Searching for Inflationary Gravitational Waves with CMB and Large Scale Structure

Christopher Hirata – CIFAR April 2012

See Esfandiar Alizadeh & Christopher Hirata arXiv 1201.5374

Inflationary gravitational waves

Inflation gives at least 2 types of primordial perturbations.

$$ds^{2} = a^{2}(\eta) \left\{ -d\eta^{2} + [1 + 2\xi(\mathbf{x})] \delta_{ij} dx^{i} dx^{j} + 2h_{ij}^{\mathrm{TT}}(\mathbf{x}) dx^{i} dx^{j} \right\} + O(\eta^{2})$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$scalar - adiabatic \qquad tensor$$

- Pulled out of the vacuum, literally.
- [Can add anything else but get these from minimal scalar field.]
- Scalar perturbations → discovered, routinely used ...
- Tensor perturbations (GW): $P_h(k) \rightarrow$ Hubble rate & energy density during inflation!

The B mode

- Polarization due to GW-induced quadrupole Thomson scattering off of electrons.
- Search for "B mode" polarization in CMB wrong parity to be due to density perturbations.

The GW Windows

But: Foregrounds!

- Can look for the recombination peak in cleanest parts of sky
 - Strategy for current generation of ground-based polarimeters.
 - If r is large (≥ several x 10⁻²) then this seems a likely route to a first detection.
- Want to confirm it with the reionization peak. But no clean sky available at \(\ell^4\).
 - Remember Heisenberg: $\Delta \ell \Delta \theta > 1/4\pi$.
 - Solvable? I think so, but would like to have more ways to confirm a GW detection.

WMAP-7 Jarosik et al 2011

The 3rd GW Window?

- All post reionization density perturbations modulate the low- ℓ B mode.
- This leads to a high- ℓ polarization signature from IGWs reaching to all scales.
- But very faint (few nK) no hope of detecting the signal directly! Need an overlapping tracer of large scale structure to "demodulate."
- Arcminute scale ($\ell \sim \text{few x } 10^3$) is particularly attractive.
 - ✓ Get below "noise" from primary CMB.
 - ✓ Resolvable with SZ telescopes, although **not** at present sensitivity.
 - \checkmark Hemisphere scale galaxy surveys could actually probe large scale structure at this ℓ (e.g. LSST), although still some time in the future.

In a Cartoon

Big Advantages:

- Avoid smooth low ℓ foregrounds the low ℓ CMB is never used.
- Cosmological signal is obtained via a cross-correlation more robust.

Big Disadvantage:

• LSS projected to $z \sim$ few has $\delta \rho/\rho_{2D} << 1$ – need more sensitivity. (In raw sensitivity, this method will never beat direct measurement of low ℓ .)

Sensitivity

[or, how crazy is this?]

- Pattern the calculation after the problem of lensing of the CMB [Hu, Seljak & Zaldarriaga ... ~10 years ago]
 - It's all the same math except with a few dot products in different places and with the galaxies replacing the primary E-mode.
 - The GW power spectrum is composed of 4-point correlation functions: $P_h(k) = \langle \text{galaxy} * P_{CMB} * \text{galaxy} * P_{CMB} \rangle$
- For $\sigma_r = 0.04$, would need the whole sky (minus the galactic plane) to 1 μ K arcmin (CMB) and limiting $I_{AB} = 25.6$ (galaxies).
 - This depth for hemisphere scale CMB observations remains futuristic
 (1—2 orders of magnitude!) but the technology is improving rapidly.
 - LSST will reach this depth (photo-z's will be crude at this magnitude but we don't care).
 - Geometric constraints all of these are missing the Northern cap.

Sensitivity

Alizadeh & Hirata 2012

Some Obvious Questions & Partial Answers

- What if the source galaxies are polarized?
 - They are, but this is not a problem if no Hubble length scale intrinsic alignment of polarization vectors.
- The galaxies don't perfectly trace the electrons, the redshifts are known imprecisely (large photo-z failure rate), etc.
 - True but cannot fake a B-mode signal protected by parity, much more robust against astrophysics than dark energy studies.
- $I \rightarrow Q,U$ leakage?
 - This is probably the top systematics concern but there are mitigation strategies.

Summary

- The search for inflationary gravitational waves is fundamental but really hard. If detected, we want to confirm them through as many observational windows as we can.
- CMB × LSS is one way to go about this, and has several key advantages in terms of systematic contamination.
- The sensitivity is beyond current observational capabilities but advances are expected in both CMB and LSS. There are always good reasons to want more!