Gaussian & non-G Random Fields in Early Universe Cosmology: Then and Now

What was the Universe made of & how was it distributed? NOW: baryons/leptons + (cold-ish) dark matter + dark energy/inflaton + tiny curvature energy (+photons+light neutrinos + gravity waves). ??a bit of strings/textures/PBHs?? Are there primordial non-Gaussian components - subdominant inflation-induced, preheating induced or cosmic-string induced? nonlinear & non-G web of galaxies/clusters **HEN:** coherent inflaton / "vacuum" energy + zero-point fluctuations in all fields (Gaussian RF) & then preheat via mode coupling to incoherent cascade to thermal equilibrium soup very late U early to middle to now U very early string theory/landscape/higher dimensions inflation cyclic baryogenesis dark matter BBN γ dec dark energy $V_{eff}(\psi_{inf})$? V_{eff} (ψ_{inf}) ? $K_{eff}(\psi_{inf})$? $K_{eff}(\psi_{inf})$? trajectory trajectory -d/nptot/d/na /2 probability =<mark>€(k)</mark> =1+q, k∼Ha probability cosmic mysteries

 $n_b/n_\gamma \,
ho_{dm}/
ho_b \, z_{eq}/z_{rec} \,
ho_{curv} \,
ho_{de}/
ho_{dm} \,
ho_{de} \sim H^2 M^2_{Planck} \,
ho_{m_\nu}/
ho_{stars}$

brief history of bond's non-Gaussian exploration in inflation: THEN early 80s: hot, warm & cold collisionless dark matter + inflation $\Rightarrow \mathbf{x}CDM$: 86 extra power dilemma \Rightarrow vary X: k_{Heq} k_{mn} k_{features} 87: \mathbf{X} = s/H0 / Λ / Open/ is /is+ad/ h-c/ h+/ b/ b / Λ +b / Op+b / τ BSI /BSI2 90s-00s: data settled on \mathbf{X} = Λ +tilt \Rightarrow dark-energy +tilt Linde & Kofman 87, clipped pNGB (1-cos(χ /f)) string issue single field Grinstein, Allen & Wise 87 SBB89: δ H, δ m²ij (moguls, waterfalls \Rightarrow plateau/mountain/valley) $\sqrt{=\lambda_{\phi}\phi^{4}/4+m_{\phi}^{2}\phi^{2}/2+\lambda_{\chi}\chi^{4}/4+m_{\chi}^{2}\chi^{2}/2-\nu\phi^{2}\chi^{2}/2+3-leg}$ HYBRID; (inflaton + isocons)

trajectory bifurcation at $m_{is,is}^2 \le 0$ TACHYONIC \Rightarrow non-G with & without 3-leg, avoid late domain walls (\Rightarrow modify V_{late time})

SB90/91: nonG technology: $\mathbf{y}(\mathbf{r},t) = \mathbf{y}_{\mathbf{f}}(\mathbf{r},t) + \mathbf{y}_{\mathbf{b}}(\mathbf{r},t) (+ \mathbf{y}_{>\mathbf{h}}(\mathbf{r},t))$ full EE+ ϕ/χ eqs, restricted to the nonlinear longitudinal gauge (NL-LG); fluctuation/background split \Rightarrow *Langevin network*. $\mathbf{y}_{\mathbf{f}}$ linearized (fn of $\mathbf{y}_{\mathbf{b}}$); $\mathbf{y}_{\mathbf{b}}(\mathbf{r},t)$ super-"horizon" k < u Ha,

drift+stochastic kicks; reduced Hamilton-Jacob) eqn; identify na H* as the nonlinear generalization of φ_{com} or ζ setup for eternal alps (semi-eternal inflation, nonG at UUULSS, but nearly Gaussian over current horizon scales or baroque-ish V)

B91 *(full NL-LG nonG Langevin network:* $Y_{bi}(\mathbf{r},t) \in \{\phi, \Pi_{\phi}, \chi, \Pi_{\chi}, \text{Ina}, H \mid T=\text{InHa}\}$

brief history of bfhk09 non-Gaussian exploration in inflation: NOW

80-90s: arena for BSI & non-G near EOI, new fields coupling in expected k~Ha rule would apply. pre-heating surprise!)

