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1 Outline: The Cosmic Web

The spatial cosmic matter distribution on scales from a few to more than a
hundred Megaparsecs has emerged over the past 30 years through ever more
ambitious redshift survey campaigns. From the first hints of superclustering in
the seventies to the progressively larger and more detailed three-dimensional
maps of interconnected large scale structure that emerged in the eighties,
nineties and especially post-2000, we now have a clear paradigm: galaxies
and mass exist in a wispy weblike spatial arrangement consisting of dense
compact clusters, elongated filaments, and sheetlike walls, amidst large near-
empty void regions, with similar patterns existing at higher redshift, albeit
over smaller scales. The hierarchical nature of this mass distribution, marked
by substructure over a wide range of scales and densities, has been clearly
demonstrated. The large scale structure morphology is indeed that of a Cosmic
Web Bond et al. [18].

Complex macroscopic patterns in nature arise from the action of basic,
often even simple, physical forces and processes. In many physical systems,
the spatial organization of matter is one of the most readily observable mani-
festations of the nonlinear collective actions forming and moulding them. The
richly structured morphologies are a rich source of information on the physical
forces at work and the conditions under which the systems evolved. In many
branches of science the study of geometric patterns has therefore developed
into a major industry for exploring and uncovering the underlying physics
(see e.g., Balbus & Hawley [5]).

The vast Megaparsec cosmic web is one of the most striking examples of
complex geometric patterns found in nature, and certainly the largest in terms
of sheer size. Computer simulations show the observed cellular patterns can
arise naturally through gravitational instability e.g., [62], with the emergent
structure growing from tiny density perturbations and the accompanying tiny
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velocity perturbations generated in the primordial Universe. Supported by
an impressive body of evidence, primarily those of temperature fluctuations
in the cosmic microwave background e.g., [9, 45, 78, 79], the character of
the primordial random density and velocity perturbation field is that of a
homogeneous and isotropic spatial Gaussian process. Such fields of primordial
Gaussian perturbations in the gravitational potential are a natural product
of an early inflationary phase of our Universe.

The early linear phase of pure Gaussian density and velocity perturba-
tions has been understood in great depth. This knowledge has been exploited
extensively to extract from CMB data probing the linear regime half a dozen
cosmological parameters. Notwithstanding these successes, the more advanced
phases of cosmic structure formation are still in need of substantially better
understanding. Observables of the mildly nonlinear regime also offer a wealth
of information, probing a stage when individually distinct features start to
emerge. The anisotropic filamentary and planar structures, the characteris-
tic large underdense void regions and the hierarchical clustering of matter
marking the weblike spatial geometry of the Megaparsec matter distribution
are typical manifestations of weak to moderate nonlinearity. The existence of
the intriguing foamlike network representative of this early nonlinear phase
of evolution was revealed by major campaigns to map the galaxy distribution
on Megaparsec scales while ever larger computer N-body simulations demon-
strated that such matter distributions are indeed typical manifestations of
gravitational instability.

The theoretical understanding of the nature of the emergent web is now
reasonably well developed, but the development of quantitatively accurate
analytic approximations is impeded by the lack of symmetries, strong nonlocal
influences, and the hierarchical nature of the gravitational clustering process,
with many spatial scales simultaneously relevant. Computer simulations are
relied upon to provide the quantitative basis. However, analytic descriptions
provide the physical insight into the complex interplay of emerging structures.
An area that is still developing is the morphological analysis of the observed
and simulated patterns that develop.

This first lecture notes develops the theoretical framework for our under-
standing of the Cosmic Web. We outline the various formalisms that have
been developed to describe the hierarchical nature, the anisotropic geome-
try of its elements, the intrinsic and intimate relationship with clusters of
galaxies, and the predominance of filaments consisting of galaxies, largely in
groups, connecting the clusters. Even though we concentrate on the analytical
framework, we also describe and illustrate the related generic situations on
the basis of computer simulations of cosmic structure formation.

In the accompanying second set of lecture notes (Van de Weygaert &
Bond, 2008), we give an overview of Cosmic Web observations. We focus on
the morphology of the Cosmic Web and the role of voids within establishing
this fundamental aspect of the Megaparsec Universe.
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2 Cosmic Structure Formation: From Primordial
Quantum Noise to the Cosmic Web

The weakly nonlinear Cosmic Web comprises features on scales of tens of
Megaparsecs, in which large structures have not lost memory of the nearly
homogeneous primordial state from which they formed, and provide a direct
link to early Universe physics.

In our exploration of the cosmic web and the development of appropriate
tools towards the analysis of its structure, morphology and dynamics we start
from the the assumption that the cosmic web is traced by a population of
discrete objects, either galaxies in the real observational world or particles
in that of computer simulations. Even though individual dynamically relaxed
galaxies were the most notable features historically, followed by collapsed clus-
ters, the deepest large potential wells in the universe, we will pursue the view
that filaments are basic elements of the cosmic web. Most matter assembles
along the filaments, providing channels along which mass is transported to-
wards the highest density knots within the network, the clusters of galaxies.
Likewise we will emphasize the crucial role of the voids – the large underdense
and expanding regions occupying most of space – in the spatial organization of
the various structural elements in the cosmic web. A goal is the construction
of the continuous density and velocity fields from the initial condtions, or the
reconstruction of these from data, retaining the geometry and morphology of
the weblike structures in all its detail.

2.1 Gravitational Instability

In the gravitational instability scenario, e.g., [62], cosmic structure grows from
primordial density and velocity perturbations. It has long been assumed that
the initial fluctuations were those of a homogeneous and isotropic spatial Gaus-
sian process. There is good evidence for this, most notably from the cosmic
microwave background. Zero point quantum noise is ubiquitous, and in partic-
ular will exist in any fields present in the early universe. In an early period of
cosmic acceleration, these fluctuations and the accompanying perturbations in
geometrical curvature freeze out as the universe inflates, providing the Gaus-
sian proto-web for growth after matter is created and cosmic deceleration
begins. Here we establish the nomenclature and notation for the initial grav-
itational potential and density fields. For the study of the developing cosmic
web at late times, we can ignore relativistic photons and neutrinos, and focus
on gas, dark matter and dark energy.

The formation and molding of structure is fully described by three equa-
tions, the continuity equation, expressing mass conservation, the Euler equa-
tion for accelerations driven by the gravitational force for dark matter and
gas, and pressure forces for the gas, and the Poisson–Newton equation relating
the gravitational potential to the density.
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Fig. 1. The Cosmic Web in a box: a set of each four time slices from the Millennium
simulation of the ΛCDM model. The frames show the projected (dark) matter dis-
tribution in slices of thickness 15 h−1 Mpc, extracted at z = 8.55, z = 5.72, z = 1.39
and z = 0. These redshifts correspond to cosmic times of 600 Myr, 1 Gyr, 4.7 Gyr
and 13.6 Gyr after the Big Bang. The set of four frames have a size 31.25 h−1 Mpc
zooms in on the central cluster. The evolving mass distribution reveals the major
characteristics of gravitational clustering: the formation of an intricate filamentary
web, the hierarchical buildup of ever more massive mass concentrations and the evac-
uation of large underdense voids. Image courtesy of Springel & Virgo consortium,
also see Springel et al. [80]

A general density fluctuation field for a component of the universe with
respect to its cosmic background mass density ρu is defined by

δ(r, t) =
ρ(r) − ρu

ρu
. (1)

Here r is comoving position, with the average expansion factor a(t) of the
universe taken out. Although there are fluctuations in photons, neutrinos,
dark energy, etc., we focus here on only those contributions to the mass which
can cluster once the relativistic particle contribution has become small, valid
for redshifts below 100 or so. A non-zero δ(r, t) generates a corresponding
total peculiar gravitational acceleration g(r) which at any cosmic position r
can be written as the integrated effect of the peculiar gravitational attraction
exerted by all matter fluctuations throughout the Universe,
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g(r, t) = −4πGρ̄m(t)a(t)
∫

dr′ δ(r′, t)
(r − r′)
|r − r′|3 . (2)

Here ρ̄m(t) is the mean density of the mass in the universe which can clus-
ter (dark matter and baryons). The cosmological density parameter Ωm(t) is
defined by ρu, via the relation ΩmH2 = (8πG/3)ρ̄m in terms of the Hubble
parameter H .1 The relation between the density field and gravitational po-
tential Φ is established through the Poisson–Newton equation,

∇2Φ = 4πGρ̄m(t)a(t)2 δ(r, t). (3)

The peculiar gravitational acceleration is related to Φ(r, t) through g =
−∇Φ/a.

The gravitational perturbations g induce corresponding perturbations to
the matter flows, best expressed in terms peculiar velocities v rather than
total velocities u which include the average Hubble expansion:

u(r, t) =
da(t)r

dt
= H(t) a(t)r + v(r, t) . (4)

The equation of motion for these velocity perturbations from the Hubble
expansion is a recasting of the Euler equation:

∂v
∂t

+
ȧ

a
v +

1
a

(v · ∇)v = −1
a
∇Φ . (5)

This is appropriate for a pressureless medium. For gas, an additional − 1
ρa ∇p

appears, along with possible viscosity and other gasdynamical forces. The
mass conservation is expressed by the Continuity equation:

∂δ

∂t
+

1
a
∇ · (1 + δ)v = 0 . (6)

In slightly overdense regions around density peaks, the excess gravitational
attraction slows down the expansion relative to the mean, while underdense
regions expand more rapidly. When a positive density fluctuation becomes
sufficiently overdense it can come to a halt, turn around and start to contract.
As long as pressure forces do not counteract the infall, the overdensity will
grow without bound, assembling more and more matter by accretion from
the surroundings, ultimately fully collapsing in a gravitationally bound and
1 There are other contributions to the density, such as relativistic particles and dark

energy which either have negligible energy density or do not effectively cluster
and so do not contribute to the local peculiar gravitational acceleration, but of
course do contribute to the mean acceleration value, −(4πG/3)(ρ̄ + 3p̄)ax, where
p is the total pressure. It is conventional to parameterize the mean dark energy
pressure by pde = wρde. For the cosmological constant, w = −1. Any w > −1/3
will give an accelerating term, whereas zero or positive pressure terms appropriate
for dark matter and baryons give a deceleration contribution.
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virialized object. By contrast the underdense regions around density minima
expand relative to the background, forming deep voids. Of course, negative δ’s
cannot become too negative, constrained to be δ > −1, so the void structure
is fundamentally different than the cluster structure.

In this way the primordial overdensity field evolves into the collapsed-
peak/void structure we observe, with their precise nature of the collapsed
objects, dwarf galaxies, galaxies, groups, clusters, and determined by the scale,
mass and surroundings of the initial fluctuation.

2.2 Primordial Origins: Gaussian Noise

There are both physical and statistical arguments in favour of the assumption
that the primordial density field in the Universe was a stochastic Gaussian
random field. These were applied before the observational evidence emerged
for this hypothesis.

For over 25 years, the leading paradigm for explaining the large scale
smoothness of the universe has been the inflation hypothesis, in which the
very early Universe went through an accelerated expansion driven by an ef-
fective scalar field dominating the mass-energy. During an extremely rapid
nearly exponential (nearly de Sitter) phase the Universe could have expanded
by at least ∼ e60 within a time measured in Planck time units of 10−43 s, the
details depending upon the specific particle physics realization of the inflation
phenomenon. The inflation ends when preheating occurs, namely when the
coherent inflaton field begins to decelerate and can then decay into particles.
The density and velocity perturbations that finally evolved into the macro-
scopic cosmic structures in the observable Universe were generated during
this phase as quantum zero point fluctuations in the inflaton, with associated
small-amplitude curvature fluctuations since the inflaton carries the domi-
nant source of mass-energy. Most inflation models, even radically different
ones, predict similar properties for the fluctuations: adiabatic or curvature,
Gaussian and nearly scale-invariant (see Sect. 2.2). The Gaussian nature of the
perturbations is a simple consequence of the ground state harmonic oscillator
wave function for the fluctuations (the zero point oscillations). Field inter-
actions do generate calculable small deviations from Gaussianity, but except
in quite contrived cases these are too tiny to effectively nullify the Gaussian
hypothesis. Similarly radical deviations can exist from the simple near-scale-
invariance in rather baroque models, but now these are quite constrained by
the observation of near-scale-invariance in the cosmic microwave background
data.

But even if inflation is not invoked, there was an argument from the Cen-
tral Limit Theorem that Gaussian could still arise if the density field δ(x)
is a superposition of independent stochastic processes, each with their own
(non-Gaussian) probability distribution. The Fourier components δ̂(k) are
defined by
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δ(x) =
∫

dk
(2π)3

δ̂(k) e−ik·x, (7)

where x is comoving position and k is comoving wavenumber, will be inde-
pendent, with random phases. There have been models in which Gaussianity
does not follow, in situations where the primordial structure is created in phase
transitions, e.g. associated with topological entities such as cosmic strings and
domain walls.

Gaussian Random Fields

The statistical nature of a random field f(x) is defined by its set of N -point
joint probabilities. For a Gaussian random field, this takes the simple form:

PN =
exp
[
−1

2

∑N

i=1

∑N

j=1
fi (M−1)ij fj

]

[(2π)N (detM)]1/2

N∏
i=1

dfi (8)

where PN is the probability that the field f has values in the range f(xj) to
f(xj) + df(xj) for each of the j = 1, . . . , N (with N an arbitrary integer and
x1,x2, . . . ,xN arbitrary locations in the field). (We have assumed zero mean
in this expression, as would be the case for δ,g and v.)

The matrix M−1 is the inverse of the N ×N covariance matrix M,

Mij ≡ 〈f(xi)f(xj)〉 = ξ(xi − xj) , (9)

in which the brackets 〈. . . 〉 denote an ensemble average over the probability
distribution. In effect, M is the generalization of the variance σ2 in a one-
dimensional normal distribution. The equation above shows that a Gaussian
distribution is fully specified by the matrix M, whose elements consist of spe-
cific values of the autocorrelation function ξ(r), the Fourier transform of the
power spectrum Pf (k) of the fluctuations f(r),

ξ(r) = ξ(|r|) =
∫

dk
(2π)3

Pf (k)e−ik·r . (10)

Notice that the identity of ξ(r) and ξ(|r)|) is assumed, not required. A homoge-
neous and isotropic Gaussian random field f is statistically fully characterized
by the power spectrum Pf (k).

Power Spectrum of Density Fluctuations

The main agent for formation of structure in the Universe is a gravitation-
ally dominant dark matter constituent of the Universe. Within the currently
most viable cosmology, often called Concordance Cosmology, the dark matter
is taken to be Cold Dark Matter: a species of non-baryonic, dissipationless
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and collisionless matter whose thermal properties are marked by their non-
relativistic peculiar velocity (cold) at the time of radiation-matter equality.
The popular candidate for this, for which a number of ambitious experiments
in deep mines are in place to directly detect it through its very weak non-
gravitational interactions, is the lightest supersymmetric partner of ordinary
fermions, e.g. the neutralino, a scalar field partner of the neutrino, the photino,
the fermionic partner of the photon, or some linear combination of other
partners.

The primordial spectrum Pp(k) of density perturbations in the CDM spec-
trum directly follows from the post-inflation form of the graviational potential
fluctuations through the Poisson–Newton relation, δρ(k)= −k2Φ(k)/(4πGρ̄a2).
Scale-invariant means that there is equal power per decade in the gravi-
tational potential fluctuations, 〈|Φ(k)|2〉d3k/(2π)3 ∼ kn−1d ln k is ∝ d ln k,
where n is a power law index measuring deviation from the scale-invariant
unity. The corresponding form for the initial density power spectrum is
P i

ρ(k) ≡ 〈|δ(k)|2〉 ∝ kn. Current CMB data supports an index n close to
the scale-invariant unity, but slightly deviating from it, n ≈ 0.96 ± 0.02
Kuo et al. [45] and Spergel et al. [79]. This nearly scale invariant nature
is a natural outcome of large classes of inflationary models. The expectation
is that there are at least logarithmic deviations from s constant n, and it
possible to get more radical deviations, as expressed by the running of the
index, dn/d lnk �= 0. (There are hints of running from CMB observations,
−0.06± 0.03 without gravity wave perturbations Kuo et al. [45], −0.04± 0.03
with them included Bond et al. [20].) Even before inflation theory or the data
focussed attention on n nearly one, the scale-invariance was considered a nat-
ural property to assume to avoid a power spectrum with large rises either at
large wavenumbers (n > 1) or small wavenumbers (n > 1), since δ could oth-
erwise exceed unity and nonlinear collapsed structures (e.g. primordial black
holes) could form in the ultra-early universe. Thus n = 1 was recognized as a
possibility from the early seventies, defining the Harrison–Zel’dovich–Peebles
spectrum.

During acceleration Ha increases and what has often been called the
instantaneous horizon over which signals can propagate in a Hubble time,
(Ha)−1 decreases, and wave structure with k/Ha < 1 can no longer commu-
nicate, the fluctuations freeze out at their inflationary values. Once preheat-
ing occurs and radiation and matter some to dominate the energy density,
the universe decelerates, Ha decreases and frozen-in perturbation patterns
can respond to forces associated with their gradients once k goes above Ha.
The combination of gravity and the opposing radiation pressure cause these
sub-horizon fluctuations in radiation and baryon density to respond as sound
waves. Meanwhile, positive fluctuations in the cold dark matter have no pres-
sure forces and can grow, however they must do so in an expanding environ-
ment dominated by radiation which impedes the rate of growth of δ (called
Hubble drag). It is only after the dynamics of cosmic expansion becomes dom-
inated by matter following the matter-radiation equality, at zeq ≈ 3450, when
CDM density perturbations can grow rapidly, impeded only by its own Hubble
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drag to grow at a power law rate ∝ t2/3 rather than exponentially. The evolu-
tionary history of fluctuations of a wavenumber k then depends upon whether
k exceeds Ha in the radiation or matter dominated phase. This is encapsu-
lated in the power spectrum transfer function T (k), defined by the deviation
from the primordial power spectrum shape, PCDM(k) ∝ knT 2(k). Correspond-
ing to the redshift zeq is a characteristic wavenumber scale, kHeq = Ha(zeq).
For a CDM model with vary small baryon content, the transfer function is a
unique function of k/kHeq.

