Dick Bond CITA on behalf of the Planck collaboration planck Beyond Planck 2014 +LSS: Inflation futures from CMB & LSS phonon ~ $\zeta = |n\rho|_a /3(1+<w> = energy-density quanta$ $isotropic (volume) strain ~ <math>\zeta = |na|_\rho$ $\zeta_{NL} = |n(\rho \ a^{3(1+w)})/3(1+w) <= dE+pdV$ Cosmic_Probes[$\zeta(x)$, Q_{cosmic} , isoc, ..] or $\zeta(k)$,

or looking out: $\zeta_{LM}(\chi), \chi = |\mathbf{x}| \& \zeta_{LM}(k), k = |\mathbf{k}|$ maps

Dick Bond CITA on behalf of the Planck collaboration planck Beyond Planck 2014 +LSS: Inflation futures from CMB & LSS phonon ~ $\zeta = |n\rho|_a / 3(1 + <w > = energy-density quanta$ isotropic (volume) strain ~ $\zeta = lna|_{D}$ $\zeta_{NL} = ln(\rho a^{3(1+w)})/3(1+w) <= dE+pdV$ **Cosmic_Probes**[$\zeta(\mathbf{x})$, q_{cosmic}, isoc, ..] or $\zeta(\mathbf{k})$, or looking out $\zeta_{LM}(\chi)$, $\chi = |\mathbf{x}| \& \zeta_{LM}(k)$, $k = |\mathbf{k}|$ maps **CMB_Probe no tomography:** projected- χ few modes per LM < $\zeta_{LM}(\chi)|T_{LM} > <\zeta_{LM}(\chi)|E_{LM} >$ available modes: $f_{sky} L_{max}^2 - f_{sky} L_{min}^2$ $L_{max} \sim L_{damp}$ Planck near limit of nonG exploration with CMB (ACT/SPT) $f_{NL} \pm 5$ gravity waves ~Transverse_Traceless_Strain: no tomography, limited L range nt

Dick Bond CITA on behalf of the Planck collaboration planck Beyond Planck 2014 +LSS: Inflation futures from CMB & LSS phonon ~ $\zeta = |n\rho|_a / 3(1 + <w > = energy-density quanta$ isotropic (volume) strain ~ $\zeta = lna|_{\rho}$ $\zeta_{NL} = ln(\rho a^{3(1+w)})/3(1+w) <= dE+pdV$ **Cosmic_Probes**[$\zeta(\mathbf{x})$, q_{cosmic}, isoc, ..] or $\zeta(\mathbf{k})$, or looking out $\zeta_{LM}(\chi), \chi = |\mathbf{x}| \& \zeta_{LM}(k), k = |\mathbf{k}|$ maps **CMB_Probe no tomography:** projected- χ few modes per LM < $\zeta_{LM}(\chi)|T_{LM} > <\zeta_{LM}(\chi)|E_{LM} >$ available modes: $f_{sky} L_{max}^2 - f_{sky} L_{min}^2 = L_{max} - L_{damp}$ Planck near limit of nonG exploration with CMB (ACT/SPT) $f_{NL} \pm 5$ gravity waves ~Transverse_Traceless_Strain: no tomography, limited L range nt LSS Probe tomography: **Large Scale Structure Galaxy Surveys** available modes ~ f_{sky} L_{max}² k_{max} d_{max} ~ $f_{sky} (k_{max}^{3} d_{max}^{3}), k_{min} \sim 2\pi/d_{max} V_{com} \sim d_{max}^{3}$ How many high precision extra modes can we realize?

Inflation = phenomenology of gravitons = Transverse_Traceless_Strain quanta phonon ~ $\zeta_{NL} = ln(\rho a^{3(1+w)})/3(1+w)$

Inflation = phenomenology of phonons = energy-density quanta inflaton = "condensate" of phonon fluctuations, $<\rho|_k<Ha>+\delta\rho$ oscillations relativistic negative-pressure Equation of State (1+w)

phonon = collective mode composed of fundamental scalar fields (many ϕ_b ?) in linear perturbation theory, the phonon = linear combination of fundamental scalars

all that CMB+LSS can deliver is this phonon/strain wave Inflation Phenomenology how does it fit into a UV-complete theory (ultra-high energy to the Planck scale) strings, landscape, ... & IR-complete theory (post-inflation heating -> quark/gluon plasma)??? TBD

Inflation = phenomenology of gravitons = Transverse_Traceless_Strain quanta phonon ~ $\zeta_{NL} = ln(\rho a^{3(1+w)})/3(1+w)$

