Coherent Inflation with Quantum Jitter to Hot Big Bang, an Incoherent Particle Soup how (most of) the entropy in matter => GUT plasma/quark soup =>  $S(\gamma, \nu)$  was generated (through a shock-in-time) via nonlinear coupling of the inflaton to new interaction channels  $g, \chi_a V_{eff}(\varphi, \chi_a | g, ...)$  aka  $V_{eff}(r, \theta_a | g, ...)$  ultimately to standard model degrees of freedom ∃ a role for decaying particles, 1st order phase transitions? exactly who, what, where, when, why? we search for fossil "non-Gaussian" structures from this period with Planck +WMAP9





### Potentials at the End of Inflation with Physical Motivation

**HEATING:** how to damp coherent ballistic trajectories into high-k entropy.

old, eg SBB89  $\Gamma$  (KE+PE). still used! e.g., warm inflation  $J_j = \Gamma_j \dot{\phi}_j$ ,  $\dot{\phi}_j \equiv \operatorname{sgn}(\dot{\phi}_j) |\partial_\mu \phi_j \partial^\mu \phi_j|^{1/2}$  $\Gamma_j = f_j M_j$ .  $\frac{1}{a^4} \frac{da^4 \rho_r}{dt} = \sum_j \Gamma_j \dot{\phi}_j^2$ 

decay rates (Feynman diagrams) and transport theory difficult to make accurate through preheating

rather fundamental scalar field nonlinear evolution equations (inflaton, isocons) & effective potentials & kinetic energies

post KLS93: via inflaton self-couplings; isocon-inflaton field couplings, fermion-bar fermion, gauge fields, pseudo-scalar\*FFdual,  $V(\phi_1,\phi_2) = \frac{m_2^2\phi_2^2}{2} + \frac{\lambda_2\phi_2^4}{4} + \frac{m_1^2\phi_1^2}{2} + \frac{\lambda_1\phi_1^4}{4} - \frac{v\phi_1^2\phi_2^2}{2} + v_0$ .  $-\mu_1\phi_1\phi_2^2$ tachyonic instability:  $m_{eff}^2 < 0$  single field can preheat fast with only a few oscillations, eg roulette in the groove, trilinear

**Stochastic inflation works:** ballistic trajectories for fields  $q_X$  with kicks from sub-horizon waves  $dW_X$  causing nearby trajectories to deviate,  $\zeta_{NL}$  like dE+pdV a near-adiabatic invariant, sourced by stress\*strain-rate & energy currents (regularizer between nearby positions X).

 $\varepsilon = -3/2 \, dln \, \rho \, / dln \, a^3 = 1$  defines End of Inflation (cf.  $\varepsilon < .0075$  now!), but it is not a magic boundary, dragged trajectories break into (spatially independent) oscillations. weak point-to-point coupling until ...

new picture: ballistic until the shock-in-time = huge time-localized non-eq entropy generation; slow S-evolution after which is V-dependent. only weak-coupling of nearby points before. ULSS & LSS & SSS modulator field  $\zeta_{NL}(modulator(x))$ , e.g. modulator =  $\chi_i(x)$ , g(x)

entropy generation in preheating from the coherent inflaton (origin of all matter & radiation) nonG from post-inflation but pre-entropy generation (B<sup>2</sup>FH13) drift trajectories can lead to pre-shock-in-time caustics and other phase space convergences in the deformations  $\partial \ln a / \partial \chi_i(x)$ ,  $\partial \ln a / \partial g(x) =>$ 

Barnaby, Bond, Huang, Kofman09

101618

let there be

heat

0.000

NL,nonG curvature distribution( $\chi_i(x), g(x),...$ )



1000

-250

S

e

m

3

drift

## www.youtube.com/watch?v=FW su-W-ck&NR=1

entropy generation in preheating from the coherent inflaton (origin of all matter & radiation) nonG from post-inflation but pre-entropy generation (B<sup>2</sup>FH13) drift trajectories can lead to pre-shock-in-time caustics and other phase space convergences in the deformations  $\partial \ln a / \partial \chi_i(x)$ ,  $\partial \ln a / \partial g(x) =>$ 

a =

NL,nonG curvature distribution( $\chi_i(x), g(x),...$ )