 $(Ina[\chi_i(x,t)]$ from "subgrid") $\sim H_e^{-1}$ lattice simulations of $\phi_{UHF} \chi_{UHF}$

like stochastic f-b split, with no dropping of gradient or nonlinear terms

Why *lna*[χ_i]? ingredient 1 chaotic zero modes fill V arms, Lyapunov log- χ_i

spacing, overtones as well; ingredient 2 arm flow shuts off when $M_{\gamma\gamma}^2$ rises sharply at vigorous preheating nonlinearity onset \Rightarrow EOS change

 $P(\chi | \chi_{LF}) \sim exp[-(\chi - \chi_{LF})^2 / 2\sigma_{HF}^2] \text{ builds a usable low-pass effective mean field does it work? linear <\chi | \chi_{LF} > ~\chi_{LF} \text{ is sharp-k filter f-b split BBKS86, BCEK90, BM96 fourier transform (F_{NL} - < F_{NL} | \chi_{LF} >) is small for k<k_{LF} for quadratic, exponential & even Gaussian spikes (variance ~1% at k_{LF} 0.15 at k_{LF}/10)

<F_{NL} | \chi_b (x,t) + \chi_{>h} > regimes contrast with <math>\phi_{>h}$: may be way out there in eternal inflation land, but not in a preheated ϵ >1 patch LOW $\chi_{>h}$ $\beta_{\chi} \chi_{b} + f_{\chi} \chi_{b}^2$ subdominant linear, (much) less constrained f_{χ} cf. f_{NL} MEDIUM $\chi_{>h}$ encompass smoothed spikes, to be rare (for AT cold spot) potential well anomalies or not to be rare (and suffer constraints) 3 LARGE $\chi_{>h}$ encompass part of a smoothed spike, upside, downside, topside

Approaching the Planck Era in ≤ 1 month

status; impact of Planck on Planck era physics, early

inflation $(N_s(k), GW: Tensor(k))$, subdominant isocurvature, cosmic strings, textures, $OONGAUSSIAN F_{NL}$ +late inflation w(z)

Launch planned for April 29, 2009 maybe

(~10:30am Eastern)

from Kourou, French Guiana 4°N

Herschel in Kourou Feb 11 Planck in Kourou Feb 18 Launch window: 1 hour per day; 2

days on, 2 weeks off to refill Herschel dewar

ESA /NASA /CSA Toronto HFI QLA/KST, TA, ... Barth & Dick, Marc-Antoine Miville-Deschenes, Carrie MacTavish, Brendan Crill, Olivier Dore, Mike Nolta, Peter Martin UBC LFI Douglas Scott etal.

CBI pol to	Apr'05 @Chile	CBI2 QUaD @SP	Quiet1 @Chile	Quiet2 1000 HEMTs			
Boom03	@LDB +B98	Bicep @SP	Bicep2	Keck/Spud			
WMAP nong DASI @SP CAPM	DL2 to 2010-20?? 1AP	Planc nong (52 bd + HE 9 frequ H BLAST	k09.3 olometers) MTs @L2 uencies erschel	OLDB Spider 2312 bolos OLDB CHIP			
2004	2006	2008	LHC	201 Bpol			
20 A	005 20 Cbar to Jan'06, 08 SZA @Cal	07 Sf @SP (@ (@) (@) (@) (@) (@) (@) (@) (@) (@)	2009 BLAS BLAS BLAS BLAS BLAS BLAS BLAS BLAS	©L2 STpol Clover @Chile Polarbear 300 bolos @Cal/Chile SPTpol			
	GBT	@Chile	12000 bolos JCMT @Hawaii	@Chile LMT@Mexico			

Nearly Perfect Blackbody T=2.725 ±.001 K COBE/FIRAS

CMB

Dipole: flow of the earth in the CMB

COBE/DMR: CMB + Galactic @7⁰ is this a statistically isotropic Gaussian random field, when account is taken of the Milky Way emissions & extra-galactic sources? yes! maybe?

001-00-12 CMB BIDOA+BIDOA1+BIDOAX+BIDOBX 4 6.9 Created by COADD

Boomerang @150GHz is (nearly) Gaussian: Simulated vs Real

thermodynamic CMB temperature fluctuations 2.9% of sky ∆T~30 ppm

DA Dool

All non-primary CMB components are non-Gaussian: extragalactic radio and submm sources; Galactic synchrotron bremsstrahlung & dust emission, CMB-upscattering from hot gas in clusters, gravitational lensing of the CMB, ...

even the high resolution Cosmic Background Imager ΔT is ~ Gaussian, & so is its CMB polarization signal

- Method: Decompose data (with extragalactic radio sources removed) into uncorrelated S/N eigenmodes for each bin; Pick out modes expected to have signal; Check distribution for non-Gaussianity
- We kept 5500 modes for TT ΔT , 3800 for EE polarization
- all are consistent with Gaussian
- first check of EE polarization

nonlinear Gas & Dark Matter Structure in the Cosmic Web the cluster/gp web "now", the galaxy/dwarf system "then"

nonlinear Gas & Dark Matter Structure in the Cosmic Web the cluster/gp web "now", the galaxy/dwarf system "then"

the quest for primordial non-Gaussianity within the primary CMB requires exquisite foreground removal, whether inflation-induced or cosmic-string-induced, ...

striping dust synchrotron bremsstrahlung dusty galaxies kinetic SZ thermal SZ PRIMARY