Inflation = phenomenology of phonons = energy-density quanta inflaton = "condensate" of phonon fluctuations, $<\rho|_k<Ha>+\delta\rho$ oscillations relativistic negative-pressure Equation of State (1+w)

phonon = collective mode composed of fundamental scalar fields (many ϕ_b ?) in linear perturbation theory, the phonon = linear combination of fundamental scalars

all that CMB+LSS can deliver is this phonon/strain wave Inflation Phenomenology how does it fit into a UV-complete theory (ultra-high energy to the Planck scale) strings, landscape, ... & IR-complete theory (post-inflation heating -> quark/gluon plasma)??? TBD

the ζ-scape $\rho(\phi_b, \pi_b, \ln a) => \text{coarse-grained } k < \text{Ha Hamiltonian-density attractor } \rho(\phi_b) = 3 M_P^2 H^2$ $d\phi_b / d\ln a = -M_P^2 \nabla_{\phi_b} \ln \rho$, a gradient / Morse flow => Hamilton-Jacobi eqⁿ, "adiabatic" fluctuations along the Morse flow (phonons) isocurvature directions \perp the flow

trajectories of $\mathcal{D}_{TT,L}$

cf. Planck 2014 Commander Low L spectrum with Blackwell-Rao errors

Preliminary 12 knots, cubic spline

$\Delta D_{TT,L}$

running of $\mathcal{P}_{\mathcal{C}}$ **∃** 3 Chebyshev modes => very stiff => not what the data wants Lower $\tau \Rightarrow$ shape similar to running at low L similar response on $\mathcal{D}_{TT,L}$ for constrained & free r modified by τ freedom running of \mathcal{P}_{ζ} **NOT** wanted the down-up-down tendency is here to stay, 2014-2022-...

early universe acceleration histories = EOS histories 3(1+w)/2

inflaton V(ϕ)-maps =3M_P² H² (1- $\epsilon/3$) HJ eqn, d ϕ /M_P/dlna=±sqrt(2 ϵ)

along the gradient / Morse flow

inflaton V(ϕ)-maps =3M_P² H² (1- $\epsilon/3$) HJ eqn, d ϕ /M_P/dlna=±sqrt(2 ϵ) along the gradient / Morse flow

Reconstructed mean potential (without BICEP constraint)

planck Beyond Planck 2014 +LSS: Inflation futures from CMB & LSS

Planck 2014 TE/EE cf. TT => constrains subdominant primordial power contributions not phase-locked with the acoustic-peaks of the pure adiabatic case. see Planck 2014 inflation paper

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

CMB stage II, III, IV Ground Based

lyman page, ferrara 2014

Chile

- ABS
 ACTPol/AdvACt
 POLARBEAR
- * CLASS

Antarctica

BICEP/KECK
 SPTPol
 QUBIC-Bolo int.

2016

TBD

Elsewhere (for now) B-Machine – WMRS

- GroundBIRD, LiteBIRD
- GLP Greenland
- MuSE-Multimoded TBD
 QUIJOTE –Canaries, HEMPTS

Have data

Current or planned freqs

145 GHz 30, 40, 90, 150, 230 GHz 90, 150 GHz 40, 90, 150 GHz

90, 150, 220 GHz 90, 150 GHz 90, 150, 220 GHz

40 GHz 150 GHz 150, 210, 270 GHz 44, 95, 145, 225, 275 GHz 11-20, 30 GHz

SPIDER

Imperial College London

UNIVERSITY OF KWAZULU-NATAL

Dec 2014 flight ~ 20d ? cooled to subK, ready to <mark>go at</mark> McMurdo D<mark>ec 2014</mark> fsky=0.8 3/3 @ 90/150 GHz ~2K detectors incl yield L~10-300 2015 flight 2/2/2 @ 90/150/280 GHz Spider–like (24 days) l-space (no fg) pixel space (no fg) pixel space (with fg) 0.1 2 G $r_{fid}=0.20$ GETS 0.01 0.10 $\mathbf{f}_{\mathrm{sky}}$ forecasts 0.03 2 sigma 1st flight no fgnd 0.02 2 sigma 2nd flight

0.02 2 sigma 2nd flight 0.03 2 sigma 2nd flight fgnd cleaned

1.00

The ACT Collaboration ACT, now ACTpol, => Advanced ACTpol

Advanced ACTPol (AdvACT) Observations

- ~20,000 deg² survey (f_{sky}~0.5) with complete LSST overlap as well as DES, ALMA, and other observatories located in Chile
- Substantial overlap with spectroscopic surveys (SDSS, PFS, DESI)

Stony Brook University

Berkeley 🔮 🛄 🔤 🏵 Penn 😳

AdvACT: Power Spectra

High S/N B-mode detections for r > 0.01 are measured in independent frequency bands (90 & 150 GHz) and on many patches across the sky.

