Launch of Planck & Herschel on May 14 2009 from Kourou (Fr. Guiana)

Left earth at ~10 km/s, 1.5 million km in 45 days, cooling on the way (20K, 4K, 1.6K, 0.1K 4 stage). @L2 on July 2 09 -almost no trajectory correction @operational temp; Survey started on Aug 13 09 spin@1 rpm, 40-50 minutes on the same circle, covers all-sky in ~6 month, ~3 surveys Feb11, ~5 total

at Planck2011 (Paris, Jan 10-14) & the AAS 25 papers & the ERCSC were unveiled

Planck

Focal plane

HFI cut view

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency --ESA -- with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Toronto involvement in Planck: Bond since 1993, Canada since 2001 1st CSA pre-launch contract 2002-09, post-launch 2010-11, 2011-13

- The scientific analysis is common to both instruments but not the data processing (DPCs in Paris, Trieste)
- Toronto is in Planck-HFI, the higher resolution and higher frequency instrument (52 bolometers, 100-857 GHz)
- Project led by Dick Bond with financial support from the Canadian Space Agency
- CSA-Planck-HFI: D. Bond (PI), B. Netterfield, P. G. Martin, F. Marleau, M. Nolta, M-A Miville-Deschenes, P. Kummel, J. Chluba, D. Pogosyan (UofA), D. Goncalves, K. Blagrave (in the past: C. MacTavish, B. Crill, O. Dore & G. Staikos)
- CSA-Planck-LFI: D. Scott (UBC), Andrew Walker, Adam Moss, Jim Zibin, R. Taylor (UofC) (in the past: Patanchon)
- Involvement in science: primary CMB cosmic parameters, B-mode/GravityWaves, nonGaussianity, subdominant elements, anomalies; galaxy clusters; all ISM - dust; Planck+ Herschel, ACT (ACTpol, ABS, Spider)
- Involvement in the data processing/analysis:
 - In charge of the HFI operation tools: QLA (KST), trend analysis, DailyQualityReport, WeeklyHealthReport to ESA
 - Significant contributions to the understanding of the instrument since launch: daily ingestion of data, TOIs, calibration, glitches, thermal fluctuations, dilution lifetime, noise properties,
 - Leader of the Galactic Planck Sky Model

HFI performance

- Thermal performance
 - 100 mK HFI detectors behave exactly as during ground tests. Set for minimum Helium flow, enough for 5 sky coverages (until ~Jan 2012 +-x)
- CRs: Glitch rate at ~80/min on each bolometer; produces thermal fluctuations
 - contribute to 1/f noise (significant CSA-HFI role in discovering and characterizing the effect)
- Sensitivity and Beams: a little better than Blue Book widely used for forecasts. (CR thermal fluctuations make it a little higher than ground measurements). Anticipated "aggregated" sensitivity (100-217 GHz) for 30 months is 0.33 microK-deg ie, ~1000 years of WMAP (60-94 GHz = 10.8 microK-deg in 1 yr) + >2 smaller beam
- CO lines in 100 and 220 GHz complicates modelling, a problem becomes a strength? with separation of components, could get an all-sky CO map

Sensitivity: ~ Blue Book widely used for forecasts. Beams to - 20 db understood.

PlanckEXT, EXT=many observatories & expts enabling the astro

XMM Herschel Fermi WMAP GBT BLAST ACT SPT AMI CBI CBASS QUIET SDSS IRAS CO/HI-maps, ...

PlanckEXT, EXT=many observatories & expts enabling the astro

XMM Herschel Fermi WMAP GBT BLAST ACT SPT AMI CBI CBASS QUIET SDSS IRAS CO/HI-maps, ...

PlanckEXT, EXT=many observatories & expts enabling the astro

XMM Herschel Fermi WMAP GBT BLAST ACT SPT AMI CBI CBASS QUIET SDSS IRAS CO/HI-maps, ...

the quest for the primordial within the primary CMB requires exquisite foreground removal, the quest for Milky Way maps & extended source maps requires accurate CMB etal removal

the TBD of Planck vintage 98: signal separation Striping

- dust
- synchrotron
- bremsstrahlung
- dusty galaxies
- kinetic SZ-
- thermal SZ• PRIMARY

F.R. BOUCHET & R. GISPERT 1998

10

STRIPING

DUST

SYNCHROTRON

FREE-FREE

GALAXIES

CLUSTERS AT/

CLUSTERS Y-SX

PRIMARY AT

The Planck Foregrounds sky

data Aug 13 09 to Jun 7 10: all-9-frequency maps + maps-CMB produced & delivered to consortium Aug 2 10

F. R. Bouchet: "The Planck High Frequency Instrument Sky"

PLANCK conference 2011, January 10th, Paris

- Reliability > 90% (using MC) with photometric accuracy <30%, no completeness stats and not flux limited.
- => radio/submm extragalactic sources, Galactic sources, +
- Have to take care at 100 GHz of possible CO.

