Mocking Heaven's Web *with PeakPatches++* Bond (a) UofT CosmicWebDay July 10, 2017 Planck, AdvACT, SO, CMB-S4, CCATp, EUCLID, LSST, CHIME, HIRAX, COMAP, ...SKA Line Intensity Mapping and Line Absorption Mapping fLIMfLAM CITA mini-industry: Marcelo Alvarez, Dick Bond, George Stein & Battaglia, Codis, van Engelen & FIRE: Lakhlani + Murray + Hopkins + Berger & Connor Bevington, Bruno Régaldo-Saint Blancard, Ronan Kerr, Louis Pham need End to End mocks: BSM, nonG, DE/modG, Mnu, ... need all signals to be correlated, 1, 2, 3, ... Npt need speed to build ensembles & explore BSM **Optical** weak kSZ CIB tSZ lens

Planck 2015 XII: Full Focal Plane Sims: FFP8 ensemble of 10K EndtoEnd mission realizations in 1M maps. instrument noise + CMB + PSkyModel + .. (25M NERSC CPU hrs)

Mocking Heaven's Web with PeakPatches++

Bond @ UofT CosmicWebDay July 10, 2017

Planck, AdvACT, SO, CMB-S4, CCATp, EUCLID, LSST, CHIME, HIRAX, COMAP, ...SKA Line Intensity Mapping and Line Absorption Mapping fLIMfLAM

CITA mini-industry: Marcelo Alvarez, Dick Bond, George Stein & Battaglia, Codis, van Engelen & FIRE: Lakhlani + Murray + Hopkins + Berger & Connor Bevington, Bruno Régaldo-Saint Blancard, Ronan Kerr, Louis Pham

Planck 2015 XII: Full Focal Plane Sims: FFP8 ensemble of 10K EndtoEnd mission realizations in 1M maps. instrument noise + CMB + PSkyModel + .. (25M NERSC CPU hrs)

Planck, AdvACT, SO, CMB-S4, CCATp, EUCLID, LSST, CHIME, HIRAX, SKA, COMAP, ...

THEN: an historical flow from 70s western 'halos' & russian pancakes thru BBKS & BCEK to BM peak-patches = E³ to BKP cosmic web & pk/void-patch mean fields to BW adsley shearing patches & importance sampling

in ``A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure", (Berlin/Heidelberg: Springer)

Clusters and the Theory of the Cosmic Web

Rien van der Weygaert & J.Richard Bond, 2008, Lecture Notes in Physics 740, 335-408 http://www.astro.rug.nl/~weygaert/tim1publication/weybondgh2005.paper1.pdf

Observations and Morphology of the Cosmic Web

Rien van der Weygaert & J.Richard Bond, 2008, Lecture Notes in Physics 740, 409-468 http://www.astro.rug.nl/~weygaert/tim1publication/weybondgh2005.paper2.pdf

russian version of the web

The first numerical simulation of the Zel'dovich (1LPT) Approximation – in 2D

Shandarin 1975

published in review by Doroshkevich Zeldovich Sunyaev 1975 (in Russian)

Later in Dorshkevich, Shandarin 1978

influential for Arnold, Shandarin Zeldovich 1982

Made with alphanumeric printer

pancakes cf. BKP membranes

A. A. Klypin and S. F. Shandarin The Keldysh Institute of Applied Mathematics, Academy of Sciences of USSR, Miusskaja Sq. 4, Moscow 125047, USSR

> Received 1982 November 15; in original form 1982 April 28 Klypin's vintage 82 160h⁻¹Mpc box 32³ hDM It is possible to recognize some webs connecting these 'clusters of galaxies' 90s Klypin to CITA, 'the west is best'

deformation tensor **e**J^J strain/shear ~ linear tidal tensor

3D numerical model of the Universe

Klypin's vintage 93 50h⁻¹Mpc box 128³ sCDM = BKP98 web workhorse, Couchman's 128³ for BM91-96

Peak-patches = "hot" halos B+Myers 91-96; BBKS 83-86 The Cosmic Web B+Kofman+Pogosyan 96-99 "Molecular" Picture of LSS Filaments & Membranes

HALOS are dynamically HOT, the hierarchical standard model, ACDM, => scale space (3+1D => 4+1D) adaptive coarse-grain Zeldovich (->2LPT+) flows of Lagrangian peak-patches agree with N-body Eulerian halo simulations => fast mock surveys

beware: a numerically challenging regime extreme LSS tides

e(gas) < e(DM) /2 z=1 extreme cf. z=0

Battaglia, Bond, Pfrommer, Sievers 1,2,3,4 gasdynamical simulations with AGN feedback

stack for $DM = \langle \rho_{dm} | \mathcal{C} \rangle \langle y \rangle = \langle \rho_{dm} (X_c + s_c(y)) n_{\mathcal{C}} \langle X_c \rangle \rangle \langle n_{\mathcal{C}} \langle X_c \rangle \rangle,$ $^2 s_c^j(y) = X_\Delta E_J^j y^J, y=1 \text{ at } R_{200c} = X_\Delta E_J^j \sim \text{strain tensor} \sim (quadrupole tensor)^{-1}$