This provides important crosschecks on any detected signal

Also shown:

- Error bars before and after foreground cleaning
- Varying amplitudes of the gravitational lensing signal for different values of the sum of the neutrino masses

Berkeley 🏨 🛄 🎰 🍘 🛱 Penn 🛞

Planck forecasts

UBC

CMB stage IV DOE funding, grand unification of ground efforts 200-500K detectors @ SP, Atacama, Greenland (GLP)?

Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

Topical Conveners: J.E. Carlstrom, A.T. Lee

K.N. Abazajian, K. Arnold, J. Austermann, B.A. Benson, C. Bischoff, J. Bock, J.R. Bond, J. Borrill,
I. Buder, D.L. Burke, E. Calabrese, J.E. Carlstrom, C.S. Carvalho, C.L. Chang, H.C. Chiang, S. Church,
A. Cooray, T.M. Crawford*, B.P. Crill, K.S. Dawson, S. Das, M.J. Devlin, M. Dobbs, S. Dodelson,
O. Doré, J. Dunkley, J.L. Feng, A. Fraisse, J. Gallicchio, S.B. Giddings, D. Green, N.W. Halverson,
S. Hanany, D. Hanson, S.R. Hildebrandt, A. Hincks, R. Hlozek, G. Holder, W.L. Holzapfel, K. Honscheid,
G. Horowitz, W. Hu, J. Hubmayr, K. Irwin, M. Jackson, W.C. Jones, R. Kallosh, M. Kamionkowski,
B. Keating, R. Keisler, W. Kinney, L. Knox, E. Komatsu, J. Kovac, C.-L. Kuo, A. Kusaka, C. Lawrence,
A.T. Lee, E. Leitch, A. Linde, E. Linder, P. Lubin, J. Maldacena, E. Martinec, J. McMahon, A. Miller,
V. Mukhanov, L. Newburgh, M.D. Niemack, H. Nguyen, H.T. Nguyen, L. Page, C. Pryke, C.L. Reichardt,
J.E. Ruhl, N. Sehgal, U. Seljak, L. Senatore, J. Sievers, E. Silverstein, A. Slosar, K.M. Smith, D. Spergel,
S.T. Staggs, A. Stark, R. Stompor, A.G. Vieregg, G. Wang, S. Watson, E.J. Wollack, W.L.K. Wu,
K.W. Yoon, O. Zahn, and M. Zaldarriaga

Cdns on the case; CMBpol satellites too?

SATELLITE MISSION OPPORTUNITIES FOR CMB POLARIZATION: WHITE PAPER FOR THE CANADIAN LRP MIDTERM REVIEW

DICK BOND^{2,3}, SCOTT CHAPMAN⁶, MATT DOBBS^{1,*}, MARK HALPERN⁴, GARY HINSHAW^{4,*}, GIL HOLDER¹, PETER MARTIN^{2,3,5} BARTH NETTERFIELD², DOUGLAS SCOTT⁴, KENDRICK SMITH⁷, KEITH VANDERLINDE^{2,5}

Draft version November 29, 2014

CMB stage IV

testing tensor consistency? better f_{sky}=25% for spt3g/AdvACT-like than current 6% goal for spt3g

AdvACTpol (f_{sky}~50%): *Cosmological Forecasts* **Planck_f, Spider**, SPT3g, .. CMBpol (CoRE, Pixie,..)

nice BB spectra,

hence a slope, but tensor consistency is a steep relation. how well we can do will depend upon the ability to de-lens to get to the high L tail

r to +-0.02 Spider forecast r to +-0.003 AdvACTpol forecast w/ fgnds

CMB stage IV 200-500K detectors @ SP, Atacama, Greenland (GLP)?

 $r_{fid} = 0.20$

0.01

0.10

f_{skv}

1.00

Beyond Planck 2014 +LSS: Inflation futures from CMB & LSS: LSS & nonG

≈ 10,000,000 T/E modes of tΛCDM
 ≈ 1000 modes of (slight) anomaly
 ≈ 200 modes T/E reionization history
 the vast CMB-un-illuminated ζ_{LM}(d)
 LSS tomography f_{sky} L_{max}² k_{max} d_{max}
 LSS ~ CMB x 1000?