F.R. BOUCHET & R. GISPERT 1998

Planck's Journey

- Trip to L2: ~ 30 days
- Decontamination & Cooldown ~ 45 days
- Detectors at 100mK at L2 around June 18
- . CPV (Checkout & Performance Verification) thru end-Jul

NET requirement vs. NET measurement vs NET goal: very close to goal, better than requirement in all channels: 100 GHz_P 143 GHz_P 143 GHz 217 GHz_P 217 GHz 353 GHz_P 545 GHz 857 GHz

Schedule

- Launch: April 2009 Cruise & CPV ends July 2009
- Two sky surveys finished July 2010
- Early Release Compact
 Source Catalog ~Dec 2010
 Four sky surveys
 finished: July 2011
 Public release of 1yr
- data, papers: July 2012

brief history of bond's non-Gaussian exploration in inflation: THEN early 80s: hot, warm & cold collisionless dark matter + inflation $\Rightarrow \textbf{x}CDM$: 86 extra power dilemma \Rightarrow vary x: k_{Heq} k_{mn} k_{features} 87: X= s/H0 / Λ / Open/ is /is+ad/ h-c/ h+/ b/ b / Λ +b / Op+b / τ BSI /BSI2 90s-00s: data settled on X= Λ +tilt \Rightarrow dark-energy +tilt

COSMIC PARAMETERS THEN e.g., BBE1987 Vary x in xCDM

for *x*CDM, predict CMB (6deg, 5min); LSS cluster-cluster, cluster-galaxy, bulk flows,

 σ_8 : redshift of "galaxy formation"

14 Gyr, Ω_Λ=0.8, H0=75, b~c, 50μK cf 30μK cobe, *σ*8~0.72

X = s/H0 / Λ / Open/ is /is+ad/ h-c/ h+/ b/ b / Λ +b Op+b / τ (BSI /BSI2)

							PREDICT	IONS FOR M	ODELS			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$				
Parameter	OBS	CDM	C40	VAC/C	OP/C	ISO/C	ISO/AD	нот	HC	C + B	B + C	BCV	BCO	CDM + dec	$(CDM + X)_3$ $(k_u^{-1} = 300)$	$(CDM + X)_2$ $(k_u^{-1} = 200)$
$\Omega, \Omega_{B}, H_{0}$ $\Omega_{X}(\Omega_{v}), \Omega_{vac}$ b t_{0} (by)	GC: 14–22 NC: 13–26	1, 0.1, 50 0.9, 0 1.7 13	1,0.1,40 0.9,0 1.8 17	1,0.03,50 0.17,0.8 1 22	0.2, 0.03, 50 0.17, 0 1 17	1, 0.1, 50 0.9, 0 1.7 13	1,0.1,50 0.9,0 1.7 13	1, 0.1, 50 (0.9), 0 0.53 13	1, 0.1, 50 0.5 (0.4), 0 1.7 13	1,0.2,40 0.8,0 1.8 17	1,0.5,50 0.5,0 1.7 13	1, 0.1, 75 0.1, 0.8 1 14	0.2, 0.1, 75 0.1, 0 1 11	1, 1, 50 1, 0 1.7 13	1, 0.1, 40 0.9, 0 1.8 17	1,0.1,50 0.9,0 1.7 13
$\sigma_0(R_g = 0.35) \dots z_g$		2.9 3.7	2.4 2.9	2.7 2.3	2.7 4.0	1.6 1.3	2.5 3.1	2.0 1	1.3 1.1	2.2 2.5	1.9 2.0	2.4 1.3	2.4 2.0	6.8 13	2.2 2.6	2.7 3.4
$\sigma_0(R_{c1} = 5) \dots$ $\langle \nu \rangle_c \dots$	· · · · ·	0.42 3.2	0.39 3.1	0.75 3.1	0.75 3.1	0.43 3.0	0.42 3.2	1.4 3.1	0.44 2.9	0.40 3.1	0.44 3.0	0.72 2.8	0.72	0.47 2.7	0.41 3.1	0.43 3.1
$\xi_{cc}(20)$ $\xi_{cc}(25)$ $\xi_{cc}(30)$ $\xi_{cc}(50)$ $\xi_{cc}(100)$	1.5 1.0 0.72 0.29 0.08	0.15 0.08 0.03 -0.01* -0.002*	0.26 0.15 0.07 -0.006* -0.003*	1.7 1.2 0.85 0.24 0.02	1.7 1.2 0.85 0.24 0.02	0.70 0.42 0.25 0.02 -0.003*	0.35 0.21 0.11 -0.01* -0.003*	1.1 0.45 0.20 0.009* 0.003*	1.0 0.51 0.24 -0.02* -0.009*	0.49 031 0.20 0.04 -0.007*	1.3 0.93 0.61 0.23 -0.01*	2.2 1.7 1.4 0.59 036	2.2 1.7 1.4 0.59 0.36	1.8 0.92 0.49 0.16 0.02	1.0 0.83 0.64 0.28 0.08	0.85 0.68 0.51 0.21 0.06
$\xi_{cg}(20)$ $\xi_{cg}(25)$ $\xi_{cg}(30)$ $\xi_{cg}(40)$	0.49 0.33 0.24 0.14	0.13 0.04 0.01 -0.003	0.17 0.06 0.02 0.002	0.57 0.37 0.25 0.13	0.57 0.37 0.25 0.13	0.32 0.16 0.09 0.03	0.19 0.08 0.03 0.006	0.96 0.35 0.12 0.001	0.44 0.23 0.11 0.02	0.23 0.11 0.06 0.03	0.50 0.32 0.22 0.13	0.76 0.54 0.41 0.26	0.76 0.54 0.41 0.26	0.70 0.42 0.24 0.09	0.39 0.26 0.19 0.12	0.32 0.20 0.15 0.10
$v(R_f = 3.2)$ $v(R_f = 15)$ $v(R_f = 25)$ $v(R_f = 40)$	$610 \pm 50 \\ 599 \pm 104 \\ 970 \pm 300$	136-654 71-340 53-250 35-180	134–650 76–365 56–269 40–192	166-797 134-639 115-550 95-456	157-752 126-601 108-516 90-430	172-824 114-544 89-421 66-315	148-709 86-409 64-309 47-221	594–2850 387–1850 419–1350 200–958	185-889 124-587 91-435 65-311	149-714 95-450 71-342 52-251	208–1000 154–735 119–573 87–419	232-1120 206-987 186-894 160-771	218–1050 19 17 15	293–1399 70 28 9	280–1331 250–1190 233–1106 214–1016	241–1151 202–970 185–882 165–787
$\Delta T/T$ (4.5) × 10 ⁶ (6°)	<25 <48	5 7	6 8	20 20	70 40	60	30	20 20	 8	6 8	8 15	10 25			72 (98)	40 (64)

