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Bond+Braden+Frolov+Huang+Morrison+Stein
. varieties of primordial nonG and how to search for them
Simons Modern Inflation group - b2fhms & Eva Silverstein+ & Dan Green+

Origin of the observed entropy in the Universe and SMpp/BSMpp particles

- coarse-grained coherent condensate breaks up into fine-grained fluctuations

- particle creation = (instability => stretch and break via mode-mode coupling)

- episodic stretching (adiabatic) and breaking (non-adiabatic — nonG) during inflation & after

nonlinear multi-field classical coupled system. evolve using lattice
simulations. via pseudo-spectral code & symplectic defrost++ code =>
very high accuracy to unveil small nonlinear effects leading to nonG

during inflation (beyond stochastic inflation. nonlinear k-space burst structure)
(AP yapa(k) | AV, Amesz), (AP (k)| AV(¢, y) controls) (A( H ¢Ny...| AV controls) BBy, SB90,91 895,

& after inflation ends (modulated heating. marginalize ~50 e-folds of sub-LSS)

dynamical system Kolmogorov-Sinai entropy cf. true Shannon entropy
nonG ~ “particle” production ~ Shannon entropy generation
Asflucs,k = Trace ln[C¢A¢BCHAHB - C¢AHBCHA¢B]/2 ~ ln(nflucs,k + 1/2) Cf- Old Way ~ ln[pAk(t)/thk(t)]

adiabatic flucs encoded in the collective Phonons, fluctuations + condensate = (k
< Oy(x,0) | £ > = yyxt]|x;) * {(x;), xy, = linear transfer fn



varieties of primordial nonG and how to search for them
perturbative, nonG part correlated with dominant Gaussian part
see Planck 2015/2018 nonG for exhaustive study and current constraints - 2018 including T+Epol
local fnl* - current limit cf. fnl std target < 1. & equilateral orthogonal

relax if uncorrelated quadratic nonG suppressed by at least ~ £2 Planck2015/2018
nonG 3-point-correlation-pattern measure

fu: 2.7 £ 5.8 local for Newton potential
=> fy.»=0.44 * 3.5 for phonons/3-curvature
-fi: 42.3 £ 75.2 equilateral

-25.3 £ 39.2 orthogonal
other caveats - beyond Planck2015/2018 nonG: some in Planck 2015/2018 Isotropy & Statistics

outside horizon, wide open stochastic inflation huge nonG from feedback.

k-localized nonG. wide open. role of instabilities during inflation to make k-localized zeta-bursts. could
even make PBHs

silverstein etal approach. higher N-points.
here numerical pseudo-spectral codes to correct stochastic inflation.
B2FHMS can ensemble-measure everything, N-pt, coherences!

nonG from heating 1 cm comoving scale => to be in observable bands need modulation, but that is
natural if there are light fields (heavy fields damp power)

long-lived field-condensates: strings, oscillons, curvaton structures, ...

later phase transition structures - need first order (discontinuity in entropy - latent heat) cf. second order
(discontinuity in second derivative aka fluctuations) & smoother higher order, eg adiabatic evolution of
particle content

out-of-equilibrium decays

Bond+Braden+Frolov+Huang+Morrison & Stein



© ( TOPOGRAPHY & CARTOGRAPHY
of our Hubble-patch bit of the early universe: RECONSTRUCT

Beyond the Standard Model of cosmology? Smc = tiltedACDM +r via ({,h+x)
BSMc = SMc + primordial anomalies (nonG) in the true { -WebSky

anomalies @ low L => sample variance limited ~20’s CMB TT power L~ 20-30 dip => {-Spectrum k-dip

<§‘Temp5 EPO/> +5§fluc : e — és ~3 bits

dCc(x,t)= dinPc / 3(1+wc) + Trace(dac ;
# ot
L e AR 25 = ot <10
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BFH, b+frolov+huan
CMB ~10,000,000 T/E modes of t\CDM i
<500 modes of anomal

<100 modes reionization history




2D intermittency WMAP cold spot

CMB+LSS mocks to test: standard Gaussian inflaton é'inf+ subdominant uncorrelated Cisoc

e.g., from modulated preheating scan sims to get
chance intermittent
alignment to get a

_ 5deg fwhm > WMAP “cold spot”

- ; . .
4 » | intermittent nG from
: ' 4 ‘Q‘ early U preheating
-x < ' lattice sims
y tunable peak model

; e also cf. quadratic nG:
—r.. cCorrelated fNL
uncorrelated large fNLeff
uncorrelated nonG ‘wide open’ cf. usual correlated highly constrained nonG




the true quadratic (-VWebsky of the (-SCape

Planck 2018 X inflation: TTTEEE lowL Epol + CMBlens + BK15 BB + BAO

CMB TT power L~ 20-30 dip => {-Spectrum k-dip; includes CMB lensing, parameter marginalization

uniform ns=0.9669+.00367
superb 12-knot fit k~ .008 t0 0.3
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Inflaton Durlng and After Inflatlon Bond@lcts19 0122
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Webskys: Mocking with PeakPatches+Hydro+

THEN BBKS, BCEK, B+Myers91,93,96, BKP96 web, BW96 importance '.32’

NOW: CITA mini-industry Alvarez, Bond, George Stein 2018, .. Validation SAB18 + Euclid 2018 validation a,b,c