New bispectrum constraints using full mission data including polarization

Shape and method	$f_{NL}(KSW)$			
	Independent	ISW-lensing subtracted		
SMICA (T) Local Equilateral Orthogonal	9.5 ± 5.6 -10 ± 69 -43 ± 33	1.8 ± 5.6 -9.2 ± 69 -20 ± 33		
SMICA (T+E) Local Equilateral Orthogonal	6.5 ± 5.1 -8.9 ± 44 -35 ± 22	0.71 ± 5.1 -9.5 ± 44 -25 ± 22		

ben wandelt, ferrara 2014 on behalf of Planck

2.3.1 Non-Gaussianity from the CMB

Preliminary

The current best limits on primordial non-Gaussianity are obtained using data from the *Planck* satellite [67]: $f_{\rm NL}^{\rm local} = 2.7 \pm 5.8$, $f_{\rm NL}^{\rm equilateral} = -42 \pm 75$ and $f_{\rm NL}^{\rm orthogonal} = -25 \pm 39$. At the angular scales that contribute most of the weight to the $f_{\rm NL}$ constraints, *Planck* has measured the CMB temperature fluctuations as well as they can be measured (i.e., the constraints on $f_{\rm NL}$ is now limited by cosmic variance, not noise). Adding CMB polarization information will improve this constraint, but at most by $\sqrt{3}$.

LSS & nonG white paper on nonG+LSS on arXiv this week outcome of CITA October 23-24 2014 meeting DESI, LSST, Euclid .. CHIME .. SphereX proposal the varieties of nonG f_{NL} ... feature nG ... preheating F_{NL} [χ ,g]

scale-dependent bias & power spectrum on very large scales bispectrum - more promising than scale-dependent bias it seems nonG intermittent F_{NL}

=> search for large scale rare events, e.g., superduper superclusters

Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

Conveners: Olivier Doré and Daniel Green

Marcelo Alvarez¹, Tobias Baldauf², J. Richard Bond^{1,3}, Neal Dalal⁴, Roland de Putter^{5,6}, Olivier Doré^{5,6}, Daniel Green^{1,3}, Chris Hirata⁷, Zhiqi Huang¹, Dragan Huterer⁸, Donghui Jeong⁹, Matthew C. Johnson^{10,11}, Elisabeth Krause¹², Marilena Loverde¹³, Joel Meyers¹, P. Daniel Meerburg¹, Leonardo Senatore¹², Sarah Shandera⁹, Eva Silverstein¹², Anže Slosar¹⁴, Kendrick Smith¹¹, Matias Zaldarriaga¹, Valentin Assassi¹⁵, Jonathan Braden¹, Amir Hajian¹, Takeshi Kobayashi^{1,11}, George Stein¹, Alexander van Engelen¹

¹Canadian Institute for Theoretical Astrophysics, University of Toronto, ON

LSS & nonG

	LSST	DESI	Euclid	SPHEREx	CHIME
Survey type	photo	spectro	photo+spectro	low-res spectro	21-cm
Ground or space	ground	ground	space	space	ground
Previous surveys	CFHTLS, DES, HSC	BOSS, eBOSS, PFS	no direct precursor	PRIMUS, COMBO-17, COSMOS	GBT HIM
Survey start	2020	2020	2018	2020	2016
Redshift-range	z < 3 (1% sources above 3)	z < 1.4, 2 < z < 3.5 (Lya)	z < 3	z < 1.5	0.75 < z < 2.5
Survey area [deg ²]	20k	14k	15k	40k	20k
Approximate number of objects	2×10^9 (WL sources)	22×10^6 gal., ~ 2.4×10^5 QSOs	40×10^6 redshifts, 1.5×10^9 photo-zs	15×10^9 pixels	10^7 pixels
Galaxy clustering	11 °	1	1	✓	1
Weak lensing	1		1		1
RSD		1	1	11	11
Multi-tracer	11	11	11	✓	

Table 2. A selection of currently funded or planned surveys. Other important surveys not included in the table are PFS, JPAS, PAU, EMU. Relevant survey links [LSST],[DESI],[Euclid], [UBC],[PFS], [JPAS],[PAU], [EMU]. °Galaxy clustering is possible, but very strong radial degradation.

