

Planck 2015 XII: Full Focal Plane Sims: FFP8 ensemble of 10K EndtoEnd mission realizations in 1M maps. instrument noise + CMB + PSkyModel + .. (25M NERSC CPU hrs)

Mocking Heaven *with PeakPatches++*

COMAP 💆

Survey Area

Line Intensity Mapping and Line Absorption Mapping

radio: HI CO CII, ... + optical Ly a, ... z=0.8-2.5 z=2.4-3.4 z=6-8

Marcelo Alvarez, Bond, George Stein + FIRE: Lakhlani + Murray + Hopkins, Berger + Kerr

need End to End mocks: BSM, nonG, DE/modG, Mnu, need all signals to be correlated, 1, 2, 3, .. Npt need speed to build ensembles & explore BSM

Planck, AdvACT, SO, CMB-S4, CCATp, EUCLID, LSST, CHIME, HIRAX, SKA, COMAP, ...

COmap sims using Li+ Mhalo -> LCO cf. CIB a la Planck13,15 Danger: correlated stochasticity of bursty star formation etc. @ end talk

underway: Lensing of CIB & COmap & HImaps &..

Peak-patches = "hot" halos B+Myers 91-96; BBKS 83-86

physics compelled the few choices in BM; no modification with massive parallelization in ABS+17 hot dynamics => $e^{i}_{J}(r_{c}, t, R_{c})$

homogeneous ellipsoid evolution: coarse-grained treatment of fine-grained dynamics cool coarse-grained halo-flow dynamics

=> **s**ⁱ(r_c,t,R_c) 1LPT -> 2LPT

higher order approximate S_{NL} a sum - formulated to be implemented => warm coarse-grained dynamics

flow of fine-grained to inform coarse-grained

via constrained response functions aka susceptibilities

Stacked correlations transformed to susceptibilities by removing halo-halo correlations constraints are "charges". tensor orientations, assembly bias etal importance sampling via control parameters to measure susceptibilities. in fine-grained sims e.g., hydro BUT complex gasdynamics with feedback - LIM issue

=> The Cosmic Web B+Kofman+Pogosyan 96-99 "molecular" bond Picture of LSS Filaments & Membranes expansion in susceptibilities for GRF

Stacking @ CITA - oriented asymmetric on extrema & other points

Stack to get interior cluster susceptibilities

sub-halo merger memory, asphericity, clumping of density, cosmic web far-field connection thru filaments, ...

R500

AGN feedback, z = 1

 z/R_{200}

Ô.

Stacked DM

Rotated stacked DM

ij Ellipticity Orienting **Pdm** z=1 DM in cluster-Y_{sz} "farfield" is increasingly elongated: a little nearfield filament penetration e(gas) < e(DM) / 2z=1 extreme cf. z=0

> Battaglia, Bond, Pfrommer, Sievers 1,2,3,4 gasdynamical simulations with AGN feedback DM density stacks for lens pressure stacks for tSZ gas density stacks for kSZ & lens 'star' stacks for lens

Rvir

Stack to get interior cluster susceptibilities

stack for $DM = \langle \rho_{dm} | \mathcal{C} \rangle \langle y \rangle = \langle \rho_{dm} (X_c + s_c(y)) n_{\mathcal{C}} \langle X_c \rangle \rangle \langle n_{\mathcal{C}} \langle X_c \rangle \rangle,$ $\int_{-2}^{-2} s_c^j(y) = X_\Delta E_J^j y^J, y=1 \text{ at } R_{200c} = X_\Delta E_J^j \sim \text{strain tensor } \sim (quadrupole tensor)^{-1/2}$

 $\chi_{q,c} \qquad \text{susceptibility}(q \ \mathcal{C}1)(y) = < [\rho_q(X_c + s_c(y)]/q_c \ n_{\mathcal{C}}(X_c) > < n_{\mathcal{C}}(X_c) n_{\mathcal{C}1}(X_{c1}) > ^{-1}$

 $\rho_{q(x)} = \sum_{c} \chi_{q,c(x-x_c,R_{Ec})} q_c \delta N_c(x_c,R_{Ec}) + inside \& outside fluctuations$

Alvarez, Bond, Stein, Codis + Connor Bevington, Bruno Régaldo-Saint Blancard

the cluster class ${\cal C}$ for the peak patches

can orient according to the strain tensor (ellipsoidal symmetry) and can also have a direction (pk patch flow)

simulation examples

 $R_c e_J^j$

strain/linear-tide oriented pk-patches aka halos in final-state space (Eulerian space) filament zoom intrinsic alignment

important noise source for weak lensing of galaxies

Alvarez, Bond, Stein, Codis + Connor Bevington, Bruno Régaldo-Saint Blancard

the cluster class ${oldsymbol {\mathcal C}}$ for the peak patches

can orient according to the strain tensor (ellipsoidal symmetry) and can also have a direction (pk patch flow)

simulation examples

R_c e」^j

[Mpc]

strain/linear-tide oriented pk-patches aka halos in final-state space (Eulerian space)

filament zoom intrinsic alignment important noise source for weak lensing of galaxies

(a) $\xi_{\delta\delta}^{\mathcal{E}}(\mathbf{r}) > 0$ display.

(b) $\xi_{\delta\delta}^{\mathcal{E}}(r) > 0$ display.

(c) $\xi_{\delta\delta}^{\mathcal{E}}(\mathbf{r}) > 3$ display.

