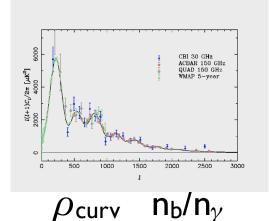
Constraining Trajectories of Dark Energy Inflatons @durham/roe08.8.4/6

What is the Universe made of?

NOW: Baryons + (cold-ish) dark matter + dark energy/inflaton + tiny curvature energy (+light neutrinos+photons). ??a bit of strings/textures/PBHs??


THEN: coherent inflaton /"vacuum" energy plus zero point fluctuations in all fields. & then preheat through mode coupling to incoherent cascade to thermal equilibrium.

very early U early to middle to now U very late U

string theory/landscape/higher dimensions

inflation cyclic baryogenesis dark matter BBN γ dec dark energy

 $V_{\text{eff}} (\phi_{\text{inf}})$? $K_{\text{eff}} (\phi_{\text{inf}})$?

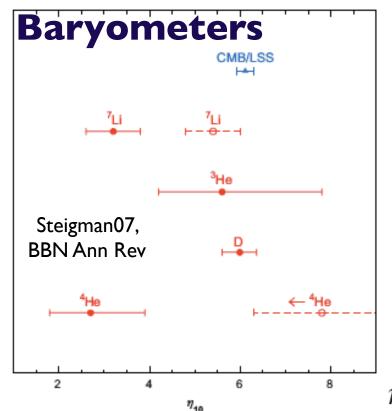
 $V_{\text{eff}} (\phi_{\text{inf}})$?

 $K_{\text{eff}} (\phi_{\text{inf}})$?

 $\rho_{\rm dm}/\rho_{\rm b}$ $z_{\rm eq}/z_{\rm rec}$ $\rho_{\rm de}/\rho_{\rm dm}$ $\rho_{\rm de}\sim {\rm H}^2~{\rm M}^2_{\rm Planck}$ $\rho_{\rm m}/\rho_{\rm stars}$

Standard Parameters of Cosmic Structure Formation

$$rac{ heta\sim \ell_s^{-1}}{\Omega_k} \sim \ln\sigma_8^2$$
 $\Omega_h n^2 \Omega_{dm} n^2 \Omega_{\Lambda}$ $\Gamma_c \ln A_s n_s r = A_t/A_s$ 1+w0, wa $r = dn_s/dlnk$ n_t


New Parameters of Cosmic Structure Formation: early-inflaton & late-inflaton trajectories

$$\begin{split} \mathbf{\varepsilon}_{\phi} &= (1 + \mathbf{w}(\mathbf{a})) \times 3/2 & \epsilon(k), \quad k \approx Ha \ln H(k_p) \\ \mathbf{\varepsilon}_{s} &\mathbf{f}(\mathbf{a}/\mathbf{a}_{\Lambda eq}; \mathbf{a}_{s}/\mathbf{a}_{\Lambda eq}; \boldsymbol{\zeta}_{s}) & \ln \mathsf{P}_{s}(\mathbf{k}) \ln \mathsf{P}_{t}(\mathbf{k}) \end{split}$$

+ subdominant isocurvature/cosmic string/ tSZ ...

1267, Cambridge B²FH 57, WFH 67, sn

Nobel Prize 84 Willy Fowler + Chandra -sekhar

$$\eta_{10} \equiv 10^{10} (n_{\rm B}/n_{\gamma}) \equiv 274 \ \Omega_{\rm B} h^2$$

January 2000 $\Omega_{\rm b}h^2$ $0.0339^{+0.0443}_{-0.0246}$

January 2002 $0.0222^{+0.0025}_{-0.0021}$ June 2002 $0.0221^{+0.0024}_{-0.0020}$

March 2003 January 2003 $0.0233^{+0.0013}_{-0.0013}$

boom98: Apr00/01/dasi

cbi1: Jun02

 $0.0221^{+0.0023}_{-0.0018}$ acbar1: Dec02

WMAP1: Feb03

 0.0223 ± 0.0007

0.0226 +- 0.0006 wmap3+acbar+cbi+... LSS

0.0233 +- **0.0005** wmap5+acbar+cbi+b03+.+WL+LSS+SNI+Lya

dark matter abundance $\Omega_{\rm m}$ =0.268 +.012 -.012

January 2000 January 2002 June 2002 January 2003 March 2003 $\Omega_{\rm cdm}h^2$ 0.198 $^{+0.088}_{-0.080}$ 0.130 $^{+0.031}_{-0.028}$ 0.124 $^{+0.026}_{-0.025}$ 0.125 $^{+0.021}_{-0.022}$ 0.111 $^{+0.010}_{-0.010}$