1412.4671

LSS & nonG

1412.4671

LSS & nonG

LSS & nonG

SPHEREx: An All-Sky Spectral Survey

A high throughput, low-resolution near-infrared spectrometer

Optical-IR imaging spectrometer	⇒Inflation Science			
λ= 0.75-4.1 μm R=41.5	Cosmology derived from 3-D galaxy large-scale structure.			
λ= 4.1-4.8 μm R=150	inflation, non-Gaussianity, the primordial power spectrum, and dark energy.			
20cm telescope	Complement Euclid and WFIRST which survey smaller areas at z > 1.			
Passively cooled	Determine how interstellar ices bring water and organics into proto-planetary systems through absorption in ice spectra			
6.2"x6.2" pixels	⇒Measure Extra-galactic Background Light to probe EOR			
2x(3.5x7) sq. deg. FOV				

SPHEREx data-set:

R=40 spectra spanning (0.75 μ m< λ <4.81 μ m) for every 6.2" pixel over the entire sky

SPHEREx Creates a High Legacy All-Sky Survey

Extra-galatic sources	1.4 billion	
	120M	
	9.8M	
	>1.5M QSOs with redshift	
	0-300 QSOs with redshift > 7	
	25,000 galaxy clusters with redshift	
Galactic sources	>100M	
	>104	
	>400 brown dwarf spectra	

SMEX Concept; PI: J. Bock, PS: O. Doré

30th IAP Conférence - Bonjour tout le monde!

LSS & nonG SPHEREx as a Probe of non-Gaussianity

σ(f_{NL}^{loo}) ~ 0.8 (3-D Powerspectrum) σ(f_{NL}^{loo}) ~ 0.2 (3-D Bispectrum)

CHIME Collaboration

THE UNIVERSITY OF BRITISH COLUMBIA

- Graeme Addison
- Mandana Amiri
- Meiling Deng
- Mateus Fandino
- Kenneth Gibbs
- Carolin Hofer
- Mark Halpern
- Adam Hincks
- Gary Hinshaw
- Kiyo Masui
- Kris Sigurdson
- Mike Sitwell
- Rick Smegal
- Don Wiebe

will generate more data per second than the annual internet use of every smartphone in the world combined

the new radio astronomy, GPU-enabled

- Kevin Bandura
- J-F Cliché
- Matt Dobbs
- Adam Gilbert ٠
- David Hanna ٠
- Juan Mena Parra ٠
- Graeme Smecher
- Amy Tang

- Dick Bond ٠
- Liam Connor ٠
- Nolan Denman ٠
- Peter Klages ٠
- Laura Newburgh
- Ue-Li Pen
- Andre Recnik ٠
- **Richard Shaw** ٠
- Keith Vanderlinde

Tom Landecker ٠

CHIME Collaboration

NIVERSITY OF COLUMBIA

DRAO (49°19'N, 119°37'W) 2560400 - 800 MHz $0.39\,\mathrm{MHz}$ 75 - 37 cm z = 2.5 - 0.8 $11 - 8 \,\mathrm{Gyr}$ $2.5^{\circ} - 1.3^{\circ}$ $\sim 90^{\circ}$ about zenith $0.52^{\circ} - 0.26^{\circ}$

UNIVERSITY OF

bandura+14, newburgh+14 spie proceedings, arXiv

Table 1: The salient features of the CHIME instrument.

the new radio astronomy, GPU-enabled

CHIME

z=1 zoom in brightness temperature zoom (with a stacked 20 MHz bandwidth)

Galactic foregrounds (synchrotron) are smooth, but many many orders of magnitude cleaning is needed, signal-to-noise eigenmode method Shaw+14 nontrivial processing is needed

Alvarez, Bond, Huang, Stein, Braden, Frolov14

alatt=1Mpc, N=1024

LSS & nonG mocks

search with bispectrum & scale-dependent bias in power spectrum

alatt=1Mpc, N=1024

LSS & nonG mocks Alvarez, Bond, Huang, Stein, Braden, Frolov14

modulated intermittent preheating nonG

search for localized but very large scale rare "events" e.g., hierarchical peaks

LSS & nonG mocks Alvarez, Bond, Huang, Stein, Braden, Frolov14

-1.00 - 0.75 - 0.50 - 0.25 0.00 0.25 0.50 0.75 1 $<math>\delta_{\phi, \phi}$

-0.04 0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 δ_{χ}

CHIME

SphereX is also low-ish res, photo-z

z=1 zoom in brightness temperature zoom (with a stacked 20 MHz bandwidth)

Galactic foregrounds (synchrotron) are smooth, but many many orders of magnitude cleaning is needed, signal-to-noise eigenmode method Shaw+14 nontrivial processing is needed

CMB restricts us to a projected 2D ζ -scape we will reconstruct phonon/isotropic strain power, but the future may look much the same as now (perhaps) => V => ϵ

r futures look bright modulo the dirty MW we will reconstruct graviton power de-lens for consistency check r-n_t TBD

thou shalt mock the LSS future end-to-end to probe the 3D ζ-scape, modes abound success modulo large scale mode control of systematics

the END