# A visualized 2D slice in lattice simulation















Wednesday, 17 April, 13

quartic inflaton V( $\phi, \chi$ ) = 1/4  $\lambda \phi^4$  + 1/2 g<sup>2</sup>  $\phi^2 \chi^2$ 



quadratic inflaton V( $\phi, \chi$ ) =  $1/2 \text{ m}^2 \phi^2 + 1/2 \text{ g}^2(\sigma) \phi^2 \chi^2$  ...



quadratic inflaton trilinear coupling V( $\phi, \chi$ ) =  $1/2 m^2 \phi^2 + 1/2 \sigma \phi \chi^2 + 1/4 \lambda \chi^4$ 



#### Designing density fluctuation spectra in inflation

D. S. Salopek Department of Physics, University of Toronto, Toronto, Canada M3S 1A7

J. R. Bond Canadian Institute for Advanced Research Program, Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Canada M5S 1A1

> J. M. Bardeen Department of Physics, University of Washington, Seattle, Washington 98195 (Received 3 November 1988)

obeying Gaussian statistics independently of initial conditions. Since observations only probe a narrow patch of the potential surface, it is possible that it is littered with moguls, leading to arbitrarily complex "mountain range" spectra that can only be determined phenomenologically. We also construct an inflation model which houses the chaotic inflation picture within the grand unified theory and then express the  $\phi_i$  in hyperspherical coordinates, (GUT) framework. The standard chaotic picture requires an unnaturally flat scalar field potential,  $\lambda \approx 5 \times 10^{-14}$ , and a strong curvature coupling parameter bound,  $\xi < 0.002$ . By allowing the Higgs  $\phi$ field to be strongly coupled to gravity through a large negative curvature coupling strength.  $\xi \sim -10^4$ , so the Planck mass depends on the GUT Higgs field, the Higgs field can be strongly coupled to matter fields [with  $\lambda \sim (\xi/10^5)^2$ ]. This leads to both a flat Zeldovich spectrum of the "observed" amplitude and a high reheating temperature (~10<sup>15</sup> GeV), unlike the  $\lambda$ ~10<sup>-13</sup> standard case. The large  $-\xi$  would be related to the ratio of the Planck scale to a typical GUT scale. Although a single dynamically important Higgs multiplet gives flat spectra, a richer Higgs sector could lead to broken scale invariance.

#### APPENDIX B: INDUCED GRAVITY IN A GUT FRAMEWORK

In Sec. VII we claimed that if the curvature coupling constant was chosen to be  $\xi = -2 \times 10^4$ , inflation could be incorporated within a grand unified theory. However, the simplified analysis of that section utilized a single complex scalar field coupled to a U(1) gauge field, and we now wish to consider the physically more interesting case of non-Abelian gauge fields. We concentrate on the wellstudied minimal SU(5) model, although any gauge group could be incorporated. In SU(5), the Higgs field, H, and the gauge field,  $A_{\mu}$ , both in the adjoint representation,

We now consider the cosmological consequences of the four fields that parametrize the diagonal Higgs field,  $H = \sqrt{2}\phi_i \tau^i$ . It proves convenient to choose the diagonal basis

$$\tau^{1} = \operatorname{diag}[2, 2, 2, -3, -3]/\sqrt{60},$$
  

$$\tau^{2} = \operatorname{diag}[0, 0, 0, 1, -1]/2,$$
  

$$\tau^{3} = \operatorname{diag}[1, -1, 0, 0, 0]/2,$$
  

$$\tau^{4} = \operatorname{diag}[1, 1, -2, 0, 0]/(2\sqrt{3}),$$
  
(B14)

$$\begin{array}{ll} & \theta_{1}, \theta_{2}, \theta_{3}: & \text{angle variables in SU(5)} \\ & \phi_{1} = \phi \cos \theta_{1} , \\ & \phi_{2} = \phi \sin \theta_{1} \cos \theta_{2} , \\ & \phi_{3} = \phi \sin \theta_{1} \sin \theta_{2} \cos \theta_{3} , \\ & \phi_{4} = \phi \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} . \end{array}$$

$$(B15)$$

We find that the scalar field part of the Lagrangian density, (B2), is

$$\begin{split} \tilde{\mathcal{L}}_{\phi} &= -\frac{1}{2} \chi_{,\mu} \chi^{,\mu} - \frac{1}{2} \frac{m_{P}^{2} \phi^{2}}{16 \pi f} (\theta_{1,\mu} \theta_{1}^{,\mu} + \sin^{2} \theta_{1} \theta_{2,\mu} \theta_{2}^{,\mu} \\ &+ \sin^{2} \theta_{1} \sin^{2} \theta_{2} \theta_{3,\mu} \theta_{3}^{,\mu}) \\ &- \left[ \frac{m_{P}^{2}}{16 \pi f} \right]^{2} V(H) , \end{split}$$
(B16a)