CMB-only history (weak-h prior). LSS-then drove to near current 0.1145 +-0.0023 CMBall+WL+LSS+SN+Lya

$$\rho_{\rm dm}/\rho_{\rm b}=5.1$$

 Ω_{Λ} 0.34 $^{+0.28}_{-0.24}$ 0.52 $^{+0.17}_{-0.20}$ 0.53 $^{+0.17}_{-0.19}$ 0.57 $^{+0.14}_{-0.19}$ 0.73 $^{+0.06}_{-0.10}$ CMB-only history (weak-h prior). LSS-then drove to near current value

dark energy abundance Ω_{Λ} =0.736 +.012 -.012

& H₀ = 72 +-1 CMBall+WL+LSS+SN+Lya
$$\rho_{\rm m}/\rho_{\rm de} = .30$$

 ε =-dlnH/dlna=1+q: now =3/2[Ω_{m0} +(1+w)(1- Ω_{m0})] ~0.40?, to 0?

-Dick Bond

Constraining Trajectories of Dark Energy Inflatons

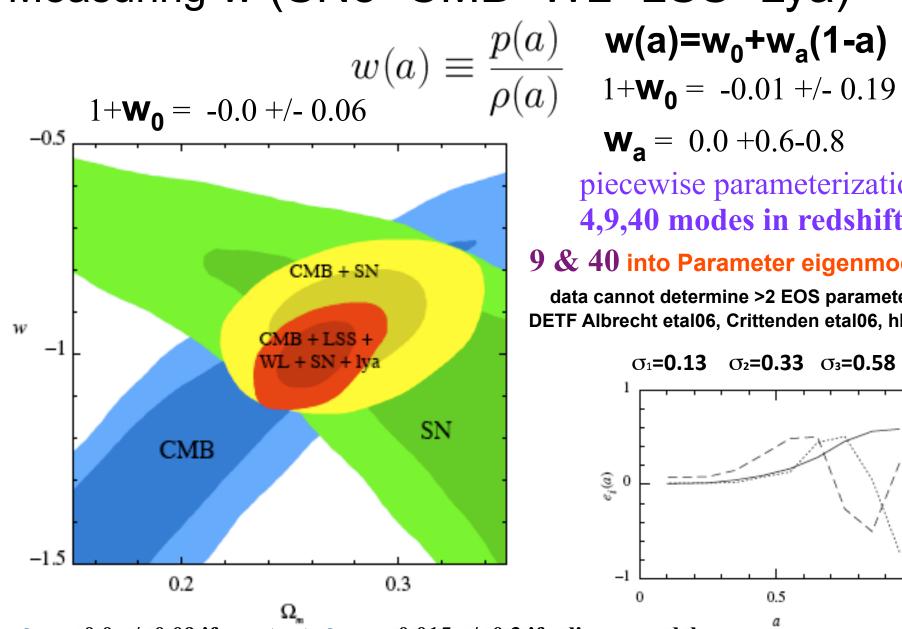
Inflation Now
$$\varepsilon_{\phi}(a) = \varepsilon_{s} f(a/a_{\Lambda eq}; a_{s}/a_{\Lambda eq}; \zeta_{s})$$

$$\varepsilon_{\phi} = -d\ln\rho_{\phi}/d\ln a/2 \sim 0$$
 now, to $\varepsilon = -d\ln\rho_{tot}/d\ln a/2 \sim 0$ to 2, 3/2, ~.4

cf. w(a): w0,wa, w in z-bins, w in modes, $\varepsilon(a)$: in modes, jerk

~1 good e-fold. only ~2 params

Inflation Then $\varepsilon(k)=(1+q)(a)$ = mode expansion in resolution (lnHa ~ lnk) ~r/16 (Tensor/Scalar Power & gravity waves) ~ 10 good e-folds CMB+LSS