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists+theorists, primary+secondary ∆T/T

Primary Cosmic Microwave Background Radiation ~ a statistically isotropic

<u>all-sky GRF on the 2-sphere $C_L = < |\Delta T(LM)|^2 > with target C_L shapes</u>$ A tentative list of topics organized according to angular scale, with theory and observation intertwined,</u>

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

 very small angle anisotropies - VLA results, secondary fluctuations via the <u>Sunyaev-Zeldovich</u> effect, <u>primeval dust emission</u>, and <u>radio sources</u>

 small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies - $5^{\circ} - 10^{\circ}$ results, <u>future experiments at ~ 1° , COBE</u> and other large angle analyses, theoretical $C(\theta)'s$ and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories, $\Delta T/T$ from gravitational waves, the cosmic <u>string story</u>. Boom05² deep

brief history of bond's non-Gaussian exploration in inflation: THEN

Linde & Kofman 87, clipped pNGB (1-cos(χ/f)) string issue single field Grinstein, Allen & Wise 87 SBB89: δH , δm^2_{ij} moguls, waterfalls \Rightarrow plateau/mountain/valley

 $V = \lambda_{\phi} \phi^{4} / 4 + m_{\phi}^{2} \phi^{2} / 2 + \lambda_{\chi} \chi^{4} / 4 + m_{\chi}^{2} \chi^{2} / 2 - \nu \phi^{2} \chi^{2} / 2 + 3 - \log HYBRID; \text{ (inflaton + isocons)}$

trajectory bifurcation at $m_{is,is}^2 \leq 0$ TACHYONIC \Rightarrow non-G with & without 3-leg, avoid late domain walls (\Rightarrow modify V_{late time})

Old view: Theory prior = delta function of THE correct one and only theory

1987

2003

SBB89: multi-field, the hybrid inflation prototype, with curvature & isocurvature & *P*_s(k) with any

shape possible & P_t(k) almost any shape (mountains & valleys of power), gorges, moguls, waterfalls, m²_{eff} < 0, i.e., tachyonic, non-Gaussian, baroqueness, radically broken by variable braking ε(k); SB90,91 Hamilton-Jacobi formalism to do non-G (& Bardeen pix of non-G) ε(k) - H(φ)

cf. gentle break by smooth brake in the slow roll limit.