- 915 cold cores in catalog
 ECC (7-17K, 1.4<beta<2.8),
 I0783 (C3PO) seen in
 maps, most within 2kpc
 Herschel follow-up, some done
- precursors of pre-stellar cores, up to 1e5 Msun
- Cold Clumps aka cold cores in groups & filaments, on edges of H1/IRAS loops

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists+theorists, primary+secondary **\Delta T/T**

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

 very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

• small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies - $5^{\circ} - 10^{\circ}$ results, <u>future experiments at ~ 1° , COBE</u> and other large angle analyses, theoretical $C(\theta)'s$ and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories, $\Delta T/T$ from gravitational waves, the cosmic string story.

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists+theorists, primary+secondary **\Delta T/T**

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

 very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

• small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies - $5^{\circ} - 10^{\circ}$ results, future experiments at $\sim 1^{\circ}$, COBE and other large angle analyses, theoretical $C(\theta)'s$ and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories, $\Delta T/T$ from gravitational waves, the cosmic string story.

radio source counts

ambient/blank-field tSZ effect from clusters & gps dominant Poisson sub-dominant 'self'-clustering cc-clustering

dusty gals gg-clustering term is much more important than for clusters, resolution to see both

"clustered shots" (peaks for halos) with pressure/thermal dust emission profiles effect of energy injection / explosions- a big pre-COBE forecast issue IGM ~ ISM

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists+theorists, primary+secondary **\Delta T/T**

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

 very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

• small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies - $5^{\circ} - 10^{\circ}$ results, future experiments at $\sim 1^{\circ}$, COBE and other large angle analyses, theoretical $C(\theta)'s$ and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories, $\Delta T/T$ from gravitational waves, the cosmic string story.

radio source counts

Planck, ACT, SPT (WMAP) deZotti model good, but steeper for > 70 GHz ambient/blank-field tSZ effect from clusters & gps dominant Poisson sub-dominant Planck, ACT, SPT blind detection; ACT, SPT power 'self'-clustering cc-clustering

dusty gals gg-clustering term is much more important than for clusters, resolution to see both Planck, ACT, SPT, ACTxBLAST, Herschel

"clustered shots" (peaks for halos) with pressure/thermal dust emission profiles effect of energy injection / explosions- a big pre-COBE forecast issue IGM ~ ISM

PlanckEXT, EXT=many observatories & expts enabling the astro

- SZ 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)
- CIB clustering clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged Source model with halo model fits the spectra, claim one-halo dominates over Poisson at I=2000. (BLAST, ACTxBLAST, Planck agree, Herschel a little higher, <bias>, source population uncertainty propagates into interpretation uncertainty.)
- Spinning dust AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with theory. a long journey with a great leap forward, draine & lazarian will be pleased.
- Radio src counts consistent with ACT/SPT (at higher flux range), lower than de-Zotti model. Spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).
- Galactic dust and templates. MW maps! see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule (sometime)

ESZ 20 new + 169 in X/Opt cats

(& ~80% new in SZ, Ethermal view)
 PlanckXMM dedicated time on newbies
 ~95% reliable, validation, S/N ~ 6 cut
 + cross-correlate with X/SDSS cats, Y-"M"
 scaling OK in shape, puzzle in amp for
 optical maxBCG/LRG
 new SZ reported

A2319

by ACT (~50), SPT (~50), AMI, ... more coming

Frequency range from 30 to 857 GHz Sept09 1st clusters detected FLS (A2163, ...); Jan10 1st reliable blind candidates; typical SZ sources are barely visible in raw frequency maps, ~1-2 sigma sources in cleaned frequency maps => Planck-internal QA: 2 methods MMF3 + e.g., PowellSnakes. **MMF3 output: position, size estimate, and integrated-y,** Position: accuracy ~2 arcmin. Cluster size & integrated-y measure are degenerate \rightarrow Prior on cluster size reduces the scatter in Y estimate Cluster size from X-ray taken as best estimate.