where

$$V(H) = -m_1^2 \phi^2 + \phi^4 [\lambda_1 + \lambda_2 g(\theta_i)], \qquad (B16b)$$

$$g(\theta_i) = \frac{7}{30} + \frac{4}{3} \sin^2 \theta_1 - \frac{16}{15} \sin^4 \theta_1 + \sin^2 \theta_1 \sin^2 \theta_2$$

$$\times \left[ -1 + \sin^2 \theta_1 \sin^2 \theta_2 + \frac{4\sqrt{5}}{15} \cos \theta_1 \sin \theta_1 \sin \theta_2 \sin(3\theta_3) \right], \quad (B16c)$$



$$\begin{split} \chi &= \int [K^{11}(\phi)]^{1/2} d\phi , \qquad \qquad U(\chi) = \left[ \frac{m^2}{m_P^2} + 8\pi |\xi| \frac{\phi^2(\chi)}{m_P^2} \right]^{-2} V(\phi(\chi)) \\ K^{11} &= \frac{\frac{m^2}{m_P^2} + 8\pi |\xi| (1+6|\xi|) \frac{\phi^2}{m_P^2}}{\left[ \frac{m^2}{m_P^2} + 8\pi |\xi| \frac{\phi^2}{m_P^2} \right]^2} . \end{split}$$

quartic inflaton variable Planck mass V( $\phi, \chi$ ) = 1/4  $\lambda \phi^4 - 1/2 \xi \phi^2 R + 1/2 g^2 \phi^2 \chi^2 \xi$  $\xi$ =-1



## spikes persist with flattened effective potential



## spikes persist with flattened effective potential

quartic inflaton variable Planck mass V( $\phi, \chi$ ) = 1/4  $\lambda \phi^4 - 1/2 \xi \phi^2 R + 1/2 g^2 \phi^2 \chi^2$ 



## spikes persist with flattened effective potential

quartic inflaton variable Planck mass V( $\phi, \chi$ ) = 1/4  $\lambda \phi^4 - 1/2 \xi \phi^2 R + 1/2 g^2 \phi^2 \chi^2$ 



## spikes persist with flattened effective potential

## nonG from large-scale modulations of the shock-in-times of preheating



$$V(\phi,\chi) = \frac{1}{4} \lambda (r^2 - v^2)^2 U \qquad V(r)U(\cos\theta), r^2 = \frac{1}{4} \psi^2 + \chi^2$$



## string-like field configurations mediate the EoS for a long time

$$V(\phi,\chi) = \frac{1}{4} \lambda (r^2 - v^2)^2 U \qquad V(r)U(\cos\theta), r^2 = \frac{1}{4} \psi^2 + \chi^2$$



## string-like field configurations mediate the EoS for a long time

## from

quartic inflaton V( $\phi, \chi$ ) = 1/4  $\lambda \phi^4$  + 1/2 g<sup>2</sup>  $\phi^2 \chi^2$ 

quadratic inflaton V( $\phi, \chi$ ) =  $1/2 \text{ m}^2 \phi^2 + 1/2 \text{ g}^2(\sigma) \phi^2 \chi^2$  ...

quadratic inflaton trilinear coupling V( $\phi, \chi$ ) =  $1/2 \text{ m}^2 \phi^2 + 1/2 \sigma \phi \chi^2 + 1/4 \lambda \chi^4$ 

quartic inflaton variable Planck mass  $V(\phi, \chi) = 1/4 \lambda \phi^4 - 1/2 \xi \phi^2 R + 1/2 g^2 \phi^2 \chi^2$ aka Higgs inflation. flattened effective potential in the Einstein frame

## to

angular variables pNGB natural inflation, racetrack, monodromy, ...

2 field:  $V(r,\theta) = \sum_{M} V_{M}(r) \cos(m\theta) \ pNGB$ , Roulette r~hole size

3 field: 3D  $\varphi \chi \sigma$  fields V(r,n)=  $\sum_{LM} V_{LM}(r) Y_{LM}(n)$ 

5 field: angle variables in SU(5) & etc.

## to?

Simple exercises to flatten your potential Xi Dong, Bart Horn, Eva Silverstein, and Alexander Westphal 2011