From the early 1980s, much effort has gone into computing the transfer
functions in terms of the material content of the universe, varying amounts of
dark matter, massive neutrinos, baryons, relativistic matter, dark energy, etc.
An example of a much-used numerical fitting formula for the CDM class of
models which is accurate for low baryon density parameters Ωb is that given
by Bardeen et al. [6],

PCDM(k) ∝ kn

[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]
1/2

× [ln (1 + 2.34q)]2

(2.34q)2
,

q = k/Γ , Γ = Ωm,0h exp

{
−Ωb − Ωb

Ωm,0

}

where k = 2π/λ is the wavenumber in units of h Mpc−1 and Γ the shape
parameter. It is indeed a function of k/kHeq, with kHeq ∼ 5Γh Mpc−1 in the
Ωb → 0 limit. The Ωb dependencs approximately accounts for the effect of
baryons in the transfer function Sugiyama [81], although superposed upon
such a T is an oscillation associated with the acoustic oscillations that the
baryon-photon fluid participates in, unlike the CDM.

The corresponding effective power spectrum slope neff(k) of the Cold Dark
Matter spectrum,

neff(k) ≡ d lnP (k)
d ln k

(11)

drops from the primordial value value neff = n in the large scale limit k ↓ 0 to
neff ≈= −3+ (n− 1) modulo logarithmic corrections at high k → ∞, a direct
consequence of the large Hubble drag from radiation, hence slow growth that
the high k fluctuations experience. The density power spectrum per e-folding
in wavenumber is

Pρ(k) = dσ2
ρ/d lnk ≡ 〈|δ(k)|2〉k3/(2π2) ∝ kn+3 .

The power progressively drops from small scales to large, defining the hierar-
chical nature of the power spectrum. (The integrated rms density fluctuations
up to scale k, σρ(k), implicitly defined by (12) is by definition monotonic.)

2.3 Structure Growth

The time evolution of the density perturbation field δ(x, t) can be inferred
from the solution to the three fluid equations. Generally, |δ| grows with time.
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When a cosmic structure reaches virial equilibrium, as in galaxies or clusters,
the physical density is constant, but the overdensity relative to the declining
ρ̄CDM ∝ a−3 background still rises. Once the radiation energy density falls
off after zeq, there is still a long period of growth in the linear regime, de-
fined by density perturbations with δ � 1 and velocity perturbations with
(vtexp/d)2 � 1 (with d the coherence length of the perturbation). For the
early phases of growth, it is useful to expand the perturbations in spatial
eigenmodes of our three evolution equations. These are simply plane waves,
and the Fourier-transformed equations depend only upon k for small δ (mode–
mode k−k′ couplings occur through the nonlinear δv and v ·∇v terms). The
three evolution equations reduce to a single linearized equation for the growth
of density perturbations δ(x, t) e.g.,

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

3
2
Ωm0H

2
0

1
a3 δ (12)

The general solution to this second order partial differential equation is the
sum of a universal growing mode solution D1(t) and a a decaying mode solu-
tion D2(t),

δ(x, t) = D1(t)Δ1(x) + D2(t)Δ2(x) (13)

Because the decaying mode is quickly rendered insignificant in comparison to
the growing mode for practical purposes it is usually sufficient to concentrate
solely on the growing mode solution.

The density growth factor D(t) is dependent upon the cosmological back-
ground: in different FRW Universes the growth of structure will proceed
differently. In a matter-dominated FRW Universe D(t) can be solved fully
analytically, for more general situations the linear growth factor needs to
be evaluated numerically. Ignoring the contribution by radiation, the linear
growth factor D(t) in a Friedmann-Robertson-Walker Universe containing only
matter and a cosmological constant Λ (or equivalent dark energy component),
with current density parameters Ωm,0 and ΩΛ,0, may be computed from the
integral (see Heath [33], Peebles [62], Hamilton [32], Lahav & Suto [49])

D(t) = D(t,Ωm,0,ΩΛ,0) =
5 Ωm,0H

2
0

2
H(a)

∫ a

0

da′

a′3H3(a′)
, (14)

where the linear density growth factor is normalized to unity at the present
epoch, D(t0) = 1. For pure matter-dominated Universes, ΩΛ = 0, one may
derive analytical expressions for D(t) (see Peebles [62]). For Ωm = 1 and no
mean curvature, D = a. For the general situation including a non-zero cosmo-
logical constant, ΩΛ �= 0, the following fitting formula provides a sufficiently
accurate approximation for most purposes [49],
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D(t) ≈ a(t)
5Ω(t)

2
1

Ω(t)4/7 − ΩΛ(t) + [1 + Ωm(t)/2][1 + ΩΛ(t)/70]
, (15)

in which Ω(t) = Ωm(t) + ΩΛ(t).
The accompanying growing mode linear velocity perturbations v(t) are

linearly proportional to the generating peculiar gravitational acceleration g(t),

v =
2 f

3HΩ
g .

The deviation from Einstein de Sitter D = a growth is described by the
dimensionless linear velocity growth factor f = f(Ωm,ΩΛ) encoding how D
runs with respect to a:

f(Ωm,ΩΛ) ≡ a

D

dD
da

(16)

= −1 − Ωm

2
+ ΩΛ +

5Ωm

2
a

D
,

with the implied growth Dv(t) of linear velocity perturbations given by

Dv(t) = aDH f(Ωm,ΩΛ) . (17)

For a matter-dominated Universe with Ωm � 1 Peebles [62] found the famous
approximation,

f(Ωm) ≈ Ω0.6
m . (18)

An extension of this approximation for a Universe with both matter and a
cosmological constant Λ was given by Lahav et al. [48],

f(Ωm,ΩΛ) ≈ Ω0.6
m +

ΩΛ

70

(
1 +

Ωm

2

)
(19)

This form clearly shows that the velocity growth being is mainly determined
by the matter density Ωm and is only (very) weakly dependent on the cos-
mological constant. The latter is to be expected since perturbations in dark
energy are expected to damp when k exceeds Ha rather than grow.

Current estimates of the material content of the Universe for tilted ΛCDM
models from CMB and large scale structure data are Ωm,0 ≈ 0.27 ± 0.03,
ΩΛ,0 ≈ 0.73 ± 0.03 and Ωb ∼ 0.045 [45]. The dark matter to baryon ratio
is ∼ 5, small enough for acoustic oscillations to be evident in the transfer
function, and this effect has now been observed in galaxy redshift surveys.
At early times any matter-dominated FRW Universe evolves as the expansion
factor a(t), D(t) = a(t) ∝ t2/3, as in an Einstein-de Sitter Universe (defined
by Ωm(a) = Ωm,0 = 1, ΩΛ = 0).
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In the Λ-dominated cosmology favored by current cosmological observa-
tions, the universe makes the transition from deceleration to acceleration at

amΛ ≈
(

Ωm,0

2ΩΛ,0

)1/3

. (20)

The vacuum energy density associated with the cosmological constant domi-
nates over the mass density of matter at 21/3amΛ, hence the Hubble parameter
is Λ-dominated and Hubble drag slows the subsequent growth of fluctuations.
With Ωm,0 ≈ 0.27 and ΩΛ,0 ≈ 0.73, this gives zmΛ ≈ 0.7. This freezing out of
growth occurs for linear structures on large scales. In nonlinear high-density
regions, the local gravity is strong enough for the evolution of structure to
continue. As a result, no larger scale weblike patterns will emerge after the
Universe gets into exponential expansion, yet within the confines of the exist-
ing Cosmic Web structures and objects will continue to evolve as clumps of
matter collapse and merge into ever more pronounced and compact halos and
features (see Sect. 2.4).

A nice illustration of the evolution is in Fig. 2, showing how the large scale
Universe changes in a ΛCDM model from z = 8 until the present-day, in a box
of size 65 h−1 Mpc. The time proceeds along the length of the two strips, the
lateral direction is taken along the length of the box. The developing structure
along the two strips shows the emergence of the Megaparsec Cosmic Web out
of the nearly uniform and early Universe. Along the lefthand frame time runs
from z ≈ 8 (bottom) until (top) and in the righthand frame from z ≈ 4 at the
bottom to the present-day at z = 0 (upper righthand frame).

The cosmic mass distribution is marked by cellular patterns whose charac-
teristic size grows is continuously growing and becomes ever more pronounced
up to z ≈ 1.5−2 (centre righthand frame). Clearly recognizable, particular in
the lefthand frame, is the hierarchical buildup of the weblike patterns. Both
filaments and voids are seen to merge with surrounding peers into ever larger
specimen of these features.

Later, as a consequence of the accelerated expansion of the Universe the
large scale structure begins to slow at z ≈ 1.5 − 2.0. As a result the overall
spatial distribution of matter remains basically unchanged. Within the ex-
isting structures the nonlinear evolution does indeed continue: filaments and
clusters remain overdense regions in which gravity continues to mould the
clustering and configuration of matter. It results in a continuing sharpening
of the weblike features in the Megaparsec universe.

2.4 Nonlinear Clustering

Once the gravitational clustering process has progressed beyond the initial
linear growth phase we see the emergence of complex patterns and structures
in the density field. Highly illustrative of the intricacies of the structure for-
mation process is that of the state-of-the-art N-body computer simulation,
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Fig. 2. The development of the large scale Universe from z = 8, after the end of
the Dark Ages, until the present-day in a timeline proceeding along two strips. The
timeline runs from lower lefthand frame (end Dark Ages, z = 8) until z ≈ 4 (top
of lefthand frame), resuming the latter at the bottom of the righthand frame and
running on to the present-day at z = 0 at the upper righthand of that frame. The
cosmic mass distribution is marked by cellular patterns whose characteristic size
grows continuously and becomes ever more pronounced up to z ≈ 1.5 − 2 (centre
righthand frame). As a consequence of the accelerated expansion of the Universe
the large scale structure freezes at that point: the overall distribution of matter
remains basically unchanged, except for the sharpening of the features as a result of
the continuing nonlinear evolution within these features. Image courtesy of Aragón-
Calvo, also see Aragón-Calvo [1]

the Millennium simulation by Springel et al. [80]. Figure 1 shows two sets of
each four time frames out of this massive 1010 particle simulation of a ΛCDM
matter distribution in a 500 h−1 Mpc box. The time frames correspond to red-
shifts z = 8.55, z = 5.72, z = 1.39 and z = 0 (i.e. at epochs 600 Myr, 1 Gyr,



348 R. van de Weygaert and J. R. Bond

4.7 Gyr and 13.6 Gyr after the Big Bang). The earliest time frame is close to
the epoch when the first dwarf galaxies formed. Current estimates show that
the characteristic redshift for reionization of the gaseous IGM by radiation
from the first stars, when the so-called Dark Ages ended, is at zreh = 11.4±2.5
[45]. (Even with 10 billion particles, the web-like structure that actually ex-
ists at z = 8.55 is not evident since the waves that have formed it cannot
be included in such a simulation.) The first set of frames contains the Dark
Matter particle distribution in a 15 h−1 Mpc thick slice of a 125 h−1 Mpc re-
gion centered on the central massive cluster of the simulation. The second set
zooms and illuminates the details of the emergence of the central cluster in a
31.25 h−1 Mpc sized region.

The first set provides a beautiful picture of the unfolding Cosmic Web,
starting from a field of mildly undulating density fluctations towards that of
a pronounced and intricate filigree of filamentary features, dented by dense
compact clumps at the nodes of the network. The second set of frames depict
the evolution of the matter distribution surrounding the central highly dense
and compact cluster. In meticulous detail it shows the formation of the fila-
mentary network connecting into the cluster which are the transport channels
for matter to flow into the cluster. Clearly visible as well is the hierarchical na-
ture in which not only the cluster builds up but also the filamentary network.
At first consisting of a multitude of small scale edges, they quickly merge into
a few massive elongated channels. Equally interesting to see is the fact that
the dark matter distribution is far from homogeneous: a myriad of tiny dense
clumps indicate the presence of the dark halos in which galaxies – or groups
of galaxies – will or have formed.

Large N-body simulations like the Millennium simulation and the many
others currently available all reveal a few “universal” characteristics of the
(mildly) nonlinear cosmic matter distribution. Three key characteristics of
the Megaparsec universe stand out:

• Hierarchical clustering
• Anisotropic & Weblike spatial geometry
• Voids

These basic elements exist at all redshifts, but differ in scale, in fact with
a growing nonlinear wavenumber kNL(z) characterizing the onset of moder-
ate nonlinearity. The linearly-evolving integrated power spectrum defined by
(12), σ2

ρL(k, z) = D2(z)σ2
ρL(k, 0) as a function of redshift. If linear growth

were to prevail, formal nonlinearity would occur when δ(k, z) ∼ 1, namely
at k = kNL(z), where σρL(kNL(z), 0) ≡ D−1(z). Monotonicity of σρL guar-
antees kNL(z) increases with decreasing redshift. The cosmic web pattern is
developed from waves in a band of wavenumbers just below kNL(z), hence
the web-like patterns seen in simulations look somewhat similar at differing
redshifts, except the overall scale changes with increasing kNL. (The relevant



Clusters and the Theory of the Cosmic Web 349

web-band in σρL for the weak to moderate nonlinearity relevant to the web
pattern turns out to be about 0.2–0.7 [18, 19], with higher values associated
with collapsed density peaks). Because ΔσρL/σρL ∝ (neff + 3)Δ ln k in terms
of the effective index of the power spectrum neff , the wavenumber band Δ ln k
associated with σρL/σρL ≈ 1/2 is considerably wider for the flattened spectra
associated with higher redshif: that is more waves belong to the web-band
around kNL, and the filaments tend to be fatter (more ribbon-like) than at
lower redshift [19].

The challenge for any viable analysis tool is to trace, highlight and measure
each of the morphological elements of the cosmic web. Ideally it should be
able to do so without resorting to user-defined parameters or functions, and
without affecting any of the other essential characteristics.

3 Hierarchical Structure Formation

In a simple Einstein-deSitter models of spherical overdense perturbations,
when the linear δL = 1.05, the flow changes from outward, albeit increasingly
lagging the cosmic Hubble flow, to infall, toward complete collapse and virial-
ization by δL = fc ≈ 1.7. If so, a typical 2-sigma density peak associated with
a scale k will collapsed at σρL ≈ fc/2 ∼ 0.8, the (much) rarer 3-sigma density
peaks at σρL ≈ 0.6, hence the collapsed structure band is associated with
σρL ∼> 0.7 which defined the upper bound of the web pattern σρL described in
the last section. A rough relation of characteristic wave number to mass of the
collapsed object is M = (4π/3)ρ̄m(2a/k)3 ≈ 1012Ωm(2k−1/Mpc)3 M� [17].

Thus, as kNL sweeps down from high redshift, it leaves in its wake first stars
which reionize the universe formed in tiny dwarf galaxies with 2k−1 ∼ 10 kpc,
dwarf galaxies with 2k−1 ∼ 100 kpc, large Milky Way like galaxies with
2k−1 ∼ Mpc to rare large clusters with 2k−1 ∼ 10 Mpc. The web associ-
ated with sligthly lower k’s is formed from the front end of the kNL-wake.
These features of (zero-dimension) objects embedded in structures of a larger
dimension (one-dimensional filaments, two-dimensional sheets) at a lower den-
sity is clearly evident in Fig. 3, with the larger encompassing perturbations
gradually evolving through the merging and accretion of smaller scale clumps,
a process illustrated in Fig. 4.

Aptly described by the concept of merger tree (see e.g., Kauffmann &
White [42], Lacey & Cole [46]), the precise path that an encompassing pertur-
bation follows towards final collapse and virialization may be highly diverse.

3.1 Hierarchical Structures

Extended features still in the process of collapsing, or collapsed objects which
have not yet fully virialized, often contain a large amount of smaller scale
substructure at higher density which materialized at an earlier epoch. This
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Fig. 3. The hierarchical Cosmic Web: over a wide range of spatial and mass scales
structures and features are embedded within structures of a larger effective dimen-
sion and a lower density. The image shows how structures in the Millennium sim-
ulation are mutually related: at five successive zooms it focusses on a very dense
and compact massive cluster at the intersection of a high number of filamentary
extensions. Image courtesy of Springel & Virgo consortium, also see Springel et al.
[80]. Reproduced with permission of Nature

substructure is a clear manifestation of the hierarchical development of struc-
ture in the Universe. This hierarchy of embedded structures is illustrated in
Fig. 3, which shows five slices through the Millennium simulation [80], from
bottom to top representing successive zoom-ins onto a very dense and compact
massive cluster.