(a) $\xi_{\delta\delta}^{\mathcal{E}}(r) > 1$ display.

(b) $\xi_{\delta\delta}^{\mathcal{E}}(r) > 1$ display.

(c) ξ^ε_{δδ}(r) > 3 display.

(d) $\xi_{\delta\delta}^{\mathcal{E}}(\mathbf{r}) > 3$ display.

Projected-strain/tide 2D stacks

pp tSZ is 7 arcmin fwhm smoothed before stacking 100K redmapper cls mock, least massive

0.5

1.0

1.5

2.0

0.0

deg

-2.0 -1.5 -1.0 -0.5

n_O

100

pp modus-operandi measure response functions to stimuli= susceptibilities fluctuations inside controlled? outside 2LPT and subgrid halos adequate? tSZ, kSZ *in pp-control* BBSP sims, PUPPY;

CO, HI, CIB via FIRE sims *ABS+Lakhkani+Murray+Ronan Kerr UG* importance sampling: probabilistic control over an ensemble of sims constrained initial conditions via mean-fields + fluctuations or via zoom: *Prob(CO etal) = int Prob(CO etal control parameters) dProb (control parameters)* galaxy assembly = out of control? e.g. CO ~ dM*/dt, how to FIRE-sim-control?

Lensing of CMB, CIB & LIM & cls underway *ABS+ LouisPham UG +van Engelen* why do LIMLAM? just understand galactic weather / storms theorist hope: component-separate gastrophysics to reveal fundamental BSMc physics e.g., use LSS to further develop the map of the early universe from CMB *(stacked)*

CO, HI, CII, FIR, SFR from hi res FIRE hydro ABS + Gunjan Lakhlani + Norm Murray + Hopkins +

measuring mean CO susceptibilities & HI & CII & ... subject to constraints? SFR, at high res disk orientation, ...

fluctuations about the mean: overwhelming at high res saved by the beam? LIM transverse line blending => coarse-grained CO => integrated LCO (SFR(z), ..., Mhalo) => many galaxies, less burst sensitive fluctuations ~ measurable uncorrelated stochasticity about the mean?

importance sampling:

Prob(CO etal) = int Prob(CO etal| control parameters) dProb (control parameters) galaxy assembly = out of control?

BSMc varieties of nonGaussianity:

conventional correlated perturbative *Planck2015constrained* f_{NL} *SphereX target, SKA X surveys*

caustics from preheating (1cm scale horizon) modulated by light non-inflaton fields fluctuating on large scales & super-horizon scales ζ uncorrelated with conventional inflaton- ζ

=> **3D intermittency** cf. 2D WMAP cold spot unconventional but generic?

a nonlinear (large scale) bias response to the nearly scale invariant light field cf. LSS bias of clusters/galaxies via a threshold function on the linear density field

or remnants of bubbles during inflation or ...

apparent breakdown of LSS homogeneity

3D intermittency uncorrelated nonG 'wide open' cf. usual correlated highly constrained nonG

LSS tSZ: Gaussian std

B2FH, b+braden+frolov+huang

LSS tSZ: Gaussian std + subdominant uncorrelated ζ

ABSB+FH, alvarez+b+stein+frolov+huang

BSMc from LIMLAM?

reconstructing $\zeta \sim early$ Universe ln a(x,t)

modesCMB modes
 $\sim f_{sky} L_{max}^2$ LSS
tomography
X k_max d_maxstd nonG $\zeta = \zeta_G + f_{NL} * (\zeta_G^2 - \langle \zeta_G^2 \rangle)$ local & equilateral pattern & orthogonal
non-std nonG $\zeta = \zeta_{inflaton} + uncorrelated \zeta_[GRF]$ modulated heating intermittent?
uncorrelated nonG 'wide open' cf. usual correlated highly constrained nonG

=> quest for unconventional primordial nonGaussian

Primordial Non-Gaussianity in COMAP via Peak Patch sims:

Primordial Non-Gaussianity in CO

pp+ *for coarse-grained mapping of the cosmic web:* fast halo finding for ensembles & BSMc - *works well BM, ABS+ tsts, Euclid tst*

halo interiors: measured mean-field stacked susceptibilities 2LPT for fluctuations external to halos (& unresolved biased halo-field)

response functions to stimuli= mean susceptibilities

fluctuations inside controlled? outside 2LPT and subgrid halos adequate? tSZ in pp control; CO out of pp control?

work on Lensing of the CIB and LIM is underway

why do LIMLAM? just understand galactic weather / storms a theorist's hope: component-separate gastrophysics to reveal fundamental BSMc physics

"mocking heaven" apps: tSZ, CIB, kSZ original CMB motivation => tSZxCIB, Lens

optical galaxies via HOD for CMASS, Euclid, LSST, .. DES, HSC, sphereX Line intensity mapping of HI (CHIME, HIREX, ...,SKA) COmap, CII CCATp well suited: to cross-correlation studies of all sorts well suited: to characterize correlated/non-Gaussian errors well suited: light cones automatic, no interpolation Physics: beyond Lambda: dynamical DarkEnergy, modified gravity LSS non-Gaussianity: perturbative, intermittent, scale-dependent bias

CITA mini-industry: Marcelo Alvarez, Dick Bond, George Stein & Battaglia, Codis, van Engelen & FIRE: Lakhlani + Murray + Hopkins + Berger & Connor Bevington, Bruno Régaldo-Saint Blancard, Ronan Kerr, Louis Pham

