkis, 1994, Ap. J. Lett., submitted.

[207] S.T. Myers et al., 1995, preprint.

[208] M. Jones et al., 1993, Nature 365, 320; K. Grainge et al., 1994, M.N.R.A.S., 265, L57.

[209] T.M. Wilbanks, P.A.R. Ade, M.L. Fischer, W.L. Holzapfel and A.E. Lange, 1994, Ap. J. Lett. 427, 75.

[210] H. Liang et al., 1994, preprint.

[211] J.E. Carlstrom, M. Joy and L. Greggo, 1994, preprint.

[212] G. Evrard, 1990, Ap. J. 363, 349.

[213] J.R. Bond and J. Wadsley, 1994, unpublished.

[214] G. Efstathiou and J.R. Bond, 1986, M.N.R.A.S. 218, 103.

[215] G. Efstathiou and J.R. Bond, 1987, M.N.R.A.S. 227, 33P.

[216] N. Kaiser, 1984, Ap. J. 282, 374.

[217] G. Efstathiou, 1988, in: G. Coyne and V. Rubin, eds., Large Scale Motions in the Universe, Proc. Pontifical Academy of
Sciences Study Week # 27 (Princeton University Press, Princeton).

[218] W. Hu, E. Bunn and N. Sugiyama, 1995, Ap. J. Lett. 447, 59.

[219] S. Dodelson and J. Jubas, 1995, Ap. J. 439, 503.

[220] W. Hu, D. Scott, and J. Silk 1994, Phys. Rev. D 49, 648.

[221] J.R. Bond, 1990, in: N. Mandolesi and N. Vittorio, eds., The Cosmic Microwave Background: 25 Years Later, Proceedings
of the L’Aquila Conference (Kluwer, Dordrecht) p. 45.

[222] N. Kaiser and A. Stebbins, 1984, Nature 310, 391.

[223] A.A. Starobinsky, 1979, Pis'ma Zh. Eksp. Teor. Fiz. 30, 719; 1985, Sov. Astron. Lett. 11, 133.

[224] L.F. Abbott and M. Wise, 1984, Nucl. Phys. B 244, 541.

135



[225] D.S. Salopek, 1992, Phys. Rev. Lett. 69, 3602.

[226] T. Souradeep and V. Sahni, 1992, Mod. Phys. Lett. A7, 3541.

[227] R.L. Davis et al., 1992, Phys. Rev. Lett. 69, 1856.

[228] L. Krauss and M. White, 1992, Phys. Rev. Lett. 69, 869; F. Lucchin, S. Matarrese and S. Mollerach, 1992, Ap. J. Lett.
401, 49; A. Liddle and D. Lyth, 1992, Phys. Lett. B 291, 391; J.E. Lidsey and P. Coles, 1992, M.N.R.A.S. 258, 57P.

[229] A.G. Polnarev, 1985, Sov. Astron. 29, 607.

[230] G. Efstathiou, J.R. Bond and S.D.M. White, 1992, M.N.R.A.S. 258, 1P.

[231] J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, 1986, Ap. J. 304, 15.

[232] J.M. Bardeen, J.R. Bond and G. Efstathiou, 1987, Ap. J. 321, 28.

[233] E. Bertschinger et al., 1990, Ap. J. 364, 370.

[234] N. Kaiser et al., 1991, M.N.R.A.S. 252, 1.

[235] K.B. Fisher et al., 1992 Ap. J. 402, 42.

[236] M.S. Vogeley et al., 1992, Ap. J. Lett. 391, L5.

[237] G.D. Dalton et al., 1992, Ap. J. Lett. 390, L1.

[238] R.C. Nichol et al., 1992, M.N.R.A.S. 255, 21p.

[239] C.M. Baugh and G. Efstathiou, 1993, M.N.R.A.S. 265, 145.

[240] S.J. Maddox, G. Efstathiou and W.J. Sutherland, 1990, M.N.R.A.S. 246, 433.

[241] C.A. Collins, R.C. Nichol and S.L. Lumsden, 1992, M.N.R.A.S. 254, 295.

[242] J.R. Bond, G. Efstathiou, P.M. Lubin and P. Meinhold, 1991, Phys. Rev. Lett. 66, 2179.

[243] M. Kamionkowski, B. Ratra, D.N. Spergel and N. Sugiyama, 1994, Ap. J. Lett.426, 57.

[244] B. Ratra and P.J.E. Peebles, 1994, Ap. J. Lett. 432, L5; Phys. Rev. D50, 5232; Phys. Rev. D, in press (PUPT-1444).

[245] J. Yokoyama et al., 1992, Ap. J. Lett. 396, L13.

[246] P.J.E. Peebles, 1983, Ap. J. Lett. 263, L1.

[247] P.J.E. Peebles, 1987, Ap. J. Lett. 277, L1.

[248] R. Cen, N. Gnedin, L. Kofman and J. Ostriker, 1992, Ap. J. 413, 1.

[249] J.A. Peacock and S.J. Dodds, 1994, M.N.R.A.S. 267, 1020.

[250] N. Sugiyama, 1995, preprint.

[251] J.R. Bond and G. Efstathiou, 1991, Phys. Lett. B 379, 440.

[252] J.A. Holtzman, 1989, Ap. J. Supp. 71, 1.

[253] L. Kofman, N. Gnedin and N. Bahcall, 1993, Ap. J. 413, 1.

[254] D.Yu. Pogosyan and A.A. Starobinsky, 1993, M.N.R.A.S. 265, 507; 1994, CITA preprint.

[255] E.L. Wright et al., 1994, submitted to Ap. J..

[256] K. Gorski et al., 1994, Ap. J. Lett. 430, L89.

[257] U. Fano, 1954, Phys. Rev. 93, 121.