N. Aghanim

Planck sees the rarest and most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to $1.5 \times 10^{15} \text{ M}_{sol}$. 90% of the RASS above M > 9 × 10¹⁴ M_{sol}. M_{sol} detected by blind ESZ, 5/21 of new Planck > 9 × 10¹⁴ M_{sol}.

Feb10 targets for XMM-*Newton* - **25 candidates observed:** DDT time, eg, pilot 10 targets from 62% of sky coverage, in 4 < S/N < 6 range (EZ > 6); high S/N (>5) programme 15 targets. **21 confirmed** \rightarrow **~85% success rate;** 17 single clusters, most disturbed; 2 double systems; 2 triples (super-clusters) systems; 0.09 < z < 0.54

Tuesday, February 22, 2011

Planck sees the rarest and most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to $1.5 \times 10^{15} \text{ M}_{sol}$. 90% of the RASS above M > 9 × 10¹⁴ M_{sol}. M_{col} detected by blind ESZ, 5/21 of new Planck > 9 × 10¹⁴ M_{sol}.

Feb10 targets for XMM-*Newton* - **25 candidates observed:** DDT time, eg, pilot 10 targets from 62% of sky coverage, in 4 < S/N < 6 range (EZ > 6); high S/N (>5) programme 15 targets. **21 confirmed** \rightarrow **~85% success rate;** 17 single clusters, most disturbed; 2 double systems; 2 triples (super-clusters) systems; 0.09 < z < 0.54

Tuesday, February 22, 2011

Planck sees the rarest and most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to 1.5×10^{15} M_{sol}. 90% of the RASS above M > 9 × 10¹⁴ M

 M_{sol} detected by blind ESZ, 5/21 of new Planck > 9 × 10¹⁴ M_{sol}

Feb10 targets for XMM-*Newton* - **25 candidates observed:** DDT time, eg, pilot 10 targets from 62% of sky coverage, in 4 < S/N < 6 range (EZ > 6); high S/N (>5) programme 15 targets. **21 confirmed** \rightarrow **~85% success rate;** 17 single clusters, most disturbed; 2 double systems; 2 triples (super-clusters) systems; 0.09 < z < 0.54

Y(<r Δ)-M(<r Δ) relation, where M(<R Δ)/V(<R Δ)= $\Delta \rho_{crit}$, Δ =2500, 500, 200

Tuesday, February 22, 2011

Y(<r Δ)-M(<r Δ) relation, where M(<R Δ)/V(<R Δ)= $\Delta \rho_{crit}$, Δ =2500, 500, 200

Hydro Sims include all effects (except of course for those not included).

Analytic and semi-analytic treatments must be fully calibrated with sims to give a useful phenomenology.

Battaglia, Bond, Pfrommer, Sievers 11

Y(<r Δ)-M(<r Δ) relation, where M(<R Δ)/V(<R Δ)= $\Delta \rho_{crit}$, Δ =2500, 500, 200

Y(<r Δ)-M(<r Δ) relation, where M(<R Δ)/V(<R Δ)= $\Delta \rho_{crit}$, Δ =2500, 500, 200

Tuesday, February 22, 2011

SPT-beam 1'

am 1'

<= Planck beam at 150 GHZ =>

SZA@30 GHz beam

0* - 155

12:27:00.0

sub-cluste

A BCG ~ X-ray peak B Dark Matter peak ~ lobe of SZ ridge

Ncluster (Ysz, Mlens, Yx, Lx, Tx, Lcl, opt, Rich, I gold-sample, thresholds) + CL^{SZ}(Cuts) will deliver valuable cosmic gastrophysics for sure. Will it deliver **fundamental physics** e.g., the dark energy EOS, primordial non-Gaussianity??? σ₈ even?