than flat spectra give. We consider a wide variety of models based on the chaotic inflation paradigm and sketch the effects that varying the expansion rate, structure of the potential surface, and the curvature coupling constants have on the quantum fluctuation spectra. We calculate in detail the quantum generation of fluctuation spectra by numerically solving the linearized perturbation equations for multiple scalar fields, the metric, and the radiation into which the scalars dissipate, following the evolution from inside the horizon through reheating. We conclude that (1) useful extended nonflat power laws are very difficult to realize in inflation, (2) double inflation leading to a mountain leveling off at a high-amplitude plateau at long wavelengths is generic, but to tune the cliff rising up to the plateau to lie in an interesting wavelength range, a special choice of initial conditions and/or scalar field potentials is required, and (3) small mountains (moguls) on the potential surface lead to mountains of extra power in the fluctuations added on top of an underlying flat spectrum. For quadratic and quartic couplings, the mountain fluctuations may obey Gaussian statistics but the spectral form will be very sensitive to initial conditions as well as potential parameters; non-Gaussian mountain fluctuations which depend upon potential parameters but not on initial field conditions will be the more likely outcome. However, adding cubic couplings can give mountains obeying Gaussian statistics independently of initial conditions. Since observations only probe a narrow patch of the potential surface, it is possible that it is littered with moguls, leading to arbitrarily complex "mountain range" spectra that can only be determined phenomenologically. We also con-

Blind power spectrum analysis cf. data, then & now measures matter "theory prior" informed priors?

struct an inflation model which houses the chaotic inflation picture within the grand unified theory

SBB89: multi-field, the hybrid inflation prototype, with curvature & isocurvature & *P*_s(k) with any

shape possible & P_t(k) almost any shape (mountains & valleys of power), gorges, moguls, waterfalls, m²_{eff} < 0, i.e., tachyonic, non-Gaussian, baroqueness, radically broken by variable braking ε(k); SB90,91 Hamilton-Jacobi formalism to do non-G (& Bardeen pix of non-G) ε(k) - H(φ)

cf. gentle break by smooth brake in the slow roll limit.

than flat spectra give. We consider a wide variety of models based on the chaotic inflation paradigm and sketch the effects that varying the expansion rate, structure of the potential surface, and the curvature coupling constants have on the quantum fluctuation spectra. We calculate in detail the quantum generation of fluctuation spectra by numerically solving the linearized perturbation equations for multiple scalar fields, the metric, and the radiation into which the scalars dissipate, following the evolution from inside the horizon through reheating. We conclude that (1) useful extended nonflat power laws are very difficult to realize in inflation, (2) double inflation leading to a mountain leveling off at a high-amplitude plateau at long wavelengths is generic, but to tune the cliff rising up to the plateau to lie in an interesting wavelength range, a special choice of initial conditions and/or scalar field potentials is required, and (3) small mountains (moguls) on the potential surface lead to mountains of extra power in the fluctuations added on top of an underlying flat spectrum. For quadratic and quartic couplings, the mountain fluctuations may obey Gaussian statistics but the spectral form will be very sensitive to initial conditions as well as potential parameters; non-Gaussian mountain fluctuations which depend upon potential parameters but not on initial field conditions will be the more likely outcome. However, adding cubic couplings can give mountains obeying Gaussian statistics independently of initial conditions. Since observations only probe a narrow patch of the potential surface, it is possible that it is littered with moguls, leading to arbitrarily complex "mountain range" spectra that can only be determined phenomenologically. We also con-

Blind power spectrum analysis cf. data, then & now measures matter "theory prior" informed priors?

struct an inflation model which houses the chaotic inflation picture within the grand unified theory

The net result would be non-Gaussian fluctuations in ϕ_2 . If the field ϕ_1 does not enter into a prolonged $m_{11}^2 > 0$ phase after the $m_{11}^2 < 0$ phase, significant non-Gaussian isocon fluctuations would survive. Thus the generic case for moguls centered about a $\phi_{1ri}(\phi_2)$ ridge line which is continuous with the incoming $\phi_{1tr}(\phi_2)$ trough line, as in the $\nu < 0$, $\mu_1 = 0$ case of Sec. VIC, is a non-Gaussian "mountain," provided

$$\langle (\delta \phi_1)^2(\mathbf{x}, t) \rangle^{1/2} \gtrsim |\overline{\phi}_1 - \phi_{1\mathrm{ri}}|$$
 (6.13)

In this expression, the quantum fluctuations $\langle (\delta \phi_1)^2(\mathbf{x}, t) \rangle$ are assumed to have the short-distance rapidly oscillating $k^{-1} \leq (Ha)^{-1}$ waves filtered out. Note that starting from $\phi_1 = 0$ with a symmetric mogul leads to bifurcation of the field, which can lead to domain walls. To avoid a domain-wall density problem, we must suppose that either the mogul is localized in ϕ_2 or another interaction is present at lower energies to destroy the walls. In either case, the large-scale non-Gaussian metric perturbations will survive intact.

addition of cubic interaction terms to the potential (6.3) can also give $m_{11}^2 < 0$ over a short range. If they are symmetric about ϕ_{1tr} , the induced ϕ_2 fluctuations would again be non-Gaussian.