[258] R. Durrer, 1989, Astron. Ap. 208, 1.

[259] C.-P. Ma and E. Bertschinger, 1995, Ap. J. 455, 7.

[260] J.R. Bond and Y. Lithwick 1995, preprint.

[261] S. Dodelson, E. Gates, and A. Stebbins, 1995, preprint.

[262] A. deShalit and H. Feshbach, 1974, Theoretical Nuclear Physics, Volume 1: Nuclear Structure (Wiley, New York).

[263] S. Weinberg, 1972, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley,
New York).

[264] S. Weinberg, 1971, Ap. J. 168, 175.

[265] N. Kaiser, 1983, M.N.R.A.S. 202, 1169.

[266] W.H Press and E.T. Vishniac, 1980, Ap. J. 236, 323.

[267] S.A. Bonometto, F. Lucchin and R. Valdarnini, 1984, Astron. Ap. 140, 27.

[268] A.G. Doroshkevich, 1988, Pis’ma Zh. Eksp. Teor. Fiz. 14, 296; F. Atrio-barandela, A.G. Doroshkevich and A.A. Klypin,
1991 Ap. J.378, 1.

[269] A.A. Starobinsky, 1988, Pis’'ma Zh. Eksp. Teor. Fiz. 14, 394.

[270] W. Hu and N. Sugiyama, 1995, Phys. Rev. D 51, 2599.

[271] P. Schneider, J. Ehlers and E.E. Falco, 1992, Gravitational Lenses (Springer Verlag, New York).

[272] N. Kaiser, 1992, Ap. J. 388, 272; 1992, in: New Insights of the Universe, Proc. Valencia Summer School, Sept. 1991.

[273] A. Blanchard and J. Schneider, 1987, Astron. Ap. 184, 1.

[274] S. Cole and G. Efstathiou, 1989, M.N.R.A.S. 239, 195.

[275] K. Tomita and K. Watanabe, 1989, Prog. Theor. Phys. 82, 563.

[276] M. Sasaki, 1989, M.N.R.A.S. 240, 415.

[277] V.E. Linder, 1990, M.N.R.A.S., 243, 362.

[278] L. Cayon, E. Martinez-Gonzalez and J.L. Sanz, 1993, Ap. J. 403, 471; 413, 10.

[279] U. Seljak, 1994, Ap. J. Lett., in press.

[280] M.B. Hindmarsh and T.W.B. Kibble, 1994, Cosmic Strings, SUSX-TP-94-74, IMPERIAL /TP /94-95/5, hep-ph/9411342.

[281] D.P. Bennett, A. Stebbins and F.R. Bouchet, 1992, Ap. J. Lett. 399, 5.

136



[282] B. Allen, R.R. Caldwell, E.P.S. Shellard, A. Stebbins and S. Veeraraghavan, 1994, preprint FERMILAB-Conf-94/197-A,
astro-ph/9407042.

[283] D.P. Bennett and S.H. Rhie, 1993, Ap. J. Lett. 406, 7.

[284] Ue-Li Pen, D.N. Spergel and N. Turok, 1994, Phys. Rev. D 49, 692.

[285] D. Coulson, P. Ferreira, P. Graham and N. Turok, 1994, Nature 368, 27.

[286] Ue-Li Pen and D.N. Spergel, 1994, Phys. Rev. D, in press.

[287] M. Tegmark and E.F. Bunn 1995, Ap. J.455, 1.

[288] M. Tegmark 1996, M.N.R.A.S. in press.

[289] E.F. Bunn, D. Scott and M. White, 1995, Ap. J. Lett. 441, L9; M. White and E.F. Bunn, 1996, Ap. J. 460 1071.

[290] K.M. Gorski, R. Stompor and A.J. Banday, 1995, preprint.

[291] K.M. Gorski, B. Ratra, N. Sugiyama and A.J. Banday, 1995, Ap. J. Lett. 446, 67.

[292] S.D.M. White, G. Efstathiou, and C.S. Frenk, 1995, M.N.R.A.S.292, 371

[293] V.R. Eke, S. Cole, and C.S. Frenk, 1996, preprint, astro-ph/9601088.

[294] M. Strauss, and J. Willick, J. 1995, Phys. Rep. 261, 271

[205] J.A. Willick et al.1996, Ap. J.457, 460.

[296] S. Zaroubi et al.1996, preprint, astro-ph/9603068

[297] T. Kolatt and A. Dekel 1996, preprint, astro-ph/9512132

[298] S. Zaroubi, I. Zehavi, A. Dekel, Y. Hoffmann and T. Kolatt 1996, preprint, astro-ph/9610226

[299] Bertschinger, E. 1996, in “Cosmology and Large Scale Structure”, Les Houches Session LX, August 1993, ed. R. Schaeffer,
Elsevier Science Press

[300] E. Bertschinger, P. Bode, J.R. Bond, D. Coulson, R. Crittenden, S. Dodelson, G. Efstathiou, K. Gorski, W. Hu, L.
Knox, Y. Lithwick, D. Scott, U. Seljak, A. Stebbins, P. Steinhardt, R. Stompor, T. Souradeep, N. Sugiyama, N. Turok,
N. Vittorio, M. White, M. Zaldarriaga 1995, ITP workshop on Cosmic Radiation Backgrounds and the Formation of
Galazies, Santa Barbara [COMBA]

[301] W. Hu, D. Scott, N. Sugiyama and M. White, 1995, Phys. Rev. D 52, 5498.

[302] L. Abbott and R.K. Schaeffer, 1985, Ap. J. 308, 546.

[303] M. White and D. Scott, 1996, Ap. J. 459, 415.

[304] J.R. Bond and T. Souradeep, 1996, preprint.

[305] U. Seljak and M. Zaldarriaga, 1996, preprint.

137



