

the theory of the Sunyaev-Zeldovich Probe of Gas in the Cosmic Web

Dick Bond #CIAR

 $\begin{array}{l} & \gamma + e \Rightarrow \gamma + e \ \text{Compton} \\ <\Delta E_{\gamma}/E_{\gamma} > = 4 T_{e}/m_{e}c^{2} - E_{\gamma}/m_{e}c^{2} \\ <(\Delta E_{\gamma}/E_{\gamma})^{2} > = 2 T_{e}/m_{e}c^{2} \\ \text{thermal SZ: } \Delta T/T = y * (x(e^{x}+1)/(e^{x}-1)-4), x = hv/T_{\gamma} \\ y = \int n_{e} (T_{e}-T_{\gamma})/m_{e}c^{2} \ \sigma_{T} \ d/os \sim \int p_{e} \ d/os \$

kinetic SZ: $\Delta T/T = \int n_e v_{e||} / c \sigma_T dlos \sim \int J_e dr$ $\int kSZ(\theta, \phi) d\Omega \sim M_{gas} V_{bulk} / DA^2$

fluctuations in the early universe "vacuum" grow to all structure

fluctuations in the early universe "vacuum" grow to all structure

evolve from early U vacuum potential and vacuum noise

fluctuations in the early universe "vacuum" grow to all structure

all this can evolve from early **U** vacuum potential and vacuum noise in the presence of late U vacuum potential aka dark energy

Tuesday, February 22, 2011

pressure intermittency in the cosmic web, in cluster-group concentrations probed by tSZ

the theory of the Sunyaev-Zeldovich Probe of Gas in the Cosmic Web

Dick Bond #CIAR

 $\gamma+e \rightarrow \gamma+e \text{ Compton}$ $<\Delta E_{\gamma}/E_{\gamma}>=4T_{e}/m_{e}c^{2}-E_{\gamma}/m_{e}c^{2}$ $<(\Delta E_{\gamma}/E_{\gamma})^{2}>=2T_{e}/m_{e}c^{2}$ thermal SZ: $\Delta T/T=y * (x(e^{x}+1)/(e^{x}-1)-4), x=hv/T_{\gamma}$ $y = \int n_{e} (T_{e}-T_{\gamma})/m_{e}c^{2} \sigma_{T} d/os \sim \int p_{e} d/os - f_{s}ight$ Compton y-parameter

 $Y_{\Delta} = \int y(\theta, \varphi) d\Omega \sim E_{th} / D_A^2 \sim (E_{grav} - 3P_{kinetic,etc} \vee + 3P_s \vee) / 2 D_A^2$ VIRIAL THEOREM: $E_{grav} \sim GM_g M/R \sim M^{5/3}$ dark matter dominated

kinetic SZ: $\Delta T/T = \int n_e v_{e||} / c \sigma_T dlos \sim \int J_e dr$ $\int kSZ(\theta, \phi) d\Omega \sim M_{gas} V_{bulk} / DA^2$

Mustang on GBT 90 GHz 64 bolometer array Imaging SZ @~I0" res 4 cls 2010, ~25 Hubble CLASH cls to come Devlin, Mason, ...

SPT-beam 1'

am 1'

<= Planck beam at 150 GHZ =>

SZA@30 GHz beam

0* - 155

12:27:00.0

sub-cluste

A BCG ~ X-ray peak B Dark Matter peak ~ lobe of SZ ridge

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists +theorists, primary+secondary ∆T/T

• very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

 small angle anisotropies - current results, optimal measuring strategies, statistical methods for + effect of energy injection / explosions on LSS- a big pre-COBE forecast issue = feedback

bond@ ΔT/Tea87: "clustered shots" (aka halos aka bbks86-peaks) with spherical pressure profiles via binding energy (not mass) but beta-profiles with core scaling and old X-ray beta's

BUT spherical collapse - too many cls & non-dynamical masses - high M's too low ⇒ peak patches BM91-96 tidal fields - virial mass from homogeneous ellipsoid dynamics,

accurate cluster positions, masses, binding energies, clustering

e...g, application to Planck sims 90s, CBI, AMIBA, ...

constrained supercluster treePM-SPH sim of ∧CDM +cooling: largest k-range of its time (>> Virgo sim) SZ in supercls may give us the outskirts of cls & gps, not filaments (unless ∃ large gas E-outflows) B+Kofman+Pogosyan+Wadsley 97/99

painting halos with analytic Y_{SZ} & pressure form factors 2002-11 cf. SPH-hydro (Gadget/Gasoline, MMH, ENZO, ART 2001-11; ITP cluster test 96-00): discrepancy from 2002: big issue was/is: Δ 200 to 20, non-thermal KE/Eth

What sort of objects in the cosmic web dominate the SZ effect? Δ_{cut}= 200, 120, 60, 20 then convergence, pick up far-field of clusters and groups,+ a little into filaments (unless ∃ large gas E-outflows into filaments) What is the redshift range that contributes to the SZ effect? all from 0 to ~2 half <CL^{SZ}>3000 from z>0.5 & M<3x10¹⁴ M_☉ h⁻¹