The nonlinear interaction of $\delta\phi_1$ with $\delta\phi_2$ generates adiabatic perturbations whose primordial amplitude ζ is quadratic in the Gaussian field $\delta\phi_1$ as evaluated at the end of the $m_{11}^2 < 0$ period. The spectrum has a mountain centered on the comoving wave number leaving the horizon at the beginning of the $m_{11}^2 < 0$ period.

brief history of bond's non-Gaussian exploration in inflation: THEN

SB90/91: nonG technology: $\mathbf{y}(\mathbf{r},t) = \mathbf{y}_{\mathbf{f}}(\mathbf{r},t) + \mathbf{y}_{\mathbf{b}}(\mathbf{r},t) (+ \mathbf{y}_{>\mathbf{h}}(\mathbf{r},t))$ full EE+ ϕ/χ eqs, restricted to the nonlinear longitudinal gauge (NL-LG); fluctuation/background split \Rightarrow Langevin network) $\mathbf{y}_{\mathbf{f}}$ linearized (fn of $\mathbf{y}_{\mathbf{b}}$); $\mathbf{y}_{\mathbf{b}}(\mathbf{r},t)$ super-"horizon" k < u Ha, drift+stochastic kicks; reduced Hamilton-Jacob) eqn; identify $[\mathbf{na}]_{\mathbf{H}^*}$ as the nonlinear generalization of ϕ_{com} or ζ setup for eternal alps (semi-eternal inflation, nonG at UUULSS, but nearly Gaussian over current horizon scales or baroque-ish V) B91(full NL-LG nonG Langevin) network: $\mathbf{Y}_{\mathbf{b}}(\mathbf{r},t) \in \{\phi, \Pi_{\phi}, \chi, \Pi_{\chi}, \text{Ina}, \mathbf{H} \mid T=\text{InHa}\}$

INFLATION Inflaton Drifts & stochastic kicks@k=Ha \Rightarrow structure (x,t)

our Hubble patch: smooth + Gaussian fluctuations observable scales are a narrow window on potential surface \Rightarrow

featureless (?) *P*_{φcom} & *P*_{Gw} UUU...ULSS:

non-Gaussian "eternal alps"

a veryVERYBIG U

mid 80s + ~ Chaotic inflation $\lambda \phi^4$, m² ϕ^2 ; 90s cos(ϕ /f)

B91 full NL-LG nonG Langevin network: $Y_{bi}(\mathbf{r},t) \in \{\phi, \Pi_{\phi}, \chi, \Pi_{\chi}, \text{Ina}, H \mid T=\text{InHa}\}$

NL-LG time is stochastic: $N_b dt = f_t d ln k_H + f_t q_t dW(ln k_H)$

resolution dimension ~ lnk_H ; Wiener increment $dW(lnk_H)$ obeys $<dW(lnk_{H1}) dW(lnk_{H2})>= \delta(lnk_{H1} - lnk_{H2}) dlnk_H$

mean drift: $d < Y_{bi} > = < f_t F_{bi} > d/nk_H$

bgnd-fluctuations about mean: $d\delta Y_{bi} = \delta(f_t F_{bi})d \ln k_H + [q_i + f_t F_{bi}q_t] d \ln k_H$ e.g., q_{ϕ} , $q_{\chi} = u H_b/2\pi$

generally: n scalar fields at m spatial points ⇒ nm independent Wiener increments

brief history of bfhk09 non-Gaussian exploration in inflation: NOW

80-90s: arena for BSI & non-G near EOI, new fields coupling in expected k~Ha rule would apply. pre-heating surprise!

 $(Ina[\chi_i(x,t)]$ from "subgrid") $\sim H_e^{-1}$ lattice simulations of $\phi_{UHF} \chi_{UHF}$

like stochastic f-b split, with no dropping of gradient or nonlinear terms

Standard & Parameters of Cosmic Structure Formation

+ subdominant isocurvature/ cosmic string & fgnds, tSZ,kSZ, ...

 $-9 < f_{\text{NL}} < 111 \Rightarrow -4 < f_{\text{NL}} < 80$

WMAP5 (± 5-10 Planck1yr)

cosmic/fundamental strings/ defects from end-of-inflation & preheating

DBI inflation: non-quadratic kinetic energy

+ primordial non-Gaussianity

 $\varphi(x) = \varphi_G(x) + F_{NL}(\chi_b + \chi_{>h}) - \langle F_{NL} \rangle$ resonant preheating

 $\varphi(x) = \varphi_G(x) + f_{NL} (\varphi_G^2(x) - \langle \varphi_G^2 \rangle)$

local smooth

new parameters: trajectory probabilities for early-inflatons & late-inflatons

(partially) blind cf. informed "theory" priors

isocon power spectra are sensitive to g^2/λ

 $\chi_{i}(x,t)$ power

characteristic smoothing scales

 χ HF σ HF \sim 7x10⁻⁷ \sim 50 e-folds

field smoothing over χ HF $P(\chi | \chi_{LF}) \sim \exp[-(\chi - \chi_{LF})^2 / 2\sigma_{HF}^2]$