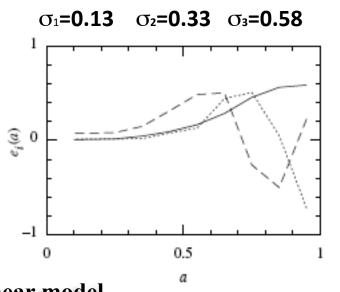

Cosmic Probes Now CMB(Apr08), CFHTLS SN(Union 307), WL, LSS/BAO, Lya

Cosmic Probes Then JDEM-SN + DUNE-WL + Planck1

Zhiqi Huang, Bond & Kofman 08 ε_s =-0.03+-0.28 now, inflaton (potential gradient)²

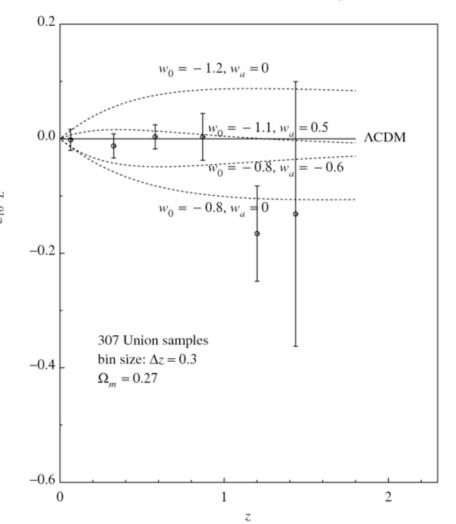
to +-0.07 then Planck1+JDEM SN+DUNE WL, weak $a_{\rm c}$ < 0.36 now <0.21 then

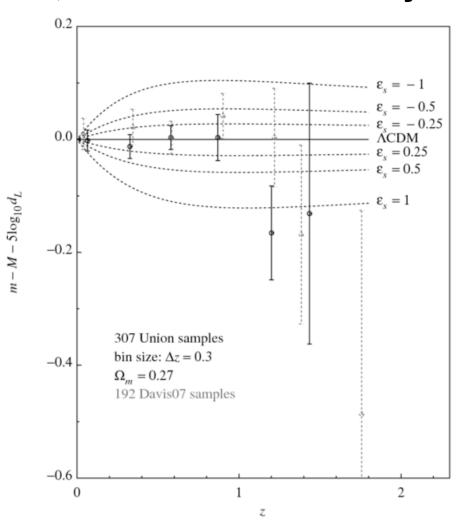
Measuring w (SNe+CMB+WL+LSS+Lya)