Observationally we can recognize traces of the hierarchical formation pro-
cess in the galaxy distribution on Megaparsec scales. The large unrelaxed
filamentary and wall-like superclusters contain various rich clusters of galax-
ies as well as a plethora of smaller galaxy groups, each of which has a higher
density than the average supercluster density. Zooming in on even smaller
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Fig. 4. Illustration of the hierarchical formation of a cluster sized halo. From: van
Haarlem & van de Weygaert [83]. Reproduced by permission of the AAS

scales, within groups large galaxies themselves are usually accompanied by a
number of smaller satellites and dwarf galaxies. The imprint of hierarchical
clustering may also be found in fully collapsed structures, such as clusters
and even the halos of galaxies. Even when studying the hot X-ray emit-
ting intracluster gas, more evenly distributed than the galaxies, the majority
of clusters appears to display some measure of substructure (e.g. Schücker
et al. [71]). Even the Coma cluster appears to be marked by a heavy infalling
group [59]. Also galaxies bear the marks of their hierarchical formation. The
most visible manifestation concerns the presence of streams in their dark ha-
los, remnants of infalling dwarf galaxies (e.g. Helmi & White [34], Freeman &
Bland-Hawthorn [29]).

3.2 Mass Scale Fluctuations

We now generalize the integrated rms power σρL(k, z) to rms fluctuations
associated with general filters W (kR) [6]:
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σ2
W (R) =

∫
d ln k |Ŵ (kR)|2 dσ2

ρL(k)/d ln k . (21)

For example, if the density field is smoothed with a tophat or Gaussian filter,
then Ŵ (x) is

Ŵ (x) →
{
ŴTH = 3

x3 (sinx− x cos x) Tophat

ŴG = exp(−x2/2) Gaussian

respectively. The Fourier transforms of the filters define smoothing functions
W in real space,

⎧⎪⎨
⎪⎩
WTH(r) = ϑ(RTH − r)/VTH , VTH = 4πR3/3

WG(r) = exp(−r2/2R2
G)/VG , VG = (2π)3/2R3

Here, ϑ(x) is the Heaviside function, unity if x ≥ 0 zero if x < 0. The smooth-
ing filter that defines σ2

ρL(kR) is called the “sharp k-space” filter, simply a
top hat in k-space, Ŵ = ϑ(1− kRk), where Rk = 1/kR. Its Fourier transform
is W (r) = ŴTH(rkR)/Vk, with Vk = (4π/3)k−3

R /(2π)3.
The nature of top hat smoothing is clear: around each point r, we volume-

average the field over a spherical region of radius R around it. There is a clear
mass assignment we can make, MTH = ρ̄ma3VTH. For the other filters, the
relation between the scale R and an appropriate mass is trickier. The obvious
values, ρ̄ma3VG and ρ̄ma3Vk turn out not to be applicable to objects.

From the discussion about the nonlinear wavenumber above, it should be
clear that σρL(k) defines a clock whose ticks march out the development of
the hierarchy. Indeed Bond et al. [16] showed that the square,

S ≡ σ2
ρL (22)

is the most appropriate. A convenient way to define a filter-independent mass
is to determine the “trajectory” RTH(S) by inverting S = σ2

TH(RTH) and us-
ing MTH for every filter. The trajectories Rk(S) and RG(S) then define func-
tional relations Rk(MTH) and RG(MTH) among filter scales. There are more
sophisticated ways of defining the mass relations among filters using profiles
around density field peaks, but this approach gives similar answers. It turns
out that the inversion for Gaussian and sharp-k space gives RTH/RG ≈ 2,
with a similar result RTH/R ≈ 2.

3.3 Collapse and Virialization: Density Barriers

The correspondence between mass and filter scale, M ∝ R3 , suggests that
if one wishes to model (proto)objects of mass M one should study the initial
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density fluctuation field when it is smoothed on (comoving) spatial scale R ∝
M1/3, with the exact coefficient depending on filter choice (22):

δ(r, t|R) =
∫

dr′ δ(r′, t)W ((r − r′)/R) . (23)

For the pure power-law spectra P (k) ∝ kneff the fluctuations S on a mass
scale M scale as

S(M) ∝ M−(neff+3)/3 . (24)

The monotonocity of S(M) with M is generally valid, even with the neff(k) we
have seen arise in ΛCDM and other theories. The Cold Dark Matter spectrum
(11) has neff(kgal) ≈ −2 on galaxy scales and neff(kcls) ≈ −1.3 on clusters
scales.

Spherical Haloes: Collapse & Virialization

We now review the extremely instructive nonlinear evolution of a spherically
symmetric density peak, which turns around and collapses, with complete
collapse to a point predicted to occur when the linearly-extrapolated (primor-
dial) density, δL(r, t|R) = D(t)/D(ti)δL(r, ti|R) (12, 13), reaches a critical
density excess fc [30]. No singularity in fact develops, rather shells of mass
pass through the origin and oscillate relative to each other finally settling
down to a virial equilibrium in which kinetic and gravitational forces are
balanced. In more realistic 3D collapses the inevitable non-spherical pertur-
bations enhance the approach to virialization. Thus we can identify smoothed
linear overdensities fta, fvir as well as fc, as well their nonlinear overdensity
counterparts, δNL,ta, δNL,vir as well as δNL,c = ∞: The collapse and subse-
quent virialization of a spherical and isolated overdensity is solely dependent
on such a critical – and universal – threshold level fc, and independent of the
mass scale M . The same holds true for its decoupling from the Hubble ex-
pansion and turnaround. The corresponding characteristic density thresholds
for turnaround fta, collapse fc and virialization fvir can be derived from the
spherical model.

The critical value for an Einstein-de Sitter Ωm = 1 Universe has the well-
known value derived by Gunn & Gott [30],

fc =
3
20

(12π)2/3 � 1.686 , (25)

while the corresponding critical nonlinear virialization value is given by

ρvir

ρu
= 18π2 � 178.0 . (26)

Similar values can be easily derived for turnaround: the linear turnaround
threshold value fta = 1.08, while the nonlinear turnaround density values is
δNL,ta = 5.55.
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For a general FRW Universe with Ωm,0 �= 1 and/or ΩΛ,0 �= 0 the values
depend upon the cosmic epoch at which turnaround, collapse or virialization
of the density perturbation takes place, i.e., it is a function of the values of
Ωm and ΩΛ at the corresponding cosmic epoch. For open cosmologies with
Λ = 0 solutions to the problem were computed by Lacey & Cole [46]. Lahave
et al. [48] adressed the issue for FRW universes with a cosmological constant
Λ �= 0, while Eke et al. [27] computed the explicit solutions for flat Ωm+ΩΛ = 1
FRW universes. The general expressions for these situations were summarized
by Kitayama & Suto [43]. The case for Dark Energy models with w �= −1
were assessed by Percival (2005). While the linear collapse threshold value
fc does depend somewhat on the cosmological background, the values for
plausible cosmologies are only marginally different from those for an Einstein-
de Sitter Universe. As may be seen in Fig. 5 the values for fc in generic-
open matter-dominated cosmologies or flat cosmologies with a cosmological
constant Λ turn out to have only a weak dependence on Ωm,0: in an open
Ωm,0 = 0.1 Universe fc,0 ≈ 1.615. We note that the nonlinear virialization
threshold δNL,vir displays a considerably stronger variation as a function of
cosmology.

Useful fitting formulae for the linear spherical model collapse value δNL,c

were obtained by Bryan & Norman [22] for ΩΛ = 0 FRW universes and for
flat Universes:{

δNL,c = 18π2 + 82(Ωm − 1) − 39(Ωm − 1)2 Ωm + ΩΛ = 1
δNL,c = 18π2 + 60(Ωm − 1) − 32(Ωm − 1)2 ΩΛ = 0

(27)

Fig. 5. Left frame: Critical threshold for collapse, fc, as a function of Ωm, in the
spherical collapse model. Results are plotted for open models with Λ = 0 (dotted line)
and flat models with Ωm + ΩΛ = 1 (dashed line). Righthand panel: the (nonlinear)
virial density of collapsed objects in units of critical density. From Eke et al. [27].
Image courtesy of Vincent Eke
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Spherical Collapse and Primordial Density Field

Given the primordial density field δL(x, t), linearly interpolated to the present
epoch, at any one cosmic epoch t (redshift z) one may identify the peaks that
have condensed into collapsed objects by tracing the regions for whom the
filtered primordial density excess

δL(x, t|R) >
fc(z)
D(z)

≡ fsc(z) , (28)

where the index sc refers to “spherical collapse”. For a Gaussian random field,
the statisistical distribution of δL(r, t|R), is

P (δL) dδL = exp[−δ2
L(r, t|R)/2S(R, t)] dδL/

√
2πS(R, t) = exp[−ν2/2] dν/

√
2π ,

ν = δL(r, t|R)/σW (R, t) , S(R, t) = σ2
W (R, t) . (29)

The number of σ is ν, which is a Gaussian random deviate (i.e., is distributed
as the unit-variance normal). The threshold on scale M is therefore achieved
when the height ν in σ units is

ν(M) =
fc

σW (M)
. (30)

High mass objects are very rare because σW (M) is at low, hence ν(M) is high.

Collapse and Halo Shape

While the above is based upon spherical collapse, in realistic circumstances
primordial density perturbations will never be spherical, nor isolated [6]. In
Bond & Myers [17], Sheth & Tormen [76], the dependence upon the shape of
the density peak as well as on the tidal influences of the surrounding mat-
ter fluctuations were worked out (see Sect. 4.5 for a detailed description of
anisotropic ellipsoidal collapse).

In a spherical collapse, the evolution of the outer radius depends only upon
the average interior properties of the perturbation, and does not depend upon
what the external matter is doing. Non-spherical perturbations such as el-
lipsoids of course collapse anisotropically. An ellipsoidal overdensity will first
collapse along its shortest axis, subsequently along its medium axis and fi-
nally along its longest axis. However, the evolution of the outer shell depends
upon the details of the interior distribution and on the exterior through the
tidal forces acting upon the shell so it is not as clean a case as spherical col-
lapse. There has been a long history of using homogeneous ellipsoids to model
anisotropic collapses. Isolated ellipsoids were considered by Icke [38], White
& Silk [88]; Peebles [62]. The extension to a cosmological setting where the
exterior tidal forces were accurately included formulating it by its relation to
the linear deformation tensor of the interior was made by Bond & Myers [17].
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This paper showed the collapse along the shortest axis will occur more rapidly
than the collapse of comparable spherical peak, that of the medium axis will
not differ too much from the spherical value while full collapse along all three
axes will be slower than that of its spherical equivalent. This was applied
to filtered density peaks by Bond & Myers [17], who determined the criti-
cal density threshold fc for complete collapse as a function of the linear tidal
field environment or deformation described below, and to random filtered-field
points by Sheth et al. [75].

Similar considerations concerning the effect of the non-spherical collapse
of density peaks on the mass function of bound objects had been followed in
a number of other studies. Monaco [56, 57, 58], Audit et al. [4] and Lee &
Shandarin [51] studied models in which the initial (Zel’dovich) deformation
tensor was used to find estimates of the collapse time. However, when following
the nonlinear evolution of the same configuration by means of a corresponding
(homogeneous) ellipsoidal collapse model Bond & Myers [17]; Eisenstein &
Loeb [26] found marked differences. Figure 13 in Sect. 4.4 shows a telling
comparison between the corresponding collapse time estimates for all three
axes of a density peak.

The collapse of a spherical peak depends only upon the density, which is
the trace of the deformation tensor, hence fc = fsc is constant. For a non-
spherical peak, the deformation tensor has an anisotopic part as well, with
two (normalized) eigenvalues, the ellipticity e and its prolateness p and the
collapse threshold depends upon these values, fec(e, p) [6, 17]. An impression
of the sensitivity to e and p of the collapse time ac(e, p) and corresponding
collapse threshold fec(e, p) may be obtained from Fig. 6, which depicts these
for an ellipsoidal perturbation in an Einstein-de Sitter Universe. For an ellip-
soidal overdensity with the same initial overdensity δi the symbols show the
expansion factor when the longest axis of the ellipsoid collapses and virializes,
as a function of e and p. The axis on the right shows the associated critical
overdensity required for collapse. At a given e, the large, medium and small
circles show the relation at p = 0, |p| ≤ e/2 and |p| ≥ e/2, respectively. The
solid curve and dashed curves depict the analytical relation specified in Sheth
et al. [75] for p = 0 and |p| = e/2. The time required to collapse increases
monotonically as p decreases. The top axis shows the related mass scale σ(m)
when identified with the value of e as the corresponding most probable value
for p=0 (see Sheth et al. [75]).

The main conclusion is that for ellipsoidal collapse the density threshold
fec becomes a “moving barrier”, dependent on the ellipticity e and/or the
mass scale σ(m). On the basis of such ellipsoidal dynamics calculations and
normalized by means of N-body simulations, Sheth & Tormen [76] found that
the density collapse barrier may be reasonably accurate approximated by the
expression
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Fig. 6. Evolution of an ellipsoidal perturbation in an Einstein-de Sitter universe.
Symbols show the expansion factor when the longest axis collapses and virializes
as a function of initial e and p with the same initial overdensity δi. The circles
correspond to different values of p (see text). The time required to collapse increases
monotonically as p decreases. Right axis: associated collapse overdensity required
for collapse. Top axis: estimate of mass resolution σ(m) based on the corresponding
most probable ellipticity e. From Sheth et al. [75]. Image courtesy of Sheth

fec(σ, z) ≈ fsc(z)

{
1 + β

[
f2

sc(z)
σ2(M)

]−α
}

(31)
= fsc(z)

{
1 + β ν(M, z)−α

}

with β ≈ 0.485 and α ≈ 0.615. Figure 7 shows a few examples of moving barri-
ers for a slightly different context. In this expression, fsc(z) is the critical over-
density required for spherical collapse at a redshift z and σ(M) the rms initial
density fluctuation smoothed on a mass scale M , both linearly extrapolated
to the present epoch. The parameters β and α are determined by ellipsoidal
collapse: strictly speaking α = 0 and β = 0 for spherical collapse, yielding
the correct asymptotic value fec = fsc. Cosmology enters via the relation fsc,
while the influence of the power spectrum enters via σ(M). The corresponding
modifications have been shown to lead to considerable improvements in the
predictive power of the excursion set formalism describing the mass spectrum
of condensed objects [76].

Equation 32 shows massive objects with low σ(M) have fec(z) ≈ fsc(z),
well described by spherical collapse, whereas less massive objects are increas-
ingly affected by external tidal forces as σ(M) rises and M decreases. Critical
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Fig. 7. Excursion Set Formalism, illustrated for the formation of a halo. Random
walk exhibited by the average overdensity δ centred on a randomly chosen position
in a Gaussian random field, as a function of smoothing scale, parametrized by SM

(large volumes are on the left, small volumes on the right). Dashed horizontal line
indicates the collapse barrier fc. The largest scale (smallest value of S) on which
δ(S) exceeds fc is an estimate of the mass of the halo which will form around that
region. From Sheth & van de Weygaert [77]

thresholds can also be determined for other structural features, such as voids,
using 2 thesholds [77] and walls and filaments (Sect. 3.3).

3.4 Halo Excursions

The excursion set formalism, also known as extended Press–Schechter for-
malism Press & Schechter [67], Peacock & Heavens [61], Bond et al. [16],
Sheth [74], evaluates the effects substructure over a range of scales has on
the emergence of objects in a cosmic density field. For an early paper on see
Epstein [28] and for a recent review see [91].

It elucidates the hierarchical development of structure using just the lin-
ear density and tidal fluctuations in combination with the knowledge of their
fate once the linear smoothed density exceeds the threshold values fc we
have discussed. The idea is that around a point r, δLr, t|R) defines a tra-
jectory, starting from zero at very large R to larger values at small R. We
have seen that S(M) is a convenient clock increasing from high mass to low,
hence we can also consider the smoothed field as a function of S = σ2

W (R):
δL(r, t|S). Further, since S(R, t) = D2(t)S(R, t0), where t0 is the current time,
δL(r, t|S(t))/sqrtS(t) is independent of t, a function only of S(t0) which acts
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like a pseudo-time. For each r, we have a trajectory in resolution S, δL(S).
When δL reaches the fc barrier, we identify the scale R with the mass of a
collapsed object of mass M(S) at that position. The reader will realize that
this prescription is unrealistic in that points very near to each other may have
their density fields piercing the barrier at different S, hence be indentified
with objects of different mass even though they collapse together. At best the
prescription can be statistically valid but not a true real space description.
That requires a non-local treatment. Further, since small-scale density peaks
are embedded within larger regions which may or may not have pierced the
critical collapse threshold. If the larger region has collapsed this will have in-
volved the merging of the small scale peak with its neighbouring halos and
surrounding matter while it got absorbed into the more massive entity. Con-
sider the sharp-k filter with its SM = S(Rk) integrated power. If the linear
primordial density field is a homogeneous random Gaussian field, the N-point
correlation functions are translation invariant and the Fourier components
δ̂(k) are independent, that is uncorrelated in k. Sliding from a resolution SM

to a higher resolution SM +ΔSM , the filtering process in essence involves the
increment by a random Gaussian variate δ̂(k).

Figure 7 shows an example of a typical result: a jagged line represent-
ing the linear overdensity centered on a randomly chosen position r in the
initial Gaussian random field as a function of the scale SM . Because of the
independence of each of the Gaussian distributed Fourier components, the
process turns into that of a Brownian random walk. The density threshold fc

for forming bound virialized objects is given by the dashed line, assumed mass
independent here hence the line is horizontal. The largest scales, SM = 0, are
those of the homogeneous global FRW Universe so that the random walk will
start of at δ(S = 0) = 0. In hierarchical models SM will increase as we zoom
in on to an increasingly resolved mass distribution around the chosen position
x. As we move to a higher SM and smaller R fluctuations of an increasing
amplitude will get involved.