CITA-SZ with feedback: Battaglia, Bond, Pfrommer, Sievers & Sijacki 2010, BBPS 2011a,b,c

for ACT+SPT+Planck etal, urgent to show the cluster-theory-variance as effects are added **07** goal large treePM-sph sims (~1000³ gas+DM)-NOT **08-11** goal 512³ & 256³ & single-hi-res-cls

shock heat only "adiabatic"; cool+SN E; cool + SN E + winds; cool + SN E-feedback
+ winds + CRs from cluster shocks;

but because of core overcooling and overproduction of stars, needed a subgrid model of AGN/starburst feedback in halo cores, calibrated with the (small mass) cluster-BH calculations of Sijacki (with Springel, Pfrommer, ...). Feedback is the essence of Gastrophysical Cosmology. Energy/Momentum driven winds, Relativistic injection.

full Sijacki-resolution was/is ~ infeasible for single massive clusters, and certainly strongly infeasible for big-box statistically useful samples, & also itself is just a subgrid model hence our **exploratory subgrid BH/Starburst feedback model**

AGN feedback + cool + SN E + winds: $\Delta E_{inj} \sim \epsilon \Delta t$ SFR over R_{AGN} in halo centre, episodic above a SFR threshold, $\epsilon_{eff} < \epsilon$: most E_{inj} above z=2, so much freedom to minimize ϵ_{eff} e.g., E_{inj} 58% at z > 2, 23% in 1 < z < 2 19% z<1

conclusion circa 2011: Z universal panacea to cure cluster cores: highly inhomogeneous,

episodic and cluster-history-dependent. if observables are overly sensitive to this, then we become gastrophysical weather reporters and not cosmological gold-sample miners delivering pure cosmic parameters. BUT most relevant SZ-region ~0.5 R_{500} to ~3 $R_{200} \Rightarrow$ different non-thermal problems:

kinetic pressure aka "turbulence", pressure/density clumping, asphericity, … but we need hydrodynamically-reasonable inner cores hence subgrid feedback (beware of cutouts of overcooled cores) *"every cluster is a bullet cluster" - or was a bullet*

Compton-y map: "adiabatic" = formation shock entropy from gravitational accretion only

Compton-y map: Feedback = AGN or Starburst E-feedback + radiative cool + SN energy + wind + (CR)

Adiabatic - Feedback

kinetic SZ map (log): Feedback = AGN or Starburst E-feedback + radiative cool + SN energy + wind + (CR)

Compton-y map: Feedback = AGN or Starburst E-feedback + radiative cool + SN energy + wind + (CR)

CBI pol to Apr'05 @Chile CBI2 QUaD @SP

Tuesday, February 22, 2011

Tuesday, February 22, 2011

Tuesday, February 22, 2011

Tuesday, February 22, 2011

scaled Pressure profiles: dIn Eth(<r)/dIn r

Battaglia, Bond, Pfrommer, Sievers, Sijacki 10

AGN Feedback sims match Arnaud etal <X-ray profiles> to data-end ~r₅₀₀ universal? redshift, mass, ... dependent

Battaglia, Bond, Pfrommer, Sievers 11

Hydro Sims include all effects (except of course for those not included).

Analytic and semi-analytic treatments must be fully calibrated with sims to give a useful phenomenology.

Battaglia, Bond, Pfrommer, Sievers 11

Tuesday, February 22, 2011

Planck sees the rarest and most massive clusters over the whole sky: 86% with z<0.3; masses to $1.5 \times 10^{15} M_{sol}$. 90% of the RASS above M > 9 × 10¹⁴ M_{sol} detected by blind ESZ, 5/21 of new Planck > 9 × 10¹⁴ M_{sun}. But "stacking" with the multifrequency filter extends the mass range to ~0.5e14 M_{sun}

CBIp	ol to Apr'05 @Chile	CBI2 QUaD @ CL ^{SZ})SP		
	WMAP @L2 to 2010	Pia - -	IICKU9.4 52+ bolometers + HEMTs @L2 • frequencies		
2004 >96	2006 2005 CL ^{SZ} Acbar@SP ~1 blind SZA@Ca	200 2007 AMIBA al)8 CLSZ SPT 1000 bolos @SPole	LHC 2009	2011 Bpol @L2
/BIMA array 80s-90s Ryle OVRO	SZ AMI G	APEX ~400 bolos(a	ACT 3000 bolos 3 freqs @Ch @Chile	SCUBA2 12000 bolos	SPTpol ACTpol ALMA CCAT@Chile
			JC	CMT @Hawaii	LMT@Mexico

Ncluster (Ysz, Mlens, Yx, Lx, Tx, Lcl, opt, Rich, I gold-sample, thresholds) + CL^{SZ}(Cuts) will deliver valuable cosmic gastrophysics for sure. Will it deliver **fundamental physics** e.g., the dark energy EOS, primordial non-Gaussianity??? σ₈ even?

so much for context & theory & forecasts. on to the results: Planck, ACT, SPT, **Mustang on GBT**, AMI, SZA, APEX, Bolocam,...