 $\begin{aligned} \chi dm, c \text{ susceptibility}(dm \ \mathcal{C}1)(y) &= < \left[\rho_{dm}(X_c + s_c(y))/\rho_{\Delta c}\right] n_{\mathcal{C}}(X_c) > < n_{\mathcal{C}}(X_c) n_{\mathcal{C}1}(X_{c1}) >^{-1} \\ \rho_{dm}(x) &= \sum_{c} \chi_{dm,c}(x - x_c, R_{Ec}) M_{dm,c} \delta N_c(x_c, R_{Ec}) + inside/outside fluctuations \end{aligned}$

gas in cluster-Y_{SZ} "farfield" is increasingly elongated: a little nearfield filament penetration

e(gas) < e(DM) /2

z=1 extreme cf. z=0

Battaglia, Bond, Pfrommer, Sievers 1,2,3,4 gasdynamical simulations with AGN feedback

 $R_c e_J^j$

strain/linear-tide oriented pk-patches aka halos in final-state space (Eulerian space)

important noise source for weak lensing of galaxies

Halo Correlations: 1-halo self-correlation + mass-dependent exclusion zone + LSS biasing

& decompose oriented stacked correlations into spherical harmonics

Projected-strain/tide 2D stacks

Projected-strain/tide 2D stacks

headless vectors show strain tensor orientation 10Mpc X 30Mpc all masses

<nhalo C-oriented>(X)

Projected-strain/tide 2D stacks, perfect resolution tSZ weighting

headless vectors show strain tensor orientation

pp+ for coarse-grained mapping of the cosmic web: fast halo finding for ensembles & BSMc - works well BM, ABS+ tsts, Euclid tst halo interiors: measured mean-field stacked susceptibilities 2LPT for fluctuations external to halos (& unresolved biased halo-field)

"mocking heaven" apps: tSZ, CIB, kSZ original CMB motivation => tSZxCIB, Lens

optical galaxies via HOD for CMASS, Euclid, LSST, .. DES, HSC, sphereX Line intensity mapping of HI (CHIME, HIREX, ...,SKA) COmap, CII CCATp well suited: to cross-correlation studies of all sorts well suited: to characterize correlated/non-Gaussian errors well suited: light cones automatic, no interpolation Physics: beyond Lambda: dynamical DarkEnergy, modified gravity LSS non-Gaussianity: perturbative, intermittent, scale-dependent bias

CITA mini-industry: Marcelo Alvarez, Dick Bond, George Stein & Battaglia, Codis, van Engelen & FIRE: Lakhlani + Murray + Hopkins + Berger & Connor Bevington, Bruno Régaldo-Saint Blancard, Ronan Kerr, Louis Pham

much more TBD on generalized stacking:

- how to measure strain/tide etc. analogues to orient, scale & symmetrybreak in final state (Eulerian/observed) space?
- use a coarse-grained tide & gravitational acceleration?
- if no dynamical info, use halo/galaxy number density field e.g.,
- $\Phi_{\text{Nij}} \sim \nabla_i \nabla_j \nabla^{-2} \sum_c M_c n_c \quad g_{\text{Pi}} \sim -\nabla_j \nabla^{-2} \sum_c M_c n_c \quad \psi_{\text{Sij}} \sim \nabla_i \nabla_j \nabla^{-2} ln \sum_c M_c n_c$ or mass-quadrupole/dipole tensors or ... whatever works stack on other non-peak point processes e.g., saddle points
- Topography of the y-web, n_{gal} -web, Φ_N -web, CMB Web, ISM Web, IQU/ E B, early Universe $\zeta = \ln a(x,t)$ -web related to $\Phi_N \sim -3/5(D(t)/a(t)) \ln a(x,t)$ if linear

pp modus-operandi measure response functions to stimuli= susceptibilities fluctuations inside controlled? outside 2LPT and subgrid halos adequate? tSZ, kSZ *in pp-control* BBSP sims, PUPPY;

CO, HI, CIB via FIRE sims *ABS+Lakhkani+Murray+Ronan Kerr UG* importance sampling: probabilistic control over an ensemble of sims constrained initial conditions via mean-fields + fluctuations or via zoom: *Prob(CO etal) = int Prob(CO etal| control parameters) dProb (control parameters)* galaxy assembly = out of control? e.g. CO ~ dM*/dt, how to FIRE-sim-control?

Lensing of CMB, CIB & LIM & cls underway *ABS+ LouisPham UG +van Engelen* why do LIMLAM? just understand galactic weather / storms theorist hope: component-separate gastrophysics to reveal fundamental BSMc physics e.g., use LSS to further develop the map of the early universe from CMB *(stacked)*