The distribution of masses of collapsed and/or virialized objects is equated
to the distribution of distances SM which one-dimensional Brownian motion
random walks travel before they first cross a barrier of constant height fc.
In other words, one should find the distribution of the first upcrossing of the
random trajectory, the lowest value of S for which δ(r|S) = fc. The rate
of first upcrossings at a threshold was calculated by Chandrasekhar (1943).
When the random walk is absorbed by the barrier at the first upcrossing at
S, the point r is identified with a collapsed object of mass M(S). Here rate is
per unit psuedo-time, or per unit resolution, dS. In the absence of a barrier,
the distribution of trajectories with a density value δL(S) at S is the usual
Gaussian distribution:

Π(δL, S) =
1√
2π S

exp
{
− δ2

L

2S

}
(32)
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In the presence of a barrier fc, the probability distribution Π(δL, S|fc) of
trajectories which have a density δL at resolution SM but did not cross the
boundary at smaller S < SM ) follows from solving the Fokker-Planck equation
(see Bond et al. [16], Zentner [91]),

∂Π
∂S

= lim
ΔS→0

{ 〈(Δδ)2〉
2ΔS

∂2Π
∂δ2

− 〈δΔδ〉
ΔS

∂Π
∂δ

}
, (33)

where the next step in the trajectory, ΔδL(S) = δL(S + ΔS) − δL(S) as we
increment the resolution by ΔS. The critical feature of sharp k-filter is that
this step is uncorrelated with the prior value, 〈δL(S)ΔδL(S)〉 = 0, in which
case the drift term vanishes and simple diffusion remains,

∂Π
∂S

=
1
2
∂2Π
∂δ2

. (34)

There is a simple graphical way of determining Π. Consider a trajectory
which has reached the threshold for some scale S < SM . Its subsequent path is
entirely symmetric and at SM it is equally likely to be found above as well as
below the threshold (see Fig. 7). In other words, for each of these trajectories
there is an equally likely trajectory that pierced the barrier at the same scale
R but whose subsequent path is a reflection in the barrier, ending up below
the threshold. The probability Π that the threshold has never been crossed
may be obtained by subtracting the reflected distribution from the overall
Gaussian distribution (32),

Π(δL, SM |fc) =
1√

2π SM

{
exp
(
− δ2

L

2Sm

)
− exp

(
− (δL − 2fc)2

2Sm

)}
. (35)

Integrating this distribution over all values δL yields the probability that the
threshold has been crossed at least once, and the corresponding probability
that the location is enclosed in an object of mass ≤ M ,

Ps(SM |fc) = 1 −
∫

dδL Π(M |fc) = 1 − erf
{

fc√
2σ(M, t)

}
(36)

in which erf(x) is the conventional error function. In an entirely natural
fashion this probability takes care of the so-called fudge factor 1/2 which
had been missed in the original Press–Schechter result Press & Schechter [67].
They assumed that the fraction of mass in objects of mass ≥ M is given by the
fraction of mass above the threshold fc at resolution SM . This fails to take into
account that there are mass fluctuations which did not reach the threshold
at mass scale M , yet are part of a collapsed structure on larger mass scale.
Indeed, we will see that this is also an essential issue in understanding the
development of a void hierarchy (see accompanying notes, van de Weygaert &
Bond (2005)).
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3.5 Halo Mass Distribution

Given the identification of mass, M(S), we may readily infer the number
density n(M) of objects of mass M from the mass excursion probability Π(M)
(35):

n(M) d lnM =
ρ̄m

M

∣∣∣∣dPs

dS

∣∣∣∣ dS
d lnM

d lnM (37)

which translates into

n(M) dM =

√
2
π

ρu

M2
ν(M) exp

{
−ν(M)2

2

} ∣∣∣∣d lnσ(M)
d lnM

∣∣∣∣ (38)

For a pure power-law power spectrum, P (k) ∝ kn, one may readily observe
that the mass spectrum of virialized and bound objects in the Universe is a
self-similar evolving function

n(M) dM =

√
1
2π

(
1 +

n

3

) ρu

M2

(
M

M∗

)(3+n)/6

exp

{
−
(

M

M∗

)(3+n)/3
}

.

(39)
The self-similar evolution of the mass distribution is specified via the time
development of the characteristic mass M∗(t),

M∗(t) = D(t)6/(3+n) M∗,o . (40)

whose present-day value is inversely proportional to fc,

M∗,0 =
(

2A
f2

c

)3/(3+n)

. (41)

For a ΛCDM Universe, with Ωm = 0.3, Fig. 8 depicts the predicted Press–
Schechter halo mass functions at several different redshifts [7]: z = 0 (solid
curve), z = 5 (dotted curve), z = 10 (short-dashed curve) and z = 20 (long-
dashed curve).

3.6 Hierarchical Evolution

Smaller mass condensations may have corresponded with genuine physical
objects at an earlier phase, while later they may have been absorbed into
a larger mass concentration. It is straightforward and insightful to work
out the evolving object distribution within the context of the excursion set
formalism.

Returning to the graphical representation in Fig. 7 we may easily appre-
ciate what happens as the mass distribution evolves. The linear growth of
fluctuations implies a gradual uniform rise of the whole random walk curve as
each mass fluctuations increase by the linear growth factor D(z). Going back in
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Fig. 8. Press–Schechter halo mass function at several different redshifts: z = 0 (solid
curve), z = 5 (dotted curve), z = 10 (short-dashed curve) and z = 20 (long-dashed
curve). From Barkana & Loeb [7]. Reproduced with permission of Elsevier

time the random walk curve would therefore have had a proportionally smaller
amplitude. Linearly translated to the present epoch the density threshold bar-
rier would gradually decrease in amplitude, proportional to 1/D(z). Earlier
barrier crossings would therefore have occurred at a higher values of S(R), a
smaller scale R and a smaller mass M : Location x would have been incorpo-
rated within an object of a correspondingly smaller mass.

As we proceed in time the barrier fc(z) would descend further. Gradually
the random walk path will start to pierce through the barrier at lower S
and correspondingly larger values of the mass scale M . The halo into which
the point may be embedded will first accrete surrounding matter, thereby
gradually growing in mass. Even later the halo may merge with surrounding
clumps into a much more massive halo. The corresponding mass scale would
reveal itself as the next peak in the random walk. Figure 7 does reveal such
behaviour through the presence of three peaks, H1, H2 and H3: H3 corresponds
to an early small object that merged with surrounding mass into the more
massive peak H2. The latter would merge again with neighbouring peers into
the largest clump, object H1.

While the excursion set formalism manages to describe quantitatively the
merging and accretion history of halos in a density field, it has opened up the
analysis of merging histories of objects in hierarchical scenarios of structure
formation [21, 46, 47] and the related construction of the merger tree of the
population of dark halos [42, 46].
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3.7 Extension to the Four Mode Two-Barrier Excursion
Set Formalism

We have seen that the hierarchical nature of the cosmic structure forma-
tion process plays a prominent role in the nonlinear evolution of and graudal
buildup of galaxies, galaxy halos and clusters. In the following sections we will
see that it affects all aspects of the nonlinear evolution of large scale struc-
ture, including the morphology of filaments and the properties of the void
population.

With respect to the void population, we will find that there is a distinct
asymmetry between the nonlinear hierarchical evolution of voids and that of
haloes (see accompanying review on morphology of the cosmic web). For the
evaluation of the hierarchical evolution of voids two processes need to be taken
into account: the void-in-void process avoids double counting of voids while the
void-in-cloud process removes voids within encompassing overdensities. What
distinguishes voids from their collapsing peers is that clusters will always
survive when located within a void, while the reverse is not true: voids within
overdense clusters will be rapidly squeezed out of existence.

Sheth & van de Weygaert [77] have shown that the excursion set formalism
provides a mathematically properly defined context for describing the asym-
metry between void and haloes. The related extension of the formalism to a
two-barrier formalism culminates in a four mode formalism. In this section we
summarize these findings, while we refer to [85] for a more proper treatment
of the evolution of voids. Figure 9 illustrates the argument. There are four
sets of panels. The left-most of each set shows the random walk associated
with the initial particle distribution. The two other panels show how the same
particles are distributed at two later times.

Cloud-in-Cloud

The first set illustrates the cloud-in-cloud process. The mass which makes up
the final object (far right) is given by finding that scale within which the linear
theory variance has value S = 0.55. This mass came from the mergers of the
smaller clumps, which themselves had formed at earlier times (centre panel).
If we were to center the random walk path on one of these small clumps, it
would cross the higher barrier fc/D(t) > fc at S > 0.55, the value of D(t)
representing the linear theory growth factor at the earlier time t.

Cloud-in-Void

The second series of panels shows the cloud-in-void process. Here, a low mass
clump (S > 0.85) virializes at some early time. This clump is embedded in a
region which is destined to become a void. The larger void region around it
actually becomes a bona-fide void only at the present time, at which time it
contains significantly more mass (S = 0.4) than is contained in the low mass



364 R. van de Weygaert and J. R. Bond

2 cloud–in–cloud

cloud–in–void

void–in–void

void–in–cloud

1

0

–1
4

2

0

–2

–4
4

2

0

–2

–4
4

2

0

–2

–4
0 0.2 0.4 0.6

Sm

δc

δc

δv

δv

δv

δc

δc

δ 0
(X

 )
δ 0

(X
 )

δ 0
(X

 )
δ 0

(X
 )

h–1 Mpc h–1 Mpc
0.8 1 20 25 30 20 25 30

Fig. 9. Four mode two-barrier excursion set formalism. Each row illustrates one of
the four basic modes of hierarchical clustering: the cloud-in-cloud process, cloud-in-
void process, void-in-void process and void-in-cloud process (from top to bottom).
Each mode is illustrated using three frames. Leftmost panels show ‘random walks’:
the local density perturbation δ0(x) as a function of (mass) resolution scale SM (cf.
Fig. 7) at an early time in an N-body simulation of cosmic structure formation.
In each graph, the dashed horizontal lines indicate the collapse barrier fc and the
shell-crossing void barrier fv. The two frames on the right show how the associated
particle distribution evolves. Whereas halos within voids may be observable (second
row depicts a halo within a larger void), voids within collapsed halos are not (last
row depicts a small void which will be squeezed to small size as the surrounding
halo collapses). It is this fact which makes the calculation of void sizes qualitatively
different from that usually used to estimate the mass function of collapsed halos.
From Sheth & van de Weygaert [77]
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clump at its centre. Notice that the cloud within the void was not destroyed
by the formation of the void; indeed, its mass increased slightly from S >
0.85 to S ∼ 0.85. Such a random walk is a bona-fide representative of S ∼
0.85 halos; for estimating halo abundances, the presence of a barrier at fv

is irrelevant. On the other hand, walks such as this one allow us to make
some important inferences about the properties of void-galaxies, which we
will discussess shortly.

Void-in-Void

The third series of panels shows the formation of a large void by the mergers
of smaller voids: the void-in-void process. The associated random walk looks
very much the inverse of that for the cloud-in-cloud process associated with
halo mergers. The associated random walk shows that the void contains more
mass at the present time (S ∼ 0.4) than it did in the past (S > 0.4); it is
a bona-fide representative of voids of mass S ∼ 0.4. A random walk path
centered on one of these mass elements which make up the filaments within
the large void would resemble the cloud-in-void walk shown in the second
series of panels. [Note that the height of the barrier associated with voids
which are identified at cosmic epoch t scales similarly to the barrier height
associated with halo formation: fv(t) ≡ fv/D(t).]

Void-in-Cloud

Finally, the fourth series of panels illustrates the void-in-cloud process. The
particle distribution shows a relatively large void at the early time being
squeezed to a much smaller size as the ring of objects around it collapses.
A simple inversion of the cloud-in-void argument would have tempted one to
count the void as a relatively large object containing mass S ∼ 1. That this is
incorrect can be seen from the fact that, if we were counting halos, we would
have counted this as a cloud containing significantly more mass (S ∼ 0.3),
and it does not make sense for a massive virialized halo to host a large void
inside.

3.8 Peak Structure

While the extended Press–Schechter excursion set formalism does provide a
good description of the mass functions of cosmological objects, it basically in-
volves an intrinsically local description and does not deal with the real internal
structure of a genuine collapsed and virialized peak in the mass distribution.
Points which would collapse together to form a virialized object of a given mass
may be counted as belonging to objects of different mass [16]. Another unap-
pealing aspect is that the derivation of the Press–Schechter formula requires
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the unphysical sharp k-filter, a rather unphysical form of density smoothing,
and a rather arbitrary mass assignment scheme.

It is the nonlocal peak-patch description of Bond & Myers [17] that is able
to incorporate a more global description of evolving volume elements.

4 Anisotropic and Weblike Patterns

The second key characteristic of the cosmic matter distribution is that of a
weblike geometry marked by highly elongated filamentary, flattened planar
structures and dense compact clusters surrounding large near-empty void re-
gions (see Fig. 1). In this section we focus on the backbone – or skeleton –
of the Cosmic Web defined by these anisotropic filamentary and sheetlike
patterns.

The recognition of the Cosmic Web as a key aspect in the emergence
of structure in the Universe came with early analytical studies and approx-
imations concerning the emergence of structure out of a nearly featureless
primordial Universe. In this respect the Zel’dovich formalism [90] played a
seminal role. It led to view of structure formation in which planar pancakes
form first, draining into filaments which in turn drain into clusters, with the
entirety forming a cellular network of sheets. As borne out by a large sequence
of N-body computer experiments of cosmic structure formation, weblike pat-
terns in the overall cosmic matter distribution do represent a universal but
possibly transient phase in the gravitationally driven emergence and evolution
of cosmic structure. The N-body calculations have shown that weblike pat-
terns defined by prominent anisotropic filamentary and planar features – and
with characteristic large underdense void regions – are a natural manifestation
of the gravitational cosmic structure formation process.

Interestingly, for a considerable amount of time the emphasis on anisotropic
collapse as agent for forming and shaping structure was mainly confined the
Soviet view of structure formation, Zel’dovich’s pancake picture, and was seen
as the rival view to the hierarchical clustering picture which dominated the
western view. Here we intend to emphasize the succesfull synthesis of both
elements on the basis of the peak patch description of Bond & Myers [17].
It forms the most elaborate and sophisticated analytical description for the
emergence of walls, filaments and fully collapsed triaxial halos in the cosmic
matter distribution. Culminating in the Cosmic Web theory [18] it stresses
the dominance of filamentary shaped features instead of the dominance of
planar pancakes in the pure Zel’dovich theory. Perhaps even more important
is its identification of the intimate dynamical relationship between the fila-
mentary patterns and the compact dense clusters that stand out as the nodes
within the cosmic matter distribution: filaments as cluster–cluster bridges. To
appreciate the intricacies of the Cosmic Web theory we need to understand
the relation between gravitational tidal forces and the resulting deformation
of the matter distribution.
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4.1 Anisotropic Collapse

The existence of the Cosmic Web is a result of this tendency of matter
concentrations to contract and evolve into anisotropic, elongated or flattened,
structures. It is a manifestation of the generic anisotropic nature of gravi-
tational collapse, a reflection of the intrinsic anisotropy of the gravitational
force in a random density field.

Anisotropic gravitational collapse is the combined effect of internal and
external tidal forces. The internal force field of the structure hangs together
with the flattening of the feature itself. It induces an anisotropic collapse along
the main axes of the structure. The resulting evolution can be most clearly
understood in and around a density maximum (or minimum) δ, to first order
corresponding to the collapse of a homogeneous ellipsoid [17, 24, 26, 38, 88].
The external ‘background’ force field is the integrated gravitational influence
of all external density features in the Universe, as such a manifestation of
the inhomogeneous cosmic matter distribution. For most situations the role
of the large scale tidal forces in the early phases of the collapse of a feature
– the evolutionary phase in which most elements of the cosmic web reside –
may be succesfully described by the Lagrangian Zel’dovich formalism [90].

The peakpatch formalism embeds the anisotropic tendency of gravitational
collapse within the context of a hierarchical mass distribution. It achieves this
by combining the nonlinear internal evolution of a particular region in the
cosmic mass distribution, and modelling this by means of the homogeneous
ellipsoid model, with a reasonably accurate description of the large-scale ex-
ternal tidal influence in terms of the Zel’dovich approximation [17, 75].

4.2 Force Field and Displacement

For the description of the dynamical evolution of a region in the density field –
a patch- it is beneficial to make a distinction between large scale “background”
fluctuations δb and small-scale fluctuations δf ,

δ(x) = δb(x) + δf(x) , (42)

in which

δf(x) =
∫

dk
(2π)3

δ̂(k) Ŵ ∗
f (k;Rb)

δb(x) =
∫

dk
(2π)3

δ̂(k) Ŵ ∗
b (k;Rb) (43)

Ŵ ∗
f (k;Rb) is a high-pass filter which filters out spatial wavenumber compo-

nents lower than k < 1/Rb. Ŵ ∗
b (k;Rb) is the compensating low-pass filter. The

small-scale fluctuating density field δf exclusively contributes to the internal
evolution of the patch. Predominantly made up of spatial wavenumber com-
ponents higher than 1/Rb, it determines the substructure within the patch,
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sets the corresponding merging times while influencing the overall collapse
time of the mass element (see Fig. 22). For our picture to remain valid the
scale Rb of the smooth large-scale field should be chosen such that it remains
(largely) linear, i.e. the r.m.s. density fluctuation amplitude σρ(Rb, t) � 1.
Note that the smooth large-scale field δb also contributes to the total mass
content within the patch.