- SZ 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)
 - CIB clustering clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged Source model with halo model fits the spectra, claim one-halo dominates over Poisson at I=2000. (BLAST, ACTxBLAST, Planck agree, Herschel a little higher, <bias>, source population uncertainty propagates into interpretation uncertainty.)
- Spinning dust AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with theory. a long journey with a great leap forward, draine & lazarian will be pleased.
- Radio src counts consistent with ACT/SPT (at higher flux range), lower than de-Zotti model. Spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).
- Galactic dust and templates. MW maps! see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule

Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

- Planck measures the CIB anisotropies from 10 arcmin to 2 degrees at 217, 353, 545 and 857 GHz
- Half of power comes from z<0.8 at 857 GHz and z<0.9 at 545 GHz. 1/5 and 2/3 come from z >3.5 at 353 GHz and 217 GHz
- Results depends strongly on the HI data, & Toronto GBT results

consistent with $\xi gg \sim r^{-1.8}$ (or even r⁻²) & linear bias, but halo model with 2-halo dominant, sources are exactly what? shot noise not (really) measurable with Planck, need higher res expts cf. ACTxBLAST, BLASTxBLAST, SPT/ACT CL separation, Herschel (higher)

Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

Planck-HFI Raw maps 26.4 sq. deg.

Raw maps

- CMB
- ERCSC point sources

Raw maps

- CMB
- ERCSC point sources
- Galactic dust

CIB maps @ 10 arcmin

PlanckEXT, EXT=many observatories & expts enabling the astro

- SZ 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)
- CIB clustering clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged Source model with halo model fits the spectra, claim one-halo dominates over Poisson at I=2000. (BLAST, ACTxBLAST, Planck agree, Herschel a little higher, <bias>, source population uncertainty propagates into interpretation uncertainty.)
- Spinning dust AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with theory. a long journey with a great leap forward, draine & lazarian will be pleased.
- Radio src counts consistent with ACT/SPT (at higher flux range), lower than de-Zotti model. Spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).
- Galactic dust and templates. MW maps! see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule

Fig. 4. Spectrum of G160.26-18.62 in the Perseus molecular cloud. The

PlanckEXT, EXT=many observatories & expts enabling the astro

- SZ 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)
- CIB clustering clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged Source model with halo model fits the spectra, claim one-halo dominates over Poisson at I=2000. (BLAST, ACTxBLAST, Planck agree, Herschel a little higher, <bias>, source population uncertainty propagates into interpretation uncertainty.)
- Spinning dust AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with theory. a long journey with a great leap forward, draine & lazarian will be pleased.
 - Radio src counts consistent with ACT/SPT (at higher flux range), lower than de-Zotti model. Spectral steepening above 70 GHz.

IR src – possible evidence for cold dust component in local IR galaxies (T<20K).

Galactic dust and templates. MW maps! - see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule (sometime)

PlanckEXT, EXT=many observatories & expts enabling the astro

- SZ 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)
- CIB clustering clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged Source model with halo model fits the spectra, claim one-halo dominates over Poisson at I=2000. (BLAST, ACTxBLAST, Planck agree, Herschel a little higher,

 spectra, source population uncertainty propagates into interpretation uncertainty.)
- Spinning dust AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with theory. a long journey with a great leap forward, draine & lazarian will be pleased.
- Radio src counts consistent with ACT/SPT (at higher flux range), lower than de-Zotti model. Spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).

• Galactic dust and templates. MW maps! - see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule (sometime)

Tuesday, February 22, 2011

IRAS Planck Herschel

Herschel ATLAS is a key legacy survey of 550 sq deg, 300 sq deg & lots of science done

ISMer-cosmologist cross talk is good and increasing, stimulated by Planck etal

n(M)dM, morphology of filaments, clustering/power spectra, "bulk/turbulent flows" SIMPLICITY in COMPLEXITY? but so much chemistry etc

Tuesday, February 22, 2011

Aquila curvelet N_{H2} map (cm⁻²) 10²¹ 10²²

André et al. 2010, A&A special issue

PlanckEXT, EXT=many observatories & expts enabling the astro

- SZ 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)
- CIB clustering clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged Source model with halo model fits the spectra, claim one-halo dominates over Poisson at I=2000. (BLAST, ACTxBLAST, Planck agree, Herschel a little higher, <bias>, source population uncertainty propagates into interpretation uncertainty.)
- Spinning dust AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with theory. a long journey with a great leap forward, draine & lazarian will be pleased.
- Radio src counts consistent with ACT/SPT (at higher flux range), lower than de-Zotti model. Spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).
- Galactic dust and templates. MW maps! see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule (sometime)

gastrophysics

= gastrointestinal disorder? or

= gourmand's paradise?