 χ LF sqrt($\sigma_b^2 + \sigma_{>h}^2$) SSS ~20 e-folds

LSS χ_b $\sigma_b \sim 3x10^{-7} \sim 10$ e-folds

super-horizon $\chi > h$ $\sigma > h \sim sqrt(N > h) \times 10^{-7}$ ~ N>h e-folds N>h ~100 to >10⁴? "observed" $\chi > h$ a random throw of the dice

dictates the nature of $< F_{NL} |\chi_{b+\chi} > h^{2}$ $P(\chi_{>h}) \sim \exp[-\chi_{>h}^{2}/2\sigma_{>h}^{2}]$ Why $Ina[\chi_i]$? ingredient 1 chaotic zero modes fill V arms, Lyapunov log- χ_i spacing, overtones as well: ingredient 2 arm flow shuts off when $M_{\gamma\gamma}^2$ rises sharply at vigorous preheating nonlinearity onset \Rightarrow EOS change

Bond, Andrei Frolov, Zhiqi Huang, Kofman 09: calculate how the expansion factor from the end of accelerated expansion (end of inflation) through preheating (copious mode-mode-coupling aka

particle creation) to the onset of thermal equilibrium depends on $\chi_i(x,t)$ $\delta N = \delta \ln a |_{H} = curvature fluctuation$

to develop the $lna(\chi_i)$ response curve, we perform > 10⁴ lattice simulations for each g^2/λ

 $F_{NL}(\chi_{HF+\chi_{b+\chi>h}}) - F_{NL}(\chi_{b+\chi>h})$ small for low k-filter

-2

-1

0

1

2

3

4

-3

э**-**05

э-06

-4

if the k=0 mode is in a parametric resonance band then $\ln a/a_e$ is modulated by $\chi_i(x,t) = \chi_{HF} + \chi_b + \chi_{>h}$ with k<H_ea, treated as ~uniform over "subgrid" lattice sim determining $\chi_{UHF} \& \phi_{UHF}$

 $\begin{array}{l} < \mathsf{F}_{\mathsf{NL}} \mid \chi_b \left(x,t \right) + \chi_{>h} > \text{regimes} \\ \mathsf{LOW} \; \chi_{>h} \quad \beta_\chi \; \chi_b \; + \; f_\chi \; \chi_b^2 \; \text{subdominant linear, (much) less constrained } f_\chi \; \text{cf. } f_{\mathsf{NL}} \\ \mathsf{MEDIUM} \; \chi_{>h} \; \text{encompass smoothed spikes, to be rare (for <math>\Delta \mathsf{T} \; \text{cold spot}$) potential well anomalies or not to be rare (and suffer constraints) 52 \\ \mathsf{LARGE} \; \chi_{>h} \; \text{encompass part of a smoothed spike, upside, downside, topside} \end{array}

if the k=0 mode is in a parametric resonance band then $\ln a/a_e$ is modulated by $\chi_i(x,t) = \chi_{HF} + \chi_b + \chi_{>h}$ with k<H_ea, treated as ~uniform over "subgrid" lattice sim determining $\chi_{UHF} \& \phi_{UHF}$

~ $\Delta T[F_{NL} (scale invariant)] *1deg$

~ $\Delta T[F_{NL}$ (scale invariant)] *1deg

smoothing: 0 deg cf. 4 deg fwhm v_p =3.5

smoothing: 0 deg cf. 4 deg fwhm v_p =4.5

Old view: Theory prior = delta function of THE correct one and only theory

Old view: Theory prior = delta function of THE correct one and only theory

Roulette:

which minimum for the rolling ball depends upon the throw; but which roulette wheel we play is chance too.

The 'house' does not just play dice with the world.

 $\begin{array}{l} V \sim M_{P}{}^{4} \ P_{s} \ r & (1 - \epsilon/3) \ 3/2 \\ \sim (10^{16} \ Gev)^{4} \ r/0.1 & (1 - \epsilon/3) \\ ~ (few \ x 10^{13} \ Gev)^{4} \\ n_{s} \sim - \ dln \ \epsilon \ / dlnk \ / (1 - \epsilon) \\ \text{i.e., a finely-tuned potential shape} \end{array}$

focus on "4-cycle Kahler moduli in large volume limit of IIB flux compactifications" Balasubramanian, Berglund 2004, + Conlon, Quevedo 2005, + Suruliz 2005