The small-scale local inhomogeneities induce small-scale fluctuations in
the gravitational force field, gf(x). To a good approximation the smoother
background gravitational force gb(x) (see (2) in and around the mass ele-
ment includes three components (excluding rotational aspects). The bulk force
gb(xpk) is responsible for the acceleration of the mass element as a whole. The
divergence (∇·gb) encapsulates the collapse of the overdensity while the tidal
tensor quantifies its deformation,

gb,i(x) = gb,i(xpk) + a

3∑
j=1

{
1
3a

(∇ · gb)(xpk) δij − Tb,ij

}
(xj − xpk,j) . (44)

The tidal shear force acting over the mass element is represented by the tidal
tensor Tij ,

Tb,ij ≡ − 1
2a

{
∂gb,i

∂xi
+

∂gb,j

∂xj

}
+

1
3a

(∇ · gb) δij

(45)

=
1
a2

∂2Φb

∂xi ∂xj
− 3

2
ΩH2 δb(x) δij , (46)

in which the trace of the collapsing mass element, proportional to its overden-
sity δb, dictates its contraction (or expansion).

The force field induces displacements of matter in and around the mass
element. The resulting displacement s(q, t) consists of a superposition of the
small-scale and smooth large-scale contributions, sf and sb: matter initially
at a (Lagrangian) position q moves to a location x(q, t),

x(q, t) = q + s(q, t) = q + sb(q, t) + sf(q, t) . (47)

The smooth large-scale displacement field sb in and around the patch includes
a bulk displacement spk and a deforming strain Epk,ij,

sb,i(q, t) ≈ spk,i +
3∑

j=1

Epk,ij (qj − qpk,j) , i = 1, . . . , 3 . (48)

The bulk displacement of the (mass) center of the peak

spk ≡ sb(qpk) , (49)
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specifies the movement of the mass element as a whole. The large-scale strain
field Eb,ij at the location of the patch, Epk,ij ≡ Eb,ij(qpk),

Eb,ij(q) ≡ 1
2

{
∂sb,i

∂qj
+

∂sb,j

∂qi

}
(q) . (50)

embodies the (gravitationally induced) deformation, in volume and shape, of
the mass element,

Epk,ij ≡ E ′
pk,ij +

1
3a

(∇ · sb)(qpk) δij . (51)

The peak strain’s trace (∇ · sb)(qpk) quantifies the shrinking volume of the
mass element while the tensor E ′

pk,ij embodies the - mostly externally induced
- anisotropic deformation of the region.

The source for the external deformation E ′
st,ij is the external tidal field

Tb,ij. In the early phases of gravitational collapse the role of the large scale
tidal forces is succesfully framed in terms of the by Zel’dovich formalism [90].
The internally induced deformation, a reaction to the nonspherical shape of
the mass element, will rapidly enhance along with the nonlinear collapse of
the peak.

4.3 Zel’dovich Approximation

In a seminal contribution Zel’dovich [90] found by means of a Lagrangian per-
turbation analysis that to first order – typifying early evolutionary phases –
the reaction of cosmic patches of matter to the corresponding peculiar grav-
ity field would be surprisingly simple. The Zel’dovich approximation is based
upon the first-order truncation of the Lagrangian perturbation series of the
trajectories of mass elements,

x(q, t) = q + x(1)(q, t) + x(2)(q, t) + . . . , (52)

in which the successive terms xm correspond to successive terms of the relative
displacement |∂(x − q)/∂q|,

1 �
∣∣∣∣∣
∂x(1)

∂q

∣∣∣∣∣ �
∣∣∣∣∣
∂x(2)

∂q

∣∣∣∣∣ �
∣∣∣∣∣
∂x(3)

∂q

∣∣∣∣∣ � . . . , (53)

and embodies the solution of the Lagrangian equations for small density per-
turbations (δ2 � 1). Assuming irrotational motion, in accordance with linear
gravitational instability, and restricting the solution to the growing mode leads
to the plain ballistic linear displacement of the Zel’dovich approximation,

x = q − D(t) ∇Ψ(q) = q − D(t) ψ(q) . (54)

dictated by the Lagrangian displacement potential Ψ(q) and its gradient, the
Zel’dovich deformation tensor ψmn. The path’s time evolution is specified by
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the linear density growth factor D(a) [62] (14). An essential aspect of the
Zel’dovich approximation is the 1 − 1 relation between the displacement po-
tential Ψ(q) and the (primordial, linearly extrapolated) gravitational potential
Φ̃(q, t)

Ψ(q) =
2

3Da2H2 Ω
Φ̃(q, t) =

2
3H2

0 Ω0

Φ̃0(q) , (55)

where Φ̃0 is the linearly extrapolated gravitational potential at the current
epoch (a= 1). The tensor ψmn, directly related to the strain tensor Emn =
D(t)ψmn, describes the deformation of the mass element,

ψmn =
2

3a3ΩH2

∂2Φ̃
∂qm ∂qn

=
2

3ΩH2a

(
T̃mn +

1
2
ΩH2 δ̃ δmn

)

(56)

=
2

3Ω0H
2
0

T̃mn,0 +
1
3
δ̃0 δmn

The relation establishes the intimate connection between the deformation of
an object and the tidal shear field Tmn, expressed in terms of the linearly
extrapolated primordial values of these quantities, T̃mn and δ̃. These evolve
according to δ̃(t) ∝ D(t) and T̃mn ∝ D/a3. On the basis of this relation
we immediately see that the (linearly extrapolated) tidal shear field T̃mn is
directly related to the traceless strain tensor E ′

mn,

T̃mn(t) = 4πGρu(t)
{
Emn − 1

3
δ̃ δmn

}
= 4πGρu(t) E ′

mn . (57)

Anisotropic Zel’dovich Collapse

The resulting (mildly nonlinear) local density evolution is entirely determined
by the eigenvalues λ1, λ2 and λ3 of the deformation tensor ψmn, ordered by
λ3 ≥ λ2 ≥ λ1),

ρ(x, t)
ρu

=

∥∥∥∥∥
∂x
∂q

∥∥∥∥∥
−1

=

∥∥∥∥∥δmn −D(t)ψmn

∥∥∥∥∥
−1

=
1

[1 −D(t)λ1][1 −D(t)λ2][1 −D(t)λ3]
, (58)

where ρ(x, t) is the local density at time t and ρu(t) the global (FRW) cosmic
density. Dependent on whether one or more of the eigenvalues λi > 0, the
feature will collapse along one or more directions. The collapse will proceed
along a sequence of three stages. First, collapse along the direction of the
strongest deformation λ3. If also the second eigenvalue is positive, the ob-
ject will contract along the second direction. Total collapse will occur only if
λ1 > 0.
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The time sequence of four frames in Fig. 10 portraits the success, and
shortcomings, of the Zel’dovich scheme. The four frames reveals the gradual
morphological procession along pancake and filamentary stages. A comparison
with the results of full-scale N-body simulations shows that in particular at
early structure formation epochs the predicted Zel’dovich configurations are
accurately rendering the nonlinear matter configurations. The spatial configu-
rations predicted by the Zel’dovich approximation form a reasonably accurate
approximation to the linear and mildly nonlinear phases of structure forma-
tion. The approximation breaks down when the orbits of migrating matter
elements start to cross. Towards this phase the linearly extrapolated gravita-
tional field configuration no longer forms a reasonable reflection of the gen-
uine nonlinear gravitational field. The self-gravity of the emerging structures
becomes so strong that the initial “ballistic” motion of the mass elements will
get seriously altered, redirected and slowed down.

Fig. 10. Zel’dovich displaced particle distributions inferred from a unconstrained
random realization of a primordial matter distribution for a SCDM cosmological
scenario in a 50 h−1 Mpc. Time sequence from top left to bottom right, frames
corresponding to cosmic epochs a = 0.10, 0.15, 0.20 and 0.25
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4.4 Ellipsoidal Collapse

Full-scale gravitational N-body simulations, and/or more sophisticated
approximations, are necessary to deal self-consistently with more advanced
nonlinear stages. While the Zel’dovich approximation is relatively accurate
in describing the large-scale “background” induced deformation of mass ele-
ments, the internal evolution of a mass element quickly assumes a highly non-
linear character and will strongly amplify the externally induced anisotropic
shape. Aspects of the subsequent evolution and anisotropic collapse can be
reasonably approximated by the homogeneous ellipsoid model.

Quintessential is the observation that gravitational instability not only
involves the runaway gravitational collapse of any cosmic overdensity, but
that it has the additional basic attribute of inevitably amplifying any slight
initial asphericity during the collapse.

The Ellipsoidal Approximation

The Homogeneous Ellipsoidal Model assumes a mass element to be a region
with a triaxially symmetric ellipsoidal geometry and a homogeneous interior
density, embedded within a uniform background density ρu.

The early work by Icke [37, 38] elucidated the key aspects of the evolu-
tion and morphology of homogeneous ellipsoids within an expanding FRW
background Universe, in particular the self-amplifying effect of a collapsing
and progressively flattening isolated ellipsoidal overdensity. Translating the
formalism of Lynden-Bell [54] and Lin et al. [53] to a cosmological context
he came to the conclusion that flattened and elongated geometries of large
scale features in the Universe should be the norm. White & Silk [88] managed
to provide an elegant analytic approximation for the evolution of the ellip-
soid that is remarkably accurate. However, these early studies did not reduce,
as they should, to the Zel’dovich approximation in the linear regime. Bond
& Myers [17], and Eisenstein & Loeb [26] emphasized that this was because
they either ignored any external influences or because they did not include
the effects of the external tidal (quadrupolar) influences self-consistently. Once
these effects are appropriately included the resulting ellipsoidal collapse model
is indeed self-consistent (see also the recent detailed study of Desjacques [24]
of the environmental influence on ellipsoidal collapse).

For moderately evolved structures such as a Megaparsec (proto)cluster the
ellipsoidal model represents a reasonable approximation at and immediately
around the density peak. In the case of highly collapsed objects like galaxies
and even clusters of galaxies it will be seriously flawed. One dominant aspect
it fails to take into account are the all-important small-scale processes related
to the hierarchical substructure and origin of these objects. Nonetheless, the
concept of homogeneous ellipsoids has proven to be particularly useful when
seeking to develop approximate yet advanced descriptions of the distribution
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of virialized cosmological objects within hierarchical scenarios of structure
formation [17, 72, 75].

In many respects the homogeneous model is a better approximation for
underdense regions than it is for overdense ones. Overdense regions contract
into more compact and hence steeper density peaks, so that the area in which
the ellipsoidal model represents a reasonable approximation will continuously
shrink. By contrast, for voids we find that the region where the approximation
by a homogeneous ellipsoid is valid grows along with the void’s expansion.
While voids expand their interior gets drained of matter and develops a flat
“bucket-shaped” density profile: the void’s natural tendency is to evolve into
expanding regions of a nearly uniform density. The approximation is restricted
to the interior and fails at the void’s outer fringes because of its neglect of the
domineering role of surrounding material, such as the sweeping up of matter
and the encounter with neighbouring features.

Ellipsoidal Gravitational Potential

The model describes the evolution of a homogeneous ellipsoidal region with
a triaxially symmetric geometry, specified by its principal axes C1(t), C2(t)
and C3(t). The ellipsoid has a uniform matter density ρ(t), and density excess
δ(t).

In the presence of an external potential contribution the total gravitational
potential Φ(tot)(r) at a location r = (r1, r2, r3) in the interior of a homogeneous
ellipsoid may be decomposed into three separate (quadratic) contributions,

Φ(tot)(r) = Φu(r) + Φ(int)(r) + Φ(ext)(r) . (59)

A necessary condition for the ellipsoidal formalism to remain self-consistent is
that each of the three separate contributions retains a quadratic form. Higher
order contributions, also of the external potential, are ignored. The three sep-
arate contributions are:

• Homogeneous Cosmic Background
The potential contribution of the homogeneous background with universal
density ρu(t),

Φu(r) =
2
3
πGρu (r2

1 + r2
2 + r2

3) . (60)

• Internal Ellipsoidal Potential
The interior ellipsoidal potential Φ(int)(r), superimposed onto the homoge-
neous background,

Φ(int)(r) =
2
3
πGρu δ(t) (r2

1 + r2
2 + r2

3) +
1
2

∑
m,n

T (int)
mn rmrn ,

in which T
(int)
mn are the elements of the traceless internal tidal shear tensor.

The quadratic expression for Φ(int) assumes a simplified form in the coordinate
system defined by the principal axes of the ellipsoid.
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Φ(int)(r) = πGρu δ
∑
m

αmr2
m , (61)

where the coefficients αm(t) are

αm(t) = R1(t)R2(t)R3(t)

∫ ∞

0

dλ

(R2
m(t) + λ)

∏3

n=1

(R2
n(t) + λ

)1/2
. (62)

The Poisson equation implies the αm’s obey the constraint
∑3

m=1 αm = 2. In
the case of a spherical perturbation all three αm’s are equal to 2/3, reproduc-
ing the well-known fact that it does involve a vanishing internal tidal tensor
contribution,

T (int)
mn =

∂2Φ(int)

∂rm ∂rn
− 1

3
∇2Φ(int) δmn = 2πGρu δ(t)

(
αm − 2

3

)
δmn .

• External Tidal Influence
The external gravitational potential Φ(ext). Assuming that the external tidal
field does not vary greatly over the expanse of the ellipsoidal mass element,
we may limit the external contribution to its quadrupolar components,

Φ(ext)(r) =
1
2

∑
m,n

T (ext)
mn rmrn . (63)

T
(ext)
mn are the components of the external (traceless) tidal shear tensor. By

default the latter is limited to its traceless contribtuion, the corresponding
(background) density is implicitly included in the (total) internal density,
ρu(t)(1 + δ(t)).

The external field is taken to be the smooth large-scale tidal field Tb,mn.
The latter is directly related to the traceless large scale (background) strain
tensor (57), with eigenvalues τm given by (see (71)),

τm = 4πGρu(t)λ′
vm(t) . (64)

where λ′
vm are the eigenvalues of the background anisotropic strain tensor

E ′
pk,ij at the location of the mass peak.

Ellipsoidal Evolution

The anisotropy of an initially spherically symmetric matter element in the pri-
mordial cosmic matter distribution is a direct effect of the external tidal force
field. As a result the principal axes of the configuration are the ones defined
by the external tidal tensor T

(ext)
mn . Both the external large-scale tidal forces

inducing the anisotropic collapse and the resulting internal one do strongly
enhance the anisotropic shape of the ellipsoid.
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The evolution of the ellipsoid is specified by three scale factors Ri, one
for each of the three principal axes. The boundary of the ellipsoid and the
overdensity evolve as

Ci(t) = Ri(t)Rpk , δ(t) =
a3

R1R2R3
− 1 . (65)

in terms of the initial (Lagrangian) radius Rpk. The evolution of the scale
factors Ri are determined by the gravitational acceleration along each of the
principal axes (see (59)). Including the influence of the cosmological constant
Λ, this translates into

d2Rm

dt2
= −4πGρu(t)

[
1 + δ

3
+

1
2

(
αm − 2

3

)
δ

]
Rm − τm Rm + ΛRm .

(66)
with αm(t) the ellipsoidal coefficients specified by the integral (62) and τm the
eigenvalue of the external (large-scale) tidal shear tensor T

(ext)
mn .

The collapse of the three axes of the ellipsoid will happen at different
times. The shortest axis will collapse first, followed by the intermediate axis
and finally by the longest axis. The shortest axis will collapse considerably
faster than that of the equivalent spherically evolving perturbation while full
collapse along all three axis will be slower as the longest axis takes more time to
reach collapse. In fact, the longest axis may not collapse at all. An illustration
of this behaviour can be found in Fig. 11. It shows the evolution of a slightly
overdense isolated ellipsoid, with initial axis ratios a1 : a2 : a3 = 1 : 0.9 :
0.8, embedded in a background Einstein-de Sitter Universe. Quantitatively
the expansion and subsequent contraction of each of the three axes can be
followed in Fig. 12. The superimposed blue curve represents the evolution
of the equivalent spherical overdensity. The righthand frame shows that this
development involves a continuous decrease of both axis ratios.

4.5 Ellipsoidal Collapse and External Influences

In order to properly model the nonlinear collapse of the features in the Cos-
mic Web it is essential to embed the nonlinear anisotropic collapse of mass
elements within the large-scale environment. A proper approximation, follow-
ing Bond & Myers [17], is that of assuming the large-scale tidal influence
to be largely linear and assuring that the initial conditions for the ellipsoid
asymptotically approach the Zel’dovich equation,

Rm(ti) = a(ti) {1 − D(ti)λm} ,

(67)
dRm

dt
(ti) = H(ti)Rm(ti) − a(ti)H(ti)f(Ωi)D(ti)λm ,
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Fig. 11. The evolution of an overdense homogeneous ellipsoid, with initial axis ratio
a1 : a2 : a3 = 1.0 : 0.9 : 0.9, embedded in an Einstein-de-Sitter background Universe.
The two frames show a time sequel of the ellipsoidal configurations attained by the
object, starting from a near-spherical shape, initially trailing the global cosmic ex-
pansion, and after reaching a maximum expansion turning around and proceeding
inexorably towards ultimate collapse as a highly elongated ellipsoid. Left: the evolu-
tion depicted in physical coordinates. Red contours represent the stages of expansion,
blue those of the subsequent collapse after turn-around. Right: the evolution of the
same object in comoving coordinates, a monologous procession through ever more
compact and more elongated configurations
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Fig. 12. The evolution of an overdense homogeneous ellipsoid, with initial axis ratio
a1 : a2 : a3 = 1.0 : 0.8 : 0.6, in an Einstein-de-Sitter background Universe. Left:
expansion factors for each individual axis; Right: axis ratios a2/a1 and a3/a1. The
ellipsoid axes are depicted as red curves. For comparison, in blue, the evolution of
an equivalent homogenous spherical overdensity
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in which λm are the eigenvalues of the Zel’dovich deformation tensor ψmn,
and D(t) is the linear density growth factor and f(Ω) the corresponding linear
velocity factor [62].