Berger, Battaglia, Codis, van Engelen, Motloch, Huang, Frolov,
now 19.1 Lague, Lokken, Murray, Keating, Lahklani, Breysse, bruno, connor, ronan, furen, remi, jason lee ++

need End to End mocks: m DE/modG, Mnu, ...
need all signals to be correla

need speed to build ensembles & ex Iore BSMc

. CHIME. §

Planck, AdvACT, SO, CMB-S4, CCATp, EUCLID, LSST, DES, CHIME, HIRAX, COMAP, ...SKA



2D intermittency WMAP cold spot

CMB+LSS mocks to test: standard Gaussian inflaton é'mf+ subdominant uncorrelated Cisoc

e.g., from modulated preheating scan sims to get

chance intermittent
Gaussian + single spike NG: 10°5 zeta single zeta a I i g n me nt to get a
— ~ 5deg fwhm WMAP “cold spot”

' . intermittent nG from
4 4 4 “ early U preheating
o L | ted lattice sims
- - = tunable peak model
:‘ S also cf. quadratic nG:
correlated fNL
uncorrelated large fNLeff

I 6 .00

3 D lntermltt en cy uncorrelated nonG ‘wide open’ cf. usual correlated highly constrained nonG

LSS tSZ: Gaussian std LSS tSZ Gaussian std +
subdominant uncorrelated C

B2FH, b+braden+frolov+huang ABSB+FH, alvarez+b+stein+frolov+huang



COmap sims using Li+ Mhalo = Lco ¢/. CIB a [a Planck13,15
Danger: correlated stochasticity of bursty star formation etc.

z=2.4-3.4 eventually z=6-8 cf. CHIME HI z=.8-2.5

CcO CIB

using Li et al. 2016 Model using 217 GHz Planck 2015 Model, no tomography

-1.5 -1.0 -0.5 0.0 0.5 1.0 15-1.5 —-1.0 -0.5 0.0 0.5 1.0 1.5
deg deg

underway: Lensing of CIB COmap HImaps KSZ tSZ

nonG sources seen through a nonG lens
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Primordial Non-Gaussianity in observable Webskys constructed with the mass-Peak Patch method
+ gas-halo response functions/susceptibilities
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Primordial Non-Gaussianity in CO example: the LCDM signal and 2 nonG difference maps - a movie
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large scale => CHIME much larger volume is better

25



after inflation - instabilities => entrory => nonG
dS/dt(t,g) =,  the Shock-in-time: entropy production rate

Cshock(XC , eo | (X) ‘gZ/ )\)) => Chaotic Billiards: NonG from Parametric Resonance in Preheating
B+Frolov, Huang, Kofman 09
B+Braden, Frolov, Huang 19
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coherent inflaton => incoherent mode cascade of fields thru a shock-in-time to thermal equilibrium
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(' nonG from large-scale modulations of the shock-in-times of preheating )

1ok entroby proHuctioh B+BradentFrolov Jtrue thermal
info-content in phonons __ dS/ dt ](caqumbrlum
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entangled primary fields (o, Iy, 7, IT,)

decay rates (Feynman diagrams) and transport theory difficult to make accurate through preheatn%g

H | 3 other non-equilibrium | T 5

entropy production measures i
- based on the “fundamental X

scalar fields “ - identify the — ¢+x
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1.0
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stochastic inflation:
the battle of classical drift V. &

diffusion of quantum fluctuations Vp
Ve ~VSr Vp=Dy VS
eternal inflation = Vp dominates

emergence =Vc dominates

conformal potential-flattening eg Higgs inflation SBB89 etc
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during inflation - instabilities => entropy => nonG

numerical experiments
of in-out states through
localized AV.

chain together .. oscillating

experiment y-light  in states

1

AVHA TToT
s w o X

out sta?te*:'“

5.5

Bond+Braden+Frolov+Morrison
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experiment y-light
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experiment y-light
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TBD coherence of N-point bursts in N-space ..



during inflation - instabilities => entropy => nonG

- i numerical experiments
experiment x-heavy of in-out states through

localized AV. o
chain together .. oscillating

instability potential surface

Bond+Braden+Frolov+Morrison

00000000

0.000005

trapped potential surface -

trapped inflation: same parameters, no instability ¥
.. Kofman, Silverstein, Green, Barnaby, Huang, many more T —00s 29



experiment y-heavy
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experiment y-heavy unstable y cf. trapped
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experiment y-heavy unstable y cf.
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experiment y-light  In(Fy)
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Novel LSS/CMB non-Gaussianities from
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During and After Inflation

Dick Bond @ ICTS 19 01 22 _
what are the degrees of freedom / parameters of the ultra early Universe? TBD

begin-inflate => inflate => end-inflate => preheat => non-equilibrium heat+entropy

=> Standard Model particle physics QG plasma radiation dominated
=> dark matter dominated structure via gravitational instability => dark energy now

d¢(x,t)= (dE+pdV)/3(E+pV) = d InPc/ 3(1+wc) + Trace d a,-j

fit into a UV-complete theory (ultra-high energy to the Planck scale) strings, landscape, ..
& IR-complete theory (post-inflation heating -> quark/gluon plasma)??? TBD

role of (1) instabilities after inflation
entropy generation via the breakup of the coherent low-k inflaton condensate
into incoherent high-k fluctuations at a “shock-in-time” => nonGaussianity

role of (2) instabilities during inflation

phenomenology of in-states propagating through localized unstable potential
structures to out-states, like scattering theory => nonGaussianity

(3) |cg <=> fg> condensate/fluctuation framework, for both
using coherent states classical-like approach with N.

includes Bogoliubov transformations for fluctuations as condensate evolves
=> particle creation interpretation in both heating and inflating regimes.