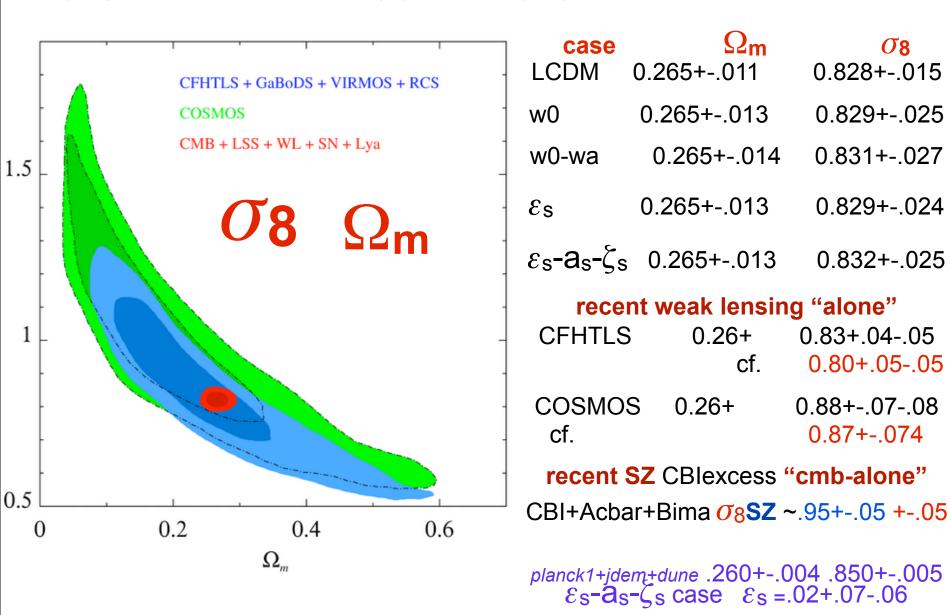


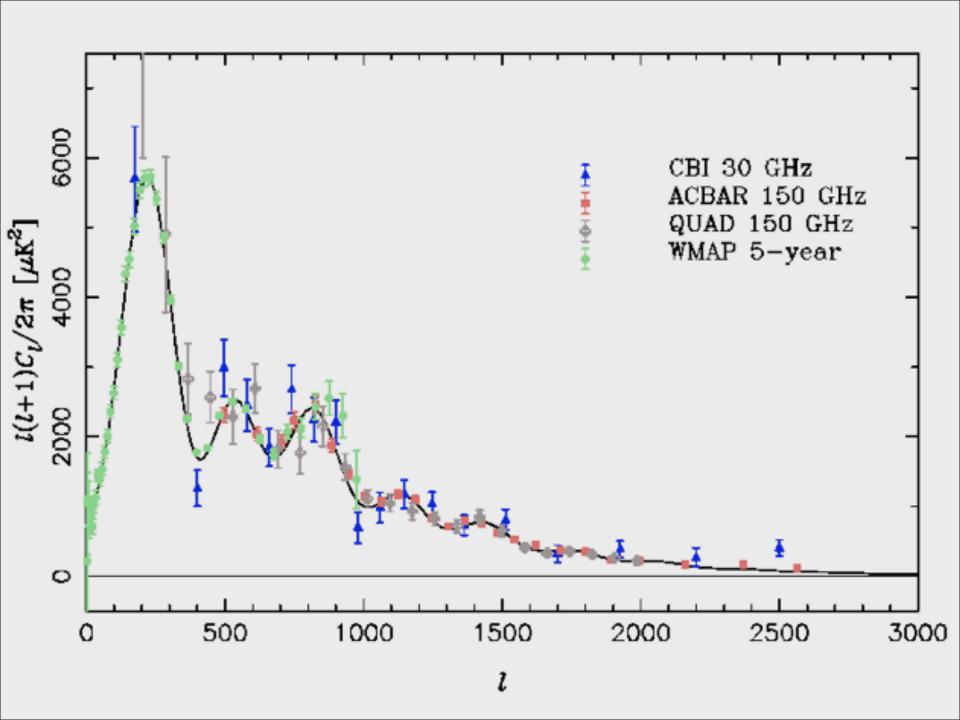
 $\mathbf{W_a} = 0.0 + 0.6 - 0.8$

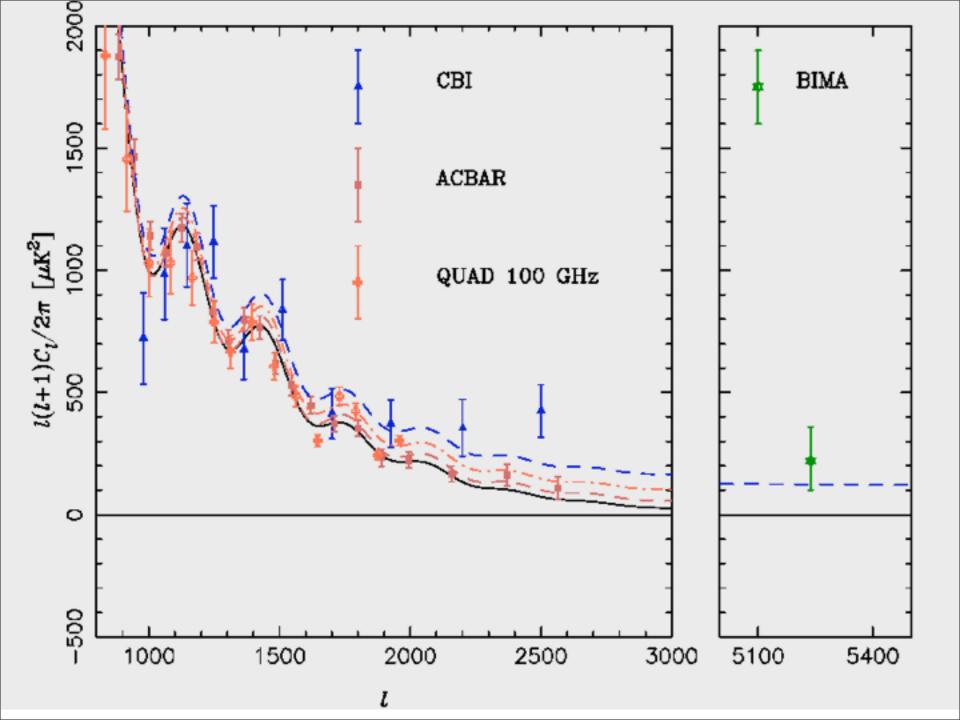
piecewise parameterization 4,9,40 modes in redshift