By using the implied relation between the eigenvalues of the external tidal
tensor τm and the large-scale tidal strain tensor Emn (64) the following equa-
tion of motion is obtained,

d2Rm

dt2
= −4πGρu(t)

[
1 + δ

3
+

1
2

(αm − 2
3
) δ + λ′

vm

]
Rm + ΛRm. (68)

While the smooth large-scale tidal field induces the anisotropic collapse of the
mass element, the subsequent nonlinear evolution differs increasingly from
the predictions of the linear Zel’dovich formalism (58). As can be seen in
Fig. 13 for nearly all conceivable (external) tidal shear ellipticities the nonlin-
ear ellipsoidal collapse involves a considerably faster collapse along all three
axes of an ellipsoid than that following from the Zel’dovich approximation
(58). Only for extremely anisotropic tidal configurations the Zel’dovich for-
malism would find the same collapse time for the longest axis of the mass
element.

Fig. 13. The collapse redshifts for the three ellipsoidal axes of the initial external
tidal shear ellipticity ev, assuming zero prolaticity pv, a linear extrapolated density
δ0 = 2 and a linear external tide approximation (68). The dashed curve shows
how poorly the Zel’dovich approximation fares: only for the extreme elongations
does it get the collapse redshift along the third axis right, while it is far off for
the other two directions. Also shown, by dotted lines, are the redshifts at which
an equivalent spherical overdensity reaches overdensity 170 (upper dotted line) and
complete collapse (lower dotted line). From Bond & Myers [17]. Reproduced with
permission of AAS
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4.6 Primordial Structural Morphology

The values of the (Zel’dovich) deformation eigenvalues λv1, λv2 and λv3 basi-
cally determine the (asymptotic) morphology of the resulting features, roughly
along the lines specified in Table 1: they function as cosmic shape parameters.

To get insight into the prevailing morphology in the cosmic matter distri-
bution it is necessary to assess the statistical and spatial distribution of the
shear eigenvalues. This will determine the overall morphology and geometry
of the cosmic density field at the “quasi-linear” stage – i.e. the prominence of
mutually interconnected flattened structures, denser elongated filaments and
dense compact clumps.

The first assessment of the statistical properties of the deformation tensor
in a primordial Gaussian random density fluctuation field is the seminal study
by Doroshkevich [25]. He derived the (unconditional) pdf for the eigenvalues
λ1, λ2 and λ3,

P (λ1, λ2, λ3) ∼ (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)

× exp
{
− 15

2σ2

[
λ2

1 + λ2
2 + λ2

3 −
1
2
(λ1λ2 + λ1λ3 + λ2λ3)

]}
.

(69)

This yields a probability of 8% that all of the eigenvalues are negative, λ1 <
λ2 < λ3 < 0, predisposing the formation of a void. The probability that
matter elements have one or more positive eigenvalues is filament-dominated
weblike morphology is the generic outcome during the moderate quasi-linear
evolutionary phase for any scenario with primordial Gaussian perturbations
marked by relatively strong perturbations on large scales. The signs of the
eigenvalues will determine the (asymptotic) local geometry along the lines
specified in Table 1.

For the purpose of understanding the geometry of large scale structure we
also should take note of the fact that the values of the deformation tensor
eigenvalues are directly constrained by the local density,

Table 1. Asymptotic morphology: deformation eigenvalue conditions for different
asymptotic structural morphologies in the Cosmic Web

Structure Eigenvalue signatures

Peak λ1 > 0 ; λ2 > 0 ; λ3 > 0
Filament λ1 > 0 ; λ2 > 0 ; λ3 < 0
Sheet λ1 > 0 ; λ2 < 0 ; λ3 < 0
Void λ1 < 0 ; λ2 < 0 ; λ3 < 0
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δ̃ = (λv1 + λv2 + λv3) , (70)

in which δ̃ is the (linearly extrapolated) initial density contrast. In other
words, when we see a supercluster or other interesting feature we should assess
the conditional probability of the shape parameters for the relevant range of
density values. To this end it is helpful to introduce the shear ellipticity ev

and shear prolateness pv (see Bardeen et al. [6], Bond & Myers [17] 1996a),

ev =
λv1 − λv3

2
∑

i
λvi

, pv =
λv1 − 2λv2 + λv3

2
∑

i
λvi

. (71)

By implication ev and pv are constrained to ev ≥ 0 and −ev ≤ pv ≤ ev.
The evolution of a patch is spherically symmetric when the shear is isotropic
(λv3 = λv2 = λv1), i.e. when ev = pv = 0. When the collapse is predominantly
along one axis (λv3 > 0, λv2 ∼ λv1 < 0), the initial evolution is towards a
classical pancake by ev = pv. When a second axis is also collapsing (λv3 ∼
λv2 > 0, λv1 < 0) the result is filamentary, ev = −pv. In other words, extreme
sheet-like structures would have pv ≈ ev, extreme filaments pv ≈ −ev.

Via the quantities ev and pv we may get an idea of the prominence of
filamentary and sheetlike structures in the cosmic matter distribution by as-
sessing their conditional distribution in the primordial density field for a given
δ = νfσ. The combined statistical distribution P (ev, pv|νf ) of ev and pv and
of the prolaticity, P (pv|νf ), at an arbitrary field location with density are
Wadsley & Bond [87] and Bond [14],

P ({λv1, λv2, λv3}|νf ) = P (ev, pv|νf )

=
225

√
5√

2π
ev(e2

v − p2
v) ν

3
f e−15(νfev)2/2 − 5(νfpv)2/2 dev dpv . (72)

Figure 14 shows the iso probability contours of P (ev, pv|νf ) for a set of 6 dif-
ferent νf values. It manifestly demonstrates the distinct tendency of overdense
regions, in particularly those of moderate density, to be filamentary: pv < 0
or, equivalently, eigenvalue signature (λ1, λ2, λ3) = (− + +). The figure also
underlines the fact that higher peaks tend to be more spherical. This may
be quantitatively appreciated from the corresponding expectation values for
the the ellipticity and prolaticity of an arbitary field patch with local density
δ = νfσ [14],

〈ev|νf , field〉 ≈ 0.54ν−1
f ; Δev ≈ 0.18ν−1

f ,

(73)
〈|pv||νf , field〉 ≈ 0.18ν−1

f ; Δpv ≈ 0.22ν−1
f ,

which express the strongly declining nature of ellipticity and prolateness as a
function of patch density.

The gross properties of the Cosmic Web may therefore already be found in
the primordial density field. In this light it is particularly illuminating to study
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Fig. 14. The 95, 90 and 50% contours of the conditional probability for ellipticity ev

and prolateness pv subject to the constraint of a given field density value ν = δ/σ.
The figure demonstrates that even for high ν the shapes are triaxial and that for
lower density values there is a tendency towards filamentary configurations

the distribution of the deformation eigenvalue signatures as a function of den-
sity threshold νf = δf/σ. Figure 15 looks at two aspects of this question [66].
The dependence of structural morphology on the density threshold is given by
the probability of the eigenvalue signature on the threshold δ = νσ, P (sign|δ).
The left panel of Fig. 15 shows that for Gaussian fields at overdensties above
a critical δ = 1.56σ one encounters predominantly spherical-like mass con-
centrations (+ + +). By contrast, at lower density contrast 0 < δ < 1.56σ,
most of the initial density enhancements are in elongated filamentary bridges
(−++). Planar configurations (−−+) are less likely for any positive overden-
sities δ > 0. The related quantity P (δ|sign) gives us the density distribution
within different types of structure. While the average density of the filaments
in the initial configuration is equal to δ = 0.6σ, it is the δ ∼ 1.5 − 2σ ex-
cursions which are precursors of the rare prominent filaments. By contrast,
rare planar membrane-like configurations are expected only at lower over-
densities of δ ∼ 0.5 − 1σ. Mean densities for the given shear signatures are
〈δ〉 ≈ 1.66σ , 0.6σ ,−0.6σ, with dispersion Δδ ≈ 0.55σ.

4.7 Evolving Filamentary Morphology

Evidently, the primordial density field analysis only provides a superficial
impression of the emerging morphology of the Cosmic Web. What it does
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Fig. 15. Left panel: probability of the eigenvalue signature given the overdensity
threshold P (sign|ν), ν = δ/σ. Right panel: density distribution given the signature
type of shear tensor, P (ν|sign). From: Pogosyan et al. [66]

emphasize, and strongly so, is the prevalence of proto-filaments and proto-
clusters in the primordial density field.

This impression will only become more pronounced as nonlinear evolution
sets in. The salient filamentary nature of the nonlinear mass distribution seen
in large N-body simulations (see e.g. Fig. 1) can already be noticed when
following the early nonlinear evolution by means of the Zel’dovich mapping
(54). A telling illustration of this can be seen in Fig. 16. The left panel shows
an initial linear CDM overdensity field δL smoothed on a Gaussian scale Rb =
3.5 h−1 Mpc, with σρ = 0.65. The chosen density threshold is δL = 1σρ, the
level at which δL(r) percolates. The right panel shows δZ(r, t), the overdensity
of the resulting Zel’dovich map at a contour threshold δZ = 2, just above
where percolation occurs.

The Zel’dovich map in Fig. 16, evolved to σ8 = 0.7, clearly shows the dom-
inant filamentary morphology. It disproves the conventional tenet of pancakes
representing the dominant overdensity features. Also, it underlines the obser-
vation that the prominent filaments already existed in an embryonic – and
fattened – form in the initial conditions. As the nonlinear evolution proceeds
the cluster regions will collapse even further and occupy even less volume.
This will enhance the filamentary character of the cosmic matter distribution
even further.

Having argued and illustrated the principal filamentary nature of the Cos-
mic Web, largely on the basis of a local evaluation of the deformation eigen-
values, we need to assess the apparent coherence of these weblike structures
and their mutual relationship. Their overall geometry and topology can be
understood by adressing the relationship between the local values of the de-
formation tensor, responsible for the local morphology, and the global density
field.
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Fig. 16. Cosmic Web and Clusters. (Mean) constrained density field reconstructions
〈δL|20peaks〉 on the basis of the 20 most massive cluster peaks (patches) in a CDM
density field in a (50 h−1 Mpc)3 box with periodic boundary conditions. Lefthand:
initial linear CDM overdensity field δL(r), smoothed on a Gaussian scale RG =
3.5 h−1 Mpc with (iso)density threshold level δL = 1σρ, with σρ = 0.65, the level at
which δL percolates. The location, size and shape of the cluster patches is indicated
by means of the black ellipsoids, whose size is proportional to the peak scale Rpk and
orientation defined by the shear tensor orientation. Righthand: the corresponding
Zel’dovich map density field δZ of the smoothed initial conditions at a contour
threshold δZ = 2. Based on Bond et al. [18]. Reproduced with permission of Nature

This makes it necessary to turn to the concept of conditional multi-point
correlation functions in Lagrangian space (also see Bond [15]), i.e. the statis-
tically averaged density and displacement fields subject to various constraint
on the (tidal) shear at multiple points in the cosmic volume. The mathe-
matical language needed for evaluating the implied “protoweb” in the initial
density field is that of constrained random field theory, first introduced by
Bertschinger [10]. In the next Sect. 4.8 we will describe this formalism in
some necessary detail.

4.8 Constrained Random Field Formalism

A major virtue of the constrained random field construction technique [10,
35, 73, 84] is that it offers the instrument for translating locally specified
quantities to the corresponding implied global matter distribution.

Bertschinger [10] described how a set Γ of functional field constraints
Ci[f ] = ci, (i = 1, . . . ,M) of a Gaussian random field f(r, t) would translate
into field configurations for which these constraints would have the specified
values ci. Any such constrained field realization fc can be written as the sum
of a mean field f̄(x) = 〈f(x)|Γ〉, the ensemble average of all field realiza-
tions obeying the constraints, and a residual field F (x), embodying the field
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fluctuations characterized and specified by the power spectrum P (k) of the
particular cosmological scenario at hand,

fc(x) = f̄(x) + F (x) (74)

Bertschinger [10] showed the specific dependence of the mean field on the na-
ture Ci[f ] of the constraints as well as their values ci. In essence the mean field
can be seen as the weighted sum of the field-constraint correlation functions
ξi(x),

ξi(x) ≡ 〈f Ci〉 (75)

(where we follow the notation of Hoffman & Ribak [35]). Each field-constraint
correlation function encapsulates the repercussion of a specific constraint Ci[f ]
for a field f(x) throughout the sample volume Vs. For example, the field-
constraint correlation function for a constraint on the peculiar velocity or
gravity is a dipolar pattern, while a tidal constraint Tij effects a quadrupolar
configuration (see van de Weygaert & Bertschinger [84]). The weights for each
of the relevant ξi(x) are determined by the value of the constraints, cm, and
their mutual cross-correlation ξmn ≡ 〈CmCn〉,

f̄(x) = ξi(x) ξ−1
ij cj . (76)

In practice, it is usually beneficial to evaluate the constraint correlation func-
tion ξi(r, ξij and the mean field in Fourier space. For a linear cosmological
density field with power spectrum P (k) we have

ξi(r) =
∫

dk
(2π)3

Ĥi(k)P (k) e−ik·x

(77)

ξij =
∫

dk
(2π)3

Ĥ∗
i (k) Ĥj(k)P (k)

with Ĥi(k) the constraint i’s kernel (the Fourier transform of constraint Ci[f ])
and cj the value of this constraint.

The additional generation of the residual field F is a nontrivial exercise:
the specified constraints translate into locally fixed phase correlations. This
renders a straightforward random phase Gaussian field generation procedure
unfeasible: the amplitude of the residual field is modified by the local corre-
lation with the specified constraints. Hoffman & Ribak [35] pointed out that
for a Gaussian random field the sampling is straightforward and direct, which
greatly facilitated the application of CRFs to cosmological circumstances. This
greatly facilitated the application of CRFs to complex cosmological issues [44,
55, 69].

Van de Weygaert & Bertschinger [84], following the Hoffman–Ribak for-
malism, worked out the specific CRF application for the circumstance of sets
of local density peak (shape, orientation, profile) and gravity field constraints.
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With most calculations set in Fourier space, the constrained field realization
for a linear cosmological density field with power spectrum P (k) follows from
the computation of the Fourier integral

f(x) =
∫

dk
(2π)3

[
ˆ̃
f(k) + P (k) Ĥi(k) ξ−1

ij (cj − c̃j)
]

e−ik·x (78)

where the tilde indicates it concerns a regular unconstrained field realization f̃ .
One of the major virtues of the constrained random field construction tech-

nique is that it offers the instrument for translating locally specified quantities
into the corresponding implied global matter distributions for a given struc-
ture formation scenario. In principle the choice of possible implied matter
distribution configurations is infinite. Nonetheless, it gets substantially cur-
tailed by the local matter configuration. The influence of local constraints
is set by the coherence scale of matter fluctuations, a function of the power
spectrum of fluctuations.

While the CRF formalism is rather straightforward for idealized linear
constraints reality is less forthcoming. If the constraints are based on measured
data these will in general be noisy, sparse and incomplete. Wiener filtering
will be able to deal with such a situation and reconstruct the implied mean
field, at the cost of losing signal proportional to the loss in data quality (see
e.g. Zaroubi et al. [89]). A major practical limitation concerns the condition
that the constrained field is Gaussian. For more generic nonlinear clustering
situations the formalism is in need of additional modifications. For specific
situations this may be feasible [73], but for more generic circumstances this
is less obvious (however, see Jones & van de Weygaert 2008).

4.9 Shear Constraints

The Megaparsec scale tidal shear pattern is the main agent for the contraction
of matter into the filaments which trace out the cosmic web (see Figs. 18
and 19). For a cosmological matter distribution the close connection between
local force field and global matter distribution follows from the expression of
the tidal tensor in terms of the generating cosmic matter density fluctuation
distribution δ(r) [84]:

Tij(r) =
3ΩH2

8π

∫
dr′ δ(r′)

{
3(r′i − ri)(r′j − rj) − |r′ − r|2 δij

|r′ − r|5
}

− 1
2
ΩH2 δ(r, t) δij .