in paris, the latter @planck2011

Example 3 Beauty in complex information, but how best to measure it - compress into fewer bits of high Quality (cf. entropy) what art our science should/must be

cosmology forecasts for PlanckEXT

 $n_s(k)$, GW r(k), nonG f_{NL}++, $\rho_{de}(t)$, m_v , strings, isocurvature, ...

future DE equation of state trajectories NOW (1+Wde) = - dInpde / dIna³ = 2/3 ε_{ψ} & $\varepsilon = \Omega_{\psi}\varepsilon_{\psi} + \Omega_{m}\varepsilon_{m}$ & $\varepsilon_{m} = 3/2$

standard inflation space: n_s dn_s/dlnk r =T/S @k-pivots WHAT IS PREDICTED?

Smoothly broken scale invariance by nearly uniform braking (standard

of 80s/90s/00s) r~0.03-0.5 large field inflation (field moves > Planck mass) or highly variable braking r tiny

inflation consistency

-nt ≈r/8 ≈2ε(k)

(stringy cosmology) r<10⁻¹⁰

small field inflation (field moves <Planck mass \Rightarrow r<.007)

Bond, Kofman, Prokushkin, Vaudrevange 07, Roulette Inflation with Kahler Moduli and their Axions Barnaby, Bond, Zhiqi Huang, Kofman 09, Preheating after Modular Inflation

monodromy (V=cosine+linear) & fibre inflation give larger r~.03 current r constraints (95%CL) - prior sensitive

r < 0.16 (no running, all data sets)
r < 0.32 (no running, CMB-only data sets)
r < 0.27 (with running, all data sets)

& $f_{NL} < 1$ typical cf. -4< $f_{NL} < 80$ (+- 5 Planck) $1 - n_s \approx 2\varepsilon + d/n\varepsilon/d/nHa$

future scalar power spectrum trajectories scan $n_s(lnk)$, $lnA_s=lnP_s(k_{pivot,s})$, $r(k_{pivot,t})$; consistency => reconstruct $\epsilon(lnHa)$, $V(\psi)$ scanning n_s , 10 knots, cubic spline 0.9scanning n_s , 10 knots, cubic spline InP_s(Ink) InP_s(Ink) 0.81.4 0.7 $\log_{10}[10^{10}P(k)]$ 0.60.51.30.40.30.2forecast: CMB + WL + BAO + SN1.2k~Ha 0.1current: CMB + WL + LSS + SN + Lya0 -8 -7 -6 -5 -4 -3 -2 -1-8 -7 -6 -5 -4 -3 -2 -10 $\ln[k/\mathrm{Mpc}^{-1}]$ $\ln[k/\mathrm{Mpc}^{-1}]$

 $ε_{ψ} ≈ ε = - dlnH / dlna ; V(ψ) ≈ 3M_P^2H^2(1-ε/3) ; dψ/ dlna = ±√ε$

r≈0.1V /(10¹⁶Gev)⁴

GW/S≡**r ≈16**ε

Bond, Contaldi, Huang, Kofman, Vaudrevange 2011

compress data onto non-top-hat k-modes

Tuesday, February 22, 2011

CMB peaks (hot&cold) => the WMAP Cold Spot

primordial non-Gaussianity $\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G^2(x) - \langle \Phi_G^2 \rangle)$ local smooth. use optimal pattern estimator DBI inflation: non-quadratic kinetic energy cosmic/fundamental strings/defects from end-of-inflation & preheating $\Phi(x) = \Phi_G(x) + F_{NL}(\chi_b) - \langle F_{NL} \rangle$ resonant preheating f_NLeff + cold spots

-4< f_{NL}<80 (+- 5 Planck)

CMB peaks (hot&cold) => the WMAP Cold Spot

primordial non-Gaussianity $\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G^2(x) - \langle \Phi_G^2 \rangle)$ local smooth. use optimal pattern estimator DBI inflation: non-quadratic kinetic energy cosmic/fundamental strings/defects from end-of-inflation & preheating $\Phi(x) = \Phi_G(x) + F_{NL}(\chi_b) - \langle F_{NL} \rangle$ resonant preheating f_NLeff + cold spots

-4< f_{NL}<80 (+- 5 Planck)

end 2