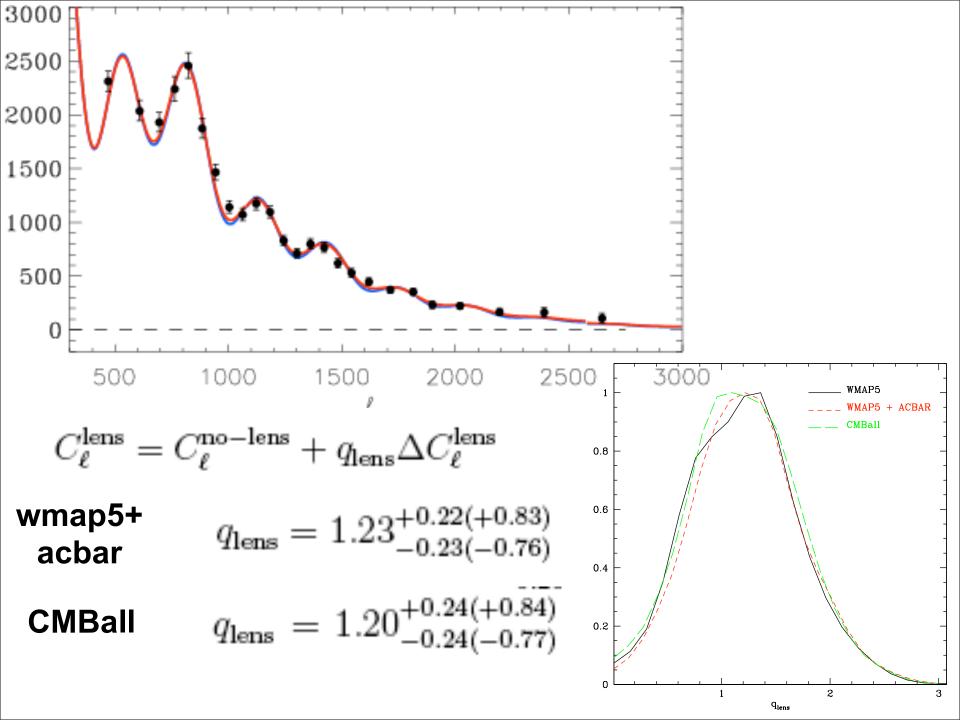

9 & 40 into Parameter eigenmodes


data cannot determine >2 EOS parameters DETF Albrecht etal06, Crittenden etal06, hbk08

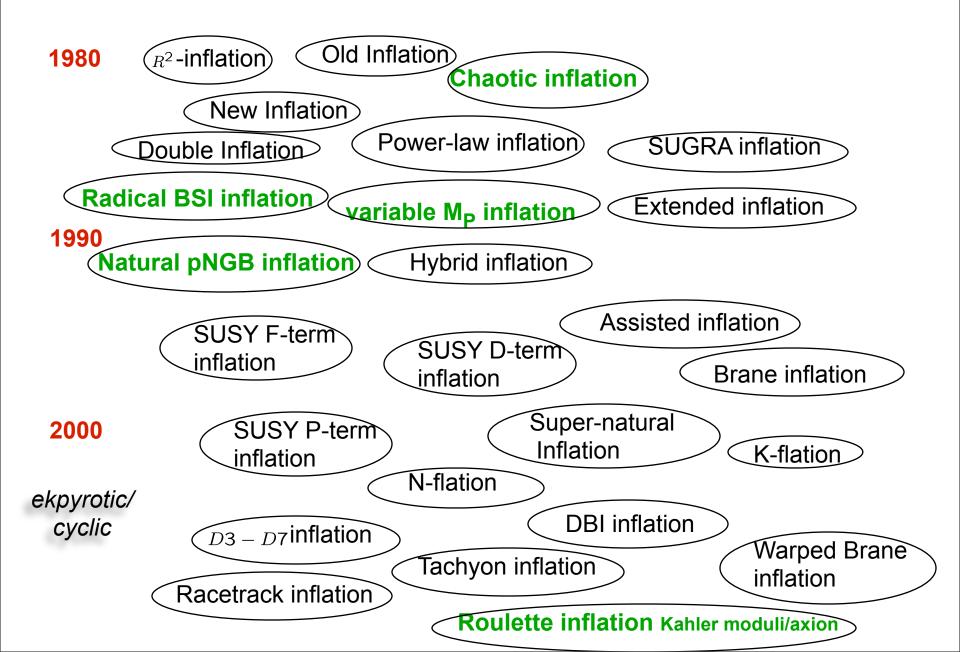

0.0 +/- 0.09 if constant, ϵ_{ϕ} **-0.015** +/- **0.3** if a-linear model


SN1a now: Union sample 307 Apr08, partially unified. CFHT SNLS3 ~Jul08, ~4 x SNLS1, calibrated. Low z ~0.5yr