Constrained random field realizations immediately reveal the nature of the
density field realizations δ(r) that would generate a tidal field Tij at particu-
lar location r0. The effect of the local shear constraints on the density profile
around a position r0 may be seen in Fig. 17. The shape of the density contours
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Fig. 17. Constrained primordial density field 〈δ(r)|λ1, λ2, λ3〉 as a function of dis-
tance r in units of the filter scale Rf , in the three eigendirections. Left frame: shear
constraint signature (+ + +). Right frame: shear constraint signature (− + +).
The “filamentary” behaviour of the density in the neighbourhood of the point mani-
fests itself particularly in the density profile along the x-direction (top curve). From:
Pogosyan et al. [66]

clearly depends on the signature of the eigenvalues. The righthand frame does
reveal an increase in the density along one axis while falling off along the
remaining two. This is symptomatic of filamentary bridges that connect the
higher density regions where the shape of the density profile is more spher-
ical. In effect, the local shear signature defines the curvature of the density
isocontours up to a distance of several filter radii Rf

2.
Pursuing the filamentary configuration implied by the specified (− + +)

signature tidal shear, the 3-D density distribution around the location of the
specified constraint is shown in Fig. 19. The specified shear tensor is oriented
along the box axes. The field is Gaussian filtered on a (rather arbitrary) scale
of 2 h−1 Mpc. The implied mean field f̄ is shown in the 3 top panels. Each
panel looks along one of the main axes. The constraint clearly works out into
perfect global quadrupolar mass distribution. A representative realization of
a quadrupolar (CDM) cosmic matter distribution which would induce the
specified shear is shown in the second row of panels.

The corresponding maps of the tidal shear in the same region are shown
in the bottom row. Included are contour maps of the total tidal field strength.
Also we include bars indicating the direction and strength of the tide’s
compressional component3. Along the full length of the filament in Fig. 19

2 The information contained in the density curvature tensor itself is much more
local and less representative of the density behaviour at large distances from the
constraint point.

3 On the basis of the effect of a tidal field, we may distinguish at any one location
between “compressional” and “dilational” components. Along the direction of a
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Fig. 18. Constrained field construction of initial quadrupolar density pattern in a
SCDM cosmological scenario. The tidal shear constraint is specified at the box centre
location, issued on a Gaussian scale of RG = 2 h−1 Mpc and includes a stretching
tidal component along the x- and y-axis acting on a small density peak at the
centre. Its ramifications are illustrated by means of three mutually perpendicular
slices through the centre. Top row: the “mean” field density pattern, the pure signal
implied by the specified constraint. Notice the clear quadrupolar pattern in the y-
and z-slice,directed along the x- and y-axis, and the corresponding compact circular
density contours in the x-slice: the precursor of a filament. Central row: the full
constrained field realization, including a realization of appropriately added SCDM
density perturbations. Bottom row: the corresponding tidal field pattern in the
same three slices. The (red) contours depict the run of the tidal field strenght |T |,
while the (green) tidal bars represent direction and magnitude of the compressional
tidal component in each slice (scale: RG = 2 h−1 Mpc). From van de Weygaert [83]
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Fig. 19. The emergence of a filament in an SCDM structure formation scenario.
Lefthand column: density/particle distribution in z-slice through the centre of the
simulation box. Righthand column: the corresponding tidal field configurations,
represented through the full tidal field strength |T | contour maps (red), as well
as the corresponding compressional tidal bars (scale: RG = 2 h−1 Mpc). From top
to bottom: primordial field, a = 0.2 (visible emergence filament), present epoch.
Note the formation of the filament at the site where the tidal forces peaked in
strength, with a tidal pattern whose topology remains roughly similar. From van de
Weygaert [83]
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we observe a coherent pattern of strong compressional forces perpendicular to
its axis.

Filaments and Peaks

The dynamical evolution in and around the (proto) filament is depicted in
Fig. 19. It shows the emergence of a (CDM) filament with the density/particle
distribution along the spine of the emerging filament (lefthand column) and
the corresponding tidal configuration (righthand column). The top row cor-
responds to the primordial cosmic conditions, the central row to a = 0.2 and
the bottom row to a = 0.8. At a = 0.2 we recognize the first vestiges of an
emerging filament, at a = 0.8 it has indeed condensed as the most salient
feature in the mass distribution. Also, we see that the filament forms along
the ridge seemingly predestined by the primordial tidal configuration (Figs. 19
and 20).

The figure also clarifies the essence of the link between filaments and clus-
ters. At the tip of the evolving filament we observe the emergence of massive
cluster patches. They naturally arise in and around the overdense peaks in
the primordial quadrupolar mass distribution implied by the tidal shear con-
straint. These overdense protoclusters were the source of the specified shear.
A quadrupolar matter configuration will almost by default evolve into the
canonical cluster-filament-cluster configuration so prominently recognizable
in the observed Cosmic Web.

The two main conclusion from these observations are the embryonic pres-
ence of the weblike features in the primordial density field and the intimate
link between the cluster distribution and the filigree of filaments as most out-
standing structural aspect of the Cosmic Web (see Fig. 20).

4.10 Nodes of the Cosmic Web: Peak Patches

Clusters represent the rare events in the cosmic matter distribution. In the
above we have established that they are the ultimate source for the anisotropic
contraction of filaments and form the nodes that weave the cosmic web
throughout the Universe.

The study of local one-point shear constraints has lead to the conclusion
that filaments are indeed the naturally dominant structural feature in the cos-
mic matter distribution. The remarkable size of the filaments is not, however,

“compressional” tidal component Tc (for which Tc < 0.0) the resulting force field
will lead to contraction, pulling together the matter currents. The “dilational”
(or “stretching”) tidal component Td, on the other hand, represents the direction
along which matter currents tend to get stretched as Td > 0. Note that within
a plane, cutting through the 3-D tidal “ellipsoid”, the tidal field can consist
of two compressional components, two dilational ones or – the most frequently
encountered situation – of one dilational and one compressional component.
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Fig. 20. The relation between the cosmic web, the clusters at the nodes in this
network and the corresponding compressional tidal field pattern. It shows the matter
distribution at the present cosmic epoch, along with the (compressional component)
tidal field bars in a slice through a simulation box containing a realization of cosmic
structure formed in an open, Ω◦ = 0.3, Universe for a CDM structure formation
scenario (scale: RG = 2 h−1 Mpc). The frame shows structure in a 5 h−1 Mpc thin
central slice, on which the related tidal bar configuration is superimposed. The
matter distribution, displaying a pronounced weblike geometry, is clearly intimately
linked with a characteristic coherent compressional tidal bar pattern. From: van de
Weygaert [83]

derivable from constraints at a given single point. To learn more about the
strength, structure and connections of the weblike features we need to inves-
tigate their dependence on the location, nature and structure of clusters. For
this we need to turn to correlations constrained by at least two rare peak-
patches. In order to fully grasp their impact on the overall morphology of the
cosmic web we first need to delve into their internal structure.

Clusters at any cosmic epoch are the product of a hierarchical buildup
of structure in and around the primordial protocluster, peaks in the primor-
dial mass distribution. In Sect. 3.3 we have discussed in some detail how
the anisotropic nature of collapse of (sub)clumps can be included by means
of a moving collapse barrier in a local extended Press–Schechter description
of hierarchical evolution. A more physical image would also try to take into
account the matter distribution in and around the primordial peak. This is
achieved by the peak patch formalism of Bond & Myers [17].

The peak-patch formalism exploits the full potential of the peaks formalism
[6] by using adaptive spatial information on both small and large scales to
construct the hierarchical evolution of collapsing protocluster peak patches.
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The entire patch moves with a bulk peculiar velocity and is acted upon by
external tidal fields, determined by long-wavelength components of the density
field.

Peak Patch: Hierarchical & Anisotropic Collapse

The formation of a cluster around an overdensity is approximated as the com-
bination of the linear evolution of a smooth large-scale background field and
the coupled nonlinear evolution of the mass element itself, and its substruc-
ture. Clusters are identified with the peaks in the primordial Gaussian field
on an appropriately large smoothing scale RG. This scale is determined by
filtering the field around a particular peak’s location over a range of radii. By
means of the ellipsoidal collapse model, including the influence of the external
tidal field, the collapse time of the ellipsoidal configuration is determined. At
any one cosmic epoch the peak’s scale Rpk is identified with the largest scale
Rb on which, according to the homogeneous ellipsoidal model, it has collapsed
along all three dimensions.

The mass of the peak is

Mpk =
4
3
πρua

3 R3
pk . (79)

Because the formalism works within the spatial mass distribution itself it al-
lows the identification and dissection of overlapping (collapsed) peak patches.
Usually this concerns peaks of a different scale. Small-scale peaks may be
absorbed/merged with larger peaks with which they largely overlap (half-
exclusions). If they only partially overlap, with their centers outside each
others range, one may seek to define a proper prescription to divide up the
corresponding mass (binary exclusion/reduction). The resulting mass spec-
trum of clumps adheres closely to the predictions of the extended Press–
Schechter formalism and to the results of N-body simulations.

A major virtue of the peak-patch formalism is that the spatial distribution
of the patches may be followed in time. Upon having identified the patches at
their original Lagrangian location, they are subsequently displaced towards
their Eulerian position (most conveniently by means of the Zel’dovich formal-
ism). A typical result is shown in Fig. 21 (from Platen et al. [64]), a nice
illustration of how narrowly collapsed peaks trace the cosmic web.

Anatomy of a Peak

Following the differentiation between nonlinearly evolving short wavelength
contributions δf(x) and linearly evolving long-wavelength contributions δb(x)
(see (42)), we can distinguish three contributions to a peak’s structure and
dynamics,

δ(x) = δ̄b(x) + Fb(x) + Ff(x)
= δ̄b(x) + Fb(x) + δf(x) (80)
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Fig. 21. The distribution of peak patches for a realization of a SCDM density field in
a 100 h−1 Mpc box. The lefthand image is a slice through the 3-D matter distribution.
The blobs are collapsed peaks, their size related to their spatial extent/mass. Each
patch is moved from its Lagrangian position by means of the Zel’dovich formalism.
The gray edges are the paths followed by each of the patches. The bottom insert
zooms in on one of the regions, offering a more distinct impression of the size of
each of the patches. Image courtesy of Erwin Platen

One concerns the mean field structure δ̄b(x) of the cluster peak specified on a
scale Rb and formally corresponds to the ensemble average of all peaks with
the specified properties. Because the peak is embedded within a fluctuating
(large-scale) field, there is also a residual fluctuating large-scale contribution
Fb(x). In and around the peak the latter is heavily affected by the peak’s
presence in that it is hardly existent or at least extremely quiescent in its
neighbourhood. The internal substructure of the peak patch mainly consists
of the short wavelength contribution δf(x). The latter is hardly affected by the
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presence of the peak. While formally constrained by the peak’s presence, the
resulting residual contribution Ff(x) is mostly a pure unconstrained Gaussian
random field.

The individual components contributing to the total density field around
a primordial cluster peak are shown in Fig. 22 (from Bond & Myers [17]). The
structure of the peak on a is shown by means of density field contours and pe-
culiar velocity field vectors. The peak’s structure was specified on a Gaussian
scale of RG = 5 h−1 Mpc. The solid circle indicates the corresponding peak
scale Rpk = 10 h−1 Mpc. The overall triaxial structure of the peak is deter-
mined by the bakcground mean field shown in the top lefthand panel. The
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Fig. 22. The individual contributions to the structure (density field contours) and
peculiar velocity field (arrows) in and around a density peak. The first three panels
show the (a) large-scale mean field δb, (b) the large-scale variance field Fb, which
is extremely quiescent in the neighbourhood of a peak, and (c) the small-scale field
δf responsible for subclumps within the medium. Adding them altogether produces
(d) the total field around the density peak. In (a) and (b) the contours increase by
factors of 2 from the minimum contour at fc/2, where fc = 1.69 is the critical contour
for spherical tophat collapse. The displacement arrows are scaled for appearance,
and only one in 12 are sampled. Panels (c) and (d) start at the fc contour level
for positive densities and at 2fc for negative ones. The peak was constrained to
have νpk = 2.45, ev,pk = 0.14 and v1,pk = 0.46σv on a Gaussian smoothing scale
of RG = 5 h−1 Mpc. The circle at at 10 h−1 Mpc is the average Rpk associated with
Gaussian peaks at this filter scale. From: Bond & Myers [17]. Reproduced with
permission of AAS
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velocity vectors delineate the expected shear flow around the peak. Because
the specified peak constraints essentially fully specify the structure of the peak
on the smoothing scale the background variance field Fb(x) is extremely qui-
escent (top righthand frame). The small-scale residual field (bottom lefthand
frame) includes two subclumps, one of them rather extended. Adding all com-
ponents together yields the total structure in and around the peak (bottom
righthand frame).

The small-scale structure in and around the peak may vary considerably
from one realization to another even though the cluster’s large scale structure
remains the same. The global history and fate of the peak, however, are largely
specified by the large-scale anisotropic tidal shear and bulk flow.

4.11 Molecular View of the Cosmic Web

In the observed galaxy distribution “superclusters” are often filamentary
cluster-cluster bridges and the most pronounced ones will be found between
clusters of galaxies that are close together and which are aligned with each
other. Very pronounced galaxy filaments of which the Pisces-Perseus super-
cluster chain is a telling example are almost inescapably tied in with a high
concentration of rich galaxy clusters. The Cosmic Web theory expands the
observation of the intimate link between clusters and filaments, described in
some detail in Sect. 4.9, to a complete framework for weaving the cosmic web
in between the clusters in the cosmic matter distribution.

The Cosmic Web Theory

In the language of the crf formalism discussed in Sect. 4.8 the filamen-
tary bridges in between two peak patches should be regarded as “correla-
tion” bridges. The implied constraint correlation function (or mean field)
ξi(r) = 〈δ|2pks〉 defines a protofilament, along the lines seen in Fig. 18. These
correlation bridges will be stronger and more coherent as clusters are nearer
than the mean cluster separation. Because clusters are strongly clusters and
statistically biased [7, 40] there are many cluster pairs evoking strong filamtary
bridges.

The filament bridge will break if the separation of the clusters is too large,
due to diminishing amplitude of the correlation ξi(r) = 〈δ|2pks〉. Such clusters
will be isolated from each other, unless there is a cluster in between to which
both have extended their filamentary bridges. As a result, the typical scale of
a segment of the filamentary network in a CDM type scenario will be in the
order of ∼ 30 h−1 Mpc.

This brings us to the aspect of establishing the weblike network charac-
terizing the observed galaxy distribution and matter distribution in computer
simulations. Consider laying down the rare cluster peaks in the cosmic matter
distribution according to the clustering pattern of peak-patches which be-
come clusters when they evolve dynamically. The correlation bridges arche
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from cluster to cluster in much of the domain, and tehse dynamically evolve
to filaments, creating the network and containing the bulk of the mass.

The order in which the physically significant structures arise is basically
the inverse of that in the classical pancake picture: first, high-density peaks,
then filaments between them and, possibly, afterwards the walls. The latter
should be seen as the rest of the mass between the voids.

Outlining the Web

Figure 23 convincingly demonstrates the viability of the cosmic web theory by
illustrating the excellent reconstruction of the primordial density field implied
by the presence of a set of selected protocluster peaks. The figure concerns a
CDM scenario realization within a comoving region of 50 h−1 Mpc (the same
box as in Fig. 16). Within this volume the peak patches are identified and
rank-ordered in mass.

Of each peak patch the value of the overdensity, the shear tensor Eb,ij and
displacement sb are measured, at their location rpk and averaged over the
peak-patch size Rpk. In addition to the in total 9N constraints for N peak
patches, the extremum requirement of a vanishing density gradient ∇δb = 0
at rpk adds a further 3N constraints. On the basis of the selection of the N
rarest and most massive peak patches the mean (primordial) field realization
is determined following the constrained field formalism outlined in Sect. 4.8.
The 12N peak constraints and the locations of the N peaks result in a mean
initial field 〈δL|Npeaks〉 (76).

We compare the mean field realizations implied by the 5 most massive
peak patches, that by the 10 most massive peaks and for the 20 most peaks.
In the boxes in the lefthand column of Fig. 23 we have indicated their loca-
tions by black ellipsoids of overall size proportional to Rpk and shape defined
by the shear tensor orientation, with the shortest axis corresponding to the
highest shear eigenvalue. The corresponding mean field density field is repre-
sented by isodensity contours at a level δL = 1σρ, where δL is smoothed on a
scale of 3.5 h−1 Mpc. The righthand frames show the Zel’dovich maps of these
smoothed initial conditions.

A comparison with Fig. 16 shows the excellent reconstruction obtained
by adding in the 20 most massive peaks. Also we see that the reconstruc-
tion improves continuously as more and more peaks are added. Some strong
bridges seen in the 20 peak reconstruction 〈δL|20pks〉 are not as evident in
the 〈δL|10pks〉 field, although they emerge at lower thresholds.