Real & imaginary parts are both important BKPV06

Trajectories in a Kahler $V(au, heta) = rac{8(a_2A_2)^2\sqrt{ au}e^{-2a_2 au}}{3lpha\lambda_2\mathcal{V}_m}$ $4W_0a_2A_2\tau e^{-a_2\tau}\cos\left(a_2\theta\right)$ modulus potential ${\mathcal V}_m^2$ τ_2 VS θ_2 $T_2=\tau_2+i\theta_2$ & modified kinetic energy **Fixed** $\tau_i \theta_i$ 10 , 12, 2, 285, 105, 8, 11, 18, 30, 53, 106, 0, 0, 0} i.e., **i ≠2** stabilized preheating 8 10^16 V 0.004 0.002 θ_2 settled in so -250 -500 approach pre-h 1000 6 -1000 in τ_2 trough $< \tau >$ later nonlinear θ_2 is excited. **no** $\partial V/\partial \tau|_{\rho=0}=0$ $\delta \ln a$ but other modes should 2 $10 < \delta \theta^2 > 1/2$ be important in endgame $< \delta \tau^2 > 1/2$ (stringy burst, SM 0 0.2 0 0.1 0.3 0.4 0.5 coupling , ...) In a

brief history of bfhk09 non-Gaussian exploration in inflation: NOW

80-90s: arena for BSI & non-G near EOI, new fields coupling in expected k~Ha rule would apply. pre-heating surprise!)

 $(Ina[\chi_i(x,t)]$ from "subgrid") $\sim H_e^{-1}$ lattice simulations of $\phi_{UHF} \chi_{UHF}$

like stochastic f-b split, with no dropping of gradient or nonlinear terms

Why *lna*[χ_i]? ingredient 1 chaotic zero modes fill V arms, Lyapunov log- χ_i

spacing, overtones as well; ingredient 2 arm flow shuts off when $M_{\gamma\gamma}^2$ rises sharply at vigorous preheating nonlinearity onset \Rightarrow EOS change

$$\begin{split} \mathsf{P}(\chi \mid \chi_{\mathsf{LF}}) &\sim \mathsf{exp}[-(\chi - \chi_{\mathsf{LF}})^2 / 2\sigma_{\mathsf{HF}}^2] \text{ builds a usable low-pass effective mean field} \\ & \text{does it work? linear } <\chi \mid \chi_{\mathsf{LF}} > \sim \chi_{\mathsf{LF}} \text{ is sharp-k filter f-b split BBKS86, BCEK90, BM96} \\ & \text{fourier transform (F_{\mathsf{NL}} - < F_{\mathsf{NL}} \mid \chi_{\mathsf{LF}} >) \text{ is small for k<k_{\mathsf{LF}} for quadratic,} \\ & \text{exponential & even Gaussian spikes} (variance ~1% at k_{\mathsf{LF}} 0.15 at k_{\mathsf{LF}} / 10) \\ & < F_{\mathsf{NL}} \mid \chi_{\mathsf{b}} (\mathsf{x}, \mathsf{t}) + \chi_{>\mathsf{h}} > \text{regimes} \\ & \mathsf{contrast with } \phi_{\mathsf{>h}} \text{: may be way out there in eternal inflation} \\ & \mathsf{LOW} \ \chi_{\mathsf{>h}} \quad \beta_{\chi} \ \chi_{\mathsf{b}} + \ f_{\chi} \ \chi_{\mathsf{b}}^2 \text{ subdominant linear, (much) less constrained } f_{\chi} \text{ cf. } f_{\mathsf{NL}} \\ & \mathsf{MEDIUM} \ \chi_{\mathsf{>h}} \text{ encompass smoothed spikes, to be rare (for (AT cold spot) potential well anomalies or not to be rare (and suffer constraints) } 62 \\ & \mathsf{LARGE} \ \chi_{\mathsf{>h}} \text{ encompass part of a smoothed spike, upside, downside, topside} \end{split}$$

Observables and conclusions

 $\varphi(x) = \varphi_{\phi}(x) + f_{NL} (\varphi_{\phi}^{2}(x) - \langle \varphi_{\phi}^{2} \rangle)$

local quadratic non-G constraint: $-9 < f_{NL} < 111 \Rightarrow -4 < f_{NL} < 80 WM5$ (± 5-10 Planck1yr)

$$\Rightarrow \varphi(x) = \varphi_{\phi}(x) + F_{NL}(\chi_{b+\chi>h}) - \langle F_{NL} \rangle$$
resonant preheating form

modulated curvature fluctuations from preheating are superimposed on the usual curvature fluctuations from the inflaton. need $\delta \varepsilon$

the peak values have $\delta \ln a \sim I 0^{-5} \Rightarrow$ comparable to standard Gaussian

temperaure fluctuations, but spiky $F_{NL} \Rightarrow$ non-Gaussian?

As long as $g^2/\lambda \le O(1)$ - SUSY-inspired is 2 - the χ field has very long wavelength perturbations (similar to, but uncorrelated with, the inflaton field)

Large & Small Scale Structure statistics of spiky F_{NL} map: under investigation **Rich possibilities in theory space & on the sky**

e.g., $<\delta F_{NL} |\chi_{LF}> \sim linear+$

e.g., $F_{NL}(\chi) \sim \Sigma_p F_p \exp(-(\chi \pm \chi_p)^2/2\gamma_p^2) \Rightarrow$ quadratic regime; **cold spot regime**: non-G ubiquitous