Weak Lens now: CFHTLS-wide(22sq deg)+GaBoDS (13) +Virmos-Descart(8)+RCS1(53) Apr07+ & COSMOS07

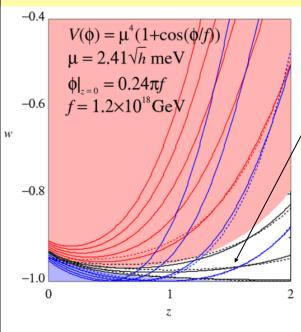


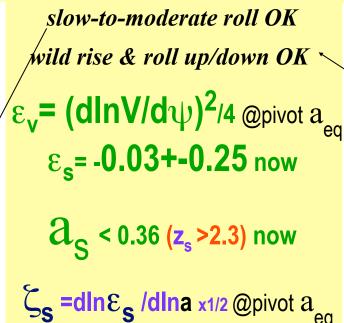
Old view: Theory prior = delta function of THE correct one and only theory

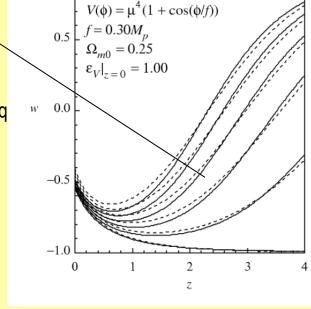
Cosmological
Constant (w=-1)

Quintessence

$$V(\psi)$$
 (-1 $\leq w \leq 1$)

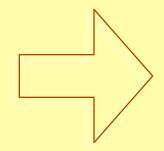

- > Phantom field KE < 0 & $V(\psi)$ ($w \le -1$)
- Tachyon fields $(-1 \le w \le 0)$
- **K-essence:** KE not quadratic


$$V \sim \exp[..\psi],$$
 $\psi^{-p} = 1,2,4.., V_0 + ..\psi^{p} = 1,2,4..,$
 $V_{pNGB} \sim \sin^2..\psi, V_{holes}, V_{branes},$
 $(V_0 + ..[\psi - \psi_0]^2)..$ & much more


Late-Inflaton $\varepsilon_{\phi}(a) = \varepsilon_{s} f(a/a_{\Lambda eq}; a_{s}/a_{\Lambda eq}; \zeta_{s})$

3-param formula accurately fits slow-to-moderate roll & even wild rising baroque late-inflaton trajectories, as well as thawing & freezing trajectories. but not oscillating DE

Cosmic Probes Now CFHTLS SN(Union~300), WL, CMB, BAO, LSS, Lya



 $\epsilon_{\rm s}$ to +-0.07 then Planck1+JDEM SN+DUNE WL, weak $a_{\rm s}$ <0.21 then, (z_s>3.7)