Web Bridges: Shear, Distance and Orientation

The observations discussed above show that a list of rank-ordered peak-
patches is a powerful way to maximally compress the information stored in
the initial conditions. They also show what is essential for defining structures
on the basis of a modest set of local measurements. That the specification
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Fig. 23. Building the Cosmic Web with clusters. How adding clusters gradually
defines the details of the Cosmic Web. (Mean) Constrained density field reconstruc-
tions 〈δL|Npeaks〉 on the basis of the N most massive cluster peaks (patches) in a
CDM model of cosmic structure formation. The volume is a (50 h−1 Mpc)3 box with
periodic boundary conditions. The lefthand column frames contain the initial linear
CDM overdensity field δL(r), smoothed on a Gaussian scale RG = 3.5 h−1 Mpc with
(iso)density threshold level δL = 1σρ, with σρ = 0.65, the level at which δL per-
colates. The location, size and shape of the cluster patches are indicated by means
of the black ellipsoids, whose size is proportional to the peak scale Rpk and orien-
tation defined by the shear tensor orientation. The righthand column contain the
corresponding Zel’dovich map density field δZ of the smoothed initial conditions at
a contour threshold δZ = 2. Top row: the constrained field 〈δL|5peaks〉 for 5 peaks,
〈δL|10peaks〉 for 10 peaks and 〈δL|20peaks〉 for 20 peaks. Based on Bond et al. [18].
Reproduced with permission of Nature
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Fig. 24. Cluster Shear and the Cosmic Web. How cluster tidal shear defines the
filigree of the Cosmic Web. Comparison between a (mean) cosmic density field gen-
erated by the 10 most massive cluster peaks with shear constraints (top show) and
without shear constraints (bottom row), for a CDM simulation in a (50 h−1 Mpc)3

box with periodic boundary conditions. Left row: isodensity contours of the lin-
ear CDM overdensity field δL(r), smoothed on a Gaussian scale RG = 3.5 h−1 Mpc
with (iso)density threshold level δL = 1σρ, with σρ = 0.65. The location, size and
shape of the cluster patches are indicated by means of the black ellipsoids, whose
size is proportional to the peak scale Rpk and orinetation defined by the shear ten-
sor orientation. The righthand column contain the corresponding Zel’dovich map
density field δZ of the smoothed initial conditions at a contour threshold δZ = 2.
Both initial density field and Zel’dovich map for the non-shear constraint situation
(bottom row) do have a more bloblike character, and does hardly contain the mat-
ter bridges characterizing the Cosmic Web. Based on Bond et al. [18]. Reproduced
with permission of Nature

of the tidal shear at the peak patches is of fundamental importance for the
succesfull reconstruction of the Cosmic Web may be appreciated from Figs. 23
and 24. By discarding the tidal shear measurements at the peak patches and
only taking into account their overdensity and velocity the implied mean field
loses its spatial coherence. Instead of being marked by strong filamentary
bridges the mean field will have a more patchy character. It demonstrates our
earlier arguments that the tidal shear evoked by the inhomogeneous cosmic
mass distribution is of crucial and fundamental importance in defining the
Cosmic Web.
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The strength and the coherence of the correlation bridges depend strongly
on the mutual distance of the clusters and their alignment. The strongest
filaments are between close peaks whose tidal tensors are nearly aligned.
This may be inferred from the illustration of the 2-point correlation func-
tion in Fig. 25: a binary molecule image with oriented peak-patches as the
atoms. The initial conditions in this figure have been smoothed and Zel’dovich
mapped, producing a telling illustration of the molecular picture of large scale
structure.

The bridge between two clusters will gradually weaken as the separation
between the clusters increases. Strong filaments extend only over a few La-
grangian radii of the peaks they connect. It is in the nonlinear mass distribu-
tion that they occur so visually impressive because the peaks have collapsed
by about a factor 5 in radius, leaving the long bridge between them, which
themselves have also gained more contrast because of the decreases in its
transverse dimension.

Another important factor influencing the coherence and strength of the
connecting filamentary bridges are the mutual alignments between the shear
tensors of the cluster peaks. When we vary the shear orientation from perfect
alignment towards misalignment the strong correlation bridge between two
clusters will weaken accordingly. The top two panels of Fig. 25 show the dif-
ference as two peaks, of equal mass and orientation, are oriented differently.
In the lefthand panel they are perfectly aligned, evoking a strong filamentary
bridge in between them. When the same clusters are somewhat misaligned,
each by ±30◦ with respect to their connecting axis, the bridge severely weak-
ens. The bridge would break at an isodensity level of δl = 1, althougn it
would remain connected at a lower level, for a misalignment of ≈ ±45◦. In
the most extreme situation of a misalignment by ±90◦ the bridge would be
fully broken, no filament would have emerged between the two clusters. The
reason for the strong filaments between aligned peaks is that the high degree
of constructive interference of the density waves required to make the rare
peak-patches, and to preferentially orient them along their connecting axis
leads to a slower decoherence along that axis than along the other axes. This
in turn corresponds to a higher density.

Important for the overall weblike structure in the matter distribution is the
fact that there is a distinct tendency of clusters to be aligned with each other.
The alignment of the orientations of galaxy haloes and clusters with larger
scale structures such as clusters, filaments and superclusters have been the
subject of numerous studies (see e.g. Binggeli [12], Bond [13], Rhee et al. [68],
Plionis & Basilakos [65], Basilakos et al. [8], Trujillo et al. [82], Aragón-Calvo
et al. [2], Lee & Evrard [50], Park & Lee [60], Lee et al. [52]). The peak-patch
theory [17] offers a natural explanation for these alignments by showing that
it is statistically likely that, given a specific orientation of the shear tensor for
a cluster peak, neighbouring cluster peaks will be aligned preferentially along
its axis and have shear tensors aligned with it.
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Fig. 25. The molecular picture of large scale structure: “bonds” bridging clusters.
Shown are isodensity contours of the Zel’dovich map of the smoothed initial density
field. The upper panels show a two-point mean (constrained) field 〈δL|2peaks〉 con-
strained by two oriented clusters separated by 40 h−1 Mpc. Left one is fully aligned,
the right pair is partially aligned. The next four panels show three-point (middle
row) and four-point mean fields for different peak-patch orientations taken from the
simulation. Notice the lower density contrast webbing between the filaments. From
Bond et al. [19]
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Walls and Voids

Upon expanding our inspection in Fig. 25 from 2-peak correlations to three-
point and four-point mean fields we see the emergence of low density contrast
webbing between the filaments, membrane-like sheets. Stronger membranes
will be seen in the regions between the filaments when a number of clusters
is close together. Although these are sheetlike structures they are not the
classical pancakes. In the molecular view of cosmic structure formation the
walls are a mere secondary product.

Voids also do play a significant role in the cosmic web. The formalism
is similar, be it reversed, when concentrating on the voids. Void patch con-
straints create high mean field regions in between them, just where less rare
peak patches reside. However, using voids are not as precise a way to get
the filamentary structure evoked by the peaks. An upcoming study (Platen
et al. [64]) adresses their role and structure in considerably more detail.

Cosmic Scenario

Overall, it is the highly clustered and mutually aligned nature of the clus-
ter distribution which ascertains the salient and coherent weblike nature of
the cosmic matter distribution. In turn, this suggests a dependence of the
morphology and structure of the cosmic web on the cosmological scenario.

Its pattern and prominence does indeed depend upon the shape of the
primordial power spectrum, in particular on the power spectrum index n(k) =
d lnP (k)/d ln k. The examples which are shown in the figures concern a CDM
spectrum with neff ≈ −1.2 on cluster scales. When the spectrum is steepened
clusters become less clustered and the coherence of the web is lost. Although
some filaments will remain they will be weaker and shorter. On the other
hand, when we flatten the spectrum to n(k) < −2, the clusters become more
clustered, so that the coherence is more pronounced and the filaments are
both strengthened and widened.

4.12 Hierarchical Filament Assembly

In the previous sections we have delved in great depth into the nature and
origin of filamentary and sheetlike features in the cosmic web. We have not
yet paid a lot of attention to their hierarchical development. In the reality of
the nonlinear world the collapse and formation of weblike patterns is consid-
erably more complex. Taking the specific example of an emerging filament,
its formation will involve the gradual assembly of small-scale filaments and
virialized low mass clumps into a coherent elongated feature.

Figure 26 gives an impression of the intricacies of filament formation
Aragón-Calvo [1]. It involves a ΛCDM scenario. The initial configuration con-
sists of a myriad of small-scale filaments, with a large scatter in orientation.
As time proceeds these small filaments start to merge into larger filaments,
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Fig. 26. The hierarchical evolution of weblike features: the formation of a filament
in an N-body simulation of structure formation in a LCDM Universe. Following
the emergence of small-scale filaments, we observe the gradual merging into ever
larger entities, culminating in a large massive and dense filament running along the
diagonal of the simulation box. Image courtesy of Miguel Aragón-Calvo
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preceded by a gradual change of orientation along that of the gradually un-
folding large-scale elongated mass concentration running along the diagonal
of the box. Finally, all structure ends up in the massive filamentary feature
that emerged out of the initially merely faintly visible large-scale overdensity.
The figure not only shows the hierarchical character of the process, but also
the dominant tidal influence of the large-scale filament which first appears to
orient substructures along its main axis before gradually absorbing them. It
illustrates the tendency of matter to contract into a sharp filamentary network
already defined in the primordial tidal shear field.

The morphology of the emerging filaments strongly depend on the gener-
alized power spectrum slope n(k) at the corresponding mass scale (also see
Sect. 4.11). For high values n ≈ −0.5 – i.e. for subgalactic scales within the
ΛCDM scenario – a rather grainy feature will emerge. Many small scale clumps
will have fully collapsed and virialized before they get absorbed into the larger
contracting filament. In a scenario with n(k) = −2, on the other hand, the
contracting filament will be collapsing while the small scale objects within
its realm may not yet have fully settled. Often these have not yet even fully
virialized and may still reside in a stage with a pronounced anisotropic geom-
etry. Such scenarios will produce a coherent large-scale filaments in which the
internall small-scale structure will not have a pronounced appearance. Most
dramatic will be the situation for n(k) = −3, the asymptotic situation in
which fluctuations over the full range of scale will undergo contraction and
collapse at the same time.

The morphology of filaments, as well as sheets, will also be influenced by an
additional effect, that of the diffusion of relative dynamical timescales between
different mass scales. Anisotropic collapse will involve a speeding up of the one-
dimensional collapse of an object, and even often a faster collapse along the
medium axis as the object contracts into a filament, but a considerably slower
formation time in terms of full three-dimensional collapse and virialization.
This will bring the formation time of halos closer to that of the embedding
elongated filaments. As a result, the latter will appear to be more coherent
than a simple hierarchical analysis on the basis of clump formation would
imply.

Finally, the morphology of filaments will also be considerably affected by
nonlinear effects. The (extended) Press–Schechter type descriptions involve
highly idealized local approximations. They discard the nonlinear interactions
between the features forming at different scales.

One particular aspect is that of the consequence of alignments between
peaks and the surroundings. The primordial alignments get significantly am-
plified by the subsequent infall of clumps from the surroundings. A few nonlin-
ear effects may be identified. The filaments act like transport channels of the
emerging cosmic web: matter and clumps of matter migrate along the axis
of filaments towards highly compact clusters at the nodes of the web. The
morphology and nature of filaments – strong, dominating, large and coher-
ent or having the appearance of short, weak, and erratic hairlike extensions
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connected to nearby peaks – will be of decisive influence over aspects like the
angular distribution of clumps which fall into a cluster. van Haarlem & van
de Weygaert [86] found that clusters appear to orient themselves towards the
direction along which the last substantial clumps fell in. The exclusive and
continuous infall of clumps along the spine of dominating filament will there-
fore induce a strong alignment of cluster orientation, its substructure and the
surroundings.

4.13 Anisotropic Excursions

Some aspects of the hierarchical assembly of filaments may be understood
within the context of the excursion set formalism described above (Sect. 3.4).
Shen et al. [72] did seek to extend the excursion formalism to filamentary
and planar structures by defining critical density thresholds for the collapse
of filaments and walls. In this they invoked the moving barrier description
for nonspherical collapse of ellipsoidal halos that was introduced by Sheth
et al. [75] (see (32)).

Their description invokes the homogeneous ellipsoid model to obtain es-
timates for the collapse times of walls and filaments. In addition to the full
three-dimensional ellipsoidal collapse of halos this involves the specification of
collapse times and barriers for the one-dimensional collapse of sheets and two-
dimensional filaments. Collapse along the shortest axis of an ellipsoid proceeds
more rapidly than the equivalent spherical collapse [38, 88]. The corresponding
moving barrier for the formation of a sheet does reflect this in involving the
lowest density threshold values (see Fig. 27). The threshold would decrease
towards smaller masses, implying the rapid formation of low mass sheetlike
objects. By contrast the barrier for filament formation would almost be con-
stant over a sizeable range of mass while the barrier for full three-dimensional
collapse does reflect the strong influence of tidal influences for small mass
halos: with respect to their higher mass peers they form relatively late (see
Fig. 27).

fec,w(σ, z) ≈ fsc(z)

{
1 − 0.56

[
σ2(M)
f2

sc(z)

]0.55
}

fec,f (σ, z) ≈ fsc(z)

{
1 − 0.012

[
σ2(M)
f2

sc(z)

]0.28
}

≈ fsc(z) ,

(81)

fec,f (σ, z) ≈ fsc(z)

{
1 + 0.45

[
σ2(M)
f2

sc(z)

]0.61
}

Although this description may provide a reasonable impression of the hi-
erarchical buildup of the cosmic web, it almost certainly involves a strong
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Fig. 27. Example of an excursion random walk (solid curve) crossing the barri-
ers (dotted curves) associated with sheets, filaments and haloes (bottom to top,
see (82)). Plotted is the density perturbation δ(M) on a mass scale M versus the
corresponding σ(M) (recall that σ(M) is a decreasing function of mass M). The
fraction of walks that first cross the lowest (sheet) barrier at σ(Ms), then first cross
the filament barrier at σ(Mf ) and finally cross the highest (halo) barrier at σ(Mh)
represents the mass fraction in halos of mass Mh that are embedded in filaments of
mass Mf > Mh, which themselves populate sheets of mass Ms > Mf . The precise
barrier shapes depend on the collapse model. From Shen et al. 2006. Reproduced
with permission of AAS

oversimplification. The implicit local description of the excursion set formal-
ism may break down for features whose collapse is thoroughly influenced by
the surrounding matter distribution, so strongly emphasized by the Cosmic
Web. Also the strong nonlinear effects that play a role in the shaping of fila-
mentary features van Haarlem & van de Weygaert [86] may not be sufficiently
included in this description. Finally, recent work has shown that a definition
of filaments on the basis of density arguments is hazardous: filaments have a
considerable range of densities, at least in the present day universe Aragón-
Calvo [1], Aragón-Calvo et al. [3], Hahn et al. [31]. An analytical framework
that implicitly includes nonlocal effects will offer a better understanding of
the hierarchical formation of filaments, bringing us back to the peakpatch
formalism [17].

4.14 Filaments Versus Walls

In N -body simulations as well as in galaxy redshift distributions it are in
particular the filaments which stand out as the most prominent feature of the
Cosmic Web. It even remains unclear whether walls are even present at all.
Some argue that once nonlinear clustering sets in the stage in which walls form
is of a very short duration or does not occur at all: true collapse would pro-
ceed along filamentary structures [11, 36, 70]. Indeed, it may be argued that
in the primordial density field overdense regions subject to tidal shear con-
straints are more filamentary than sheetlike, and become even more so in the
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quasi-linear regime [18]. There is also a practical problem in identifying them:
walls have a considerably lower surface density than filaments. This is exac-
erbated by the lack of available objective feature detection techniques. Very
recent, the analysis of an N -body simulation by means of the new Multiscale
Morphology Filter technique did manage to identify walls in abundance [2].
Another indication is that the dissipative gaseous matter within the cosmic
web partially aggregates in walls with low overdensities [41]. This argues for
the presence of moderate potential wells tied in with dark matter walls.

5 Conclusion: Clusters and the Cosmic Web

In these notes we have reviewed the theoretical framework for the formation
of the Cosmic Web in hierarchical scenarios of structure formation. Particular
attention was given to the crucial role of clusters within defining the weblike
network. They are the main source for the tidal shear field responsible for the
spatial outline and dynamical evolution of the prominent filaments and their
less pronounced peers, sheetlike membranes.

We wish to conclude our exposé on the connection between the Cosmic
Web and the spatial distribution with the quote from Bond & Myers [17]
summarizing the essence of what the intrinsic role and identity of clusters is:

“flowing peak patches at which grand constructive interferences in
density and velocity waves mark out the sites of collapse. . . . radiat-
ing outward from the peak-patch core are filaments and sheets that
too are rare. The structure may finally fade into the root-mean-square
fluctuations in the medium as coherence in the phases fades into ran-
domness. Or the structure may blend into another peak patch, for rare
constructive interferences tend to be clustered.”
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van Gorkom, Hans Böhringer and George Rhee. Without their encouragement
and the more than helpful assistance and understanding of Sonja Japenga of
Springer Verlag we would not have managed to bring these notes to comple-
tion. To them we owe a major share of our gratitude ! RvdW is grateful to



Clusters and the Theory of the Cosmic Web 405

Miguel Aragón-Calvo for his permission to use and manipulate various fig-
ures from his Ph.D. thesis. He also acknowledges him and Erwin Platen for
many inspiring discussions and their contributions towards obtaining insight
into the evolution of the Cosmic Web. Most fondly we wish to thank Bernard
Jones, for his enthusiastic and crucial support and inspiration, the many orig-
inal ideas over the years and for his support in completing this manuscript
hours past midnight ...

References

1. Aragón-Calvo, M.A.: Morphology and dynamics of the cosmic web. Ph.D. thesis,
Groningen University (2007)

2. Aragón-Calvo, M.A., Jones, B.J.T., van de Weygaert, R., van der Hulst, J.M.:
Astrophys. J. 655, L5 (2007)

3. Aragón-Calvo, M.A., Jones, B.J.T., van de Weygaert, R., van der Hulst, J.M.:
Mon. Not. R. Astron. Soc., subm. (2007)

4. Audit, E., Teyssier, R., Alimi, J.-M.: Astron. Astrophys. 325, 439 (1997)
5. Balbus, S.A., Hawley, J.F.: Revs. Mod. Phys. 70, 1 (1998)
6. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: Astrophys. J. 304, 15 (1986)
7. Barkana, R., Loeb, A.: Phys. Rep. 349, 125 (2001)
8. Basilakos, S., Plionis, M., Yepes, G., Gottlöber, S., Turchaninov, V.: Mon. Not.
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