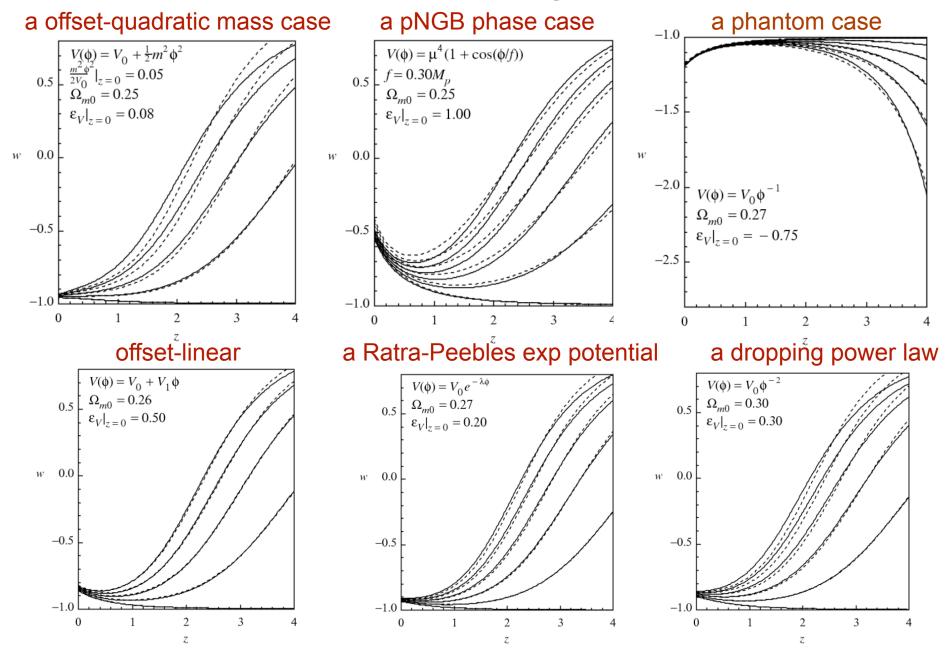
 3^{rd} param ζ_s ill-determined then

ill-determined now

cannot reconstruct the quintessence potential, just the slope \mathcal{E}_s & hubble drag info (late-inflaton field < Planck mass, but sometimes not by a lot)

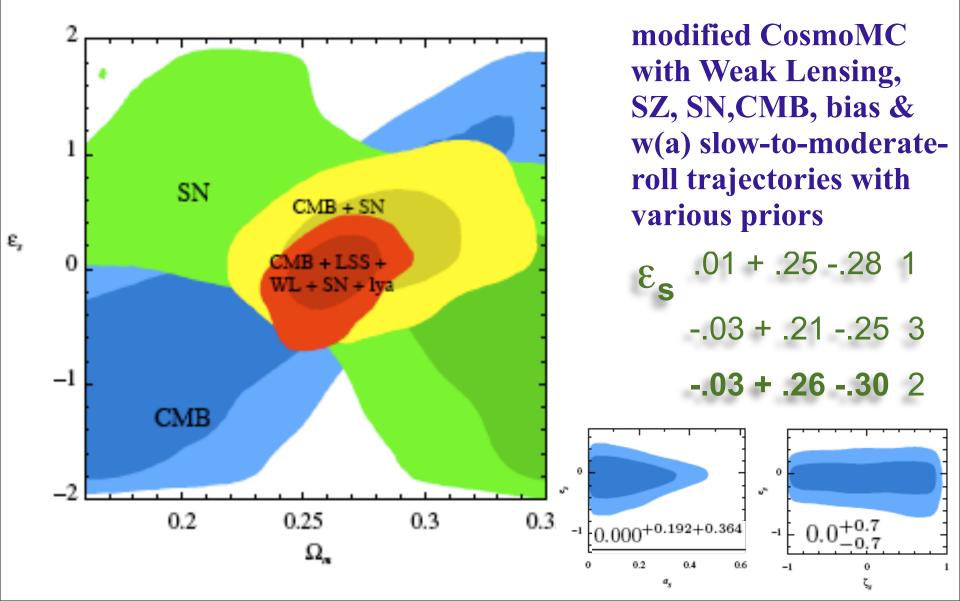
3-parameter parameterization $\phi + 3H\phi + V'(\phi) = 0$ + Friedmann Equation + DM+B

$$w(a) = -1 + \frac{2\epsilon_s}{3} \left\{ \frac{\left(\frac{a_s}{a}\right)^{3-3.6a_s|\epsilon_s|(1-\Omega_{m0})}}{\sqrt{1 + \frac{\epsilon_s}{3|\epsilon_s|}\left(\frac{a_s}{a}\right)^{6-7.2a_s|\epsilon_s|(1-\Omega_{m0})}}} \frac{1}{\sqrt{|\epsilon_s|}} + \left[\sqrt{1 + \left(\frac{a_{eq}}{a}\right)^3 - \left(\frac{a_{eq}}{a}\right)^3 \ln\left(\left(\frac{a}{a_{eq}}\right)^{\frac{3}{2}} + \sqrt{1 + \left(\frac{a}{a_{eq}}\right)^3}\right)\right] (1 - \zeta_s)} + 0.36\epsilon_s (1 - \Omega_{m0}) \frac{\left(\frac{a}{a_{eq}}\right)^2}{1 + \left(\frac{a}{a_{eq}}\right)^4} \left[0.9 - 0.7 \frac{a}{a_{eq}} - 0.045 \left(\frac{a}{a_{eq}}\right)^2\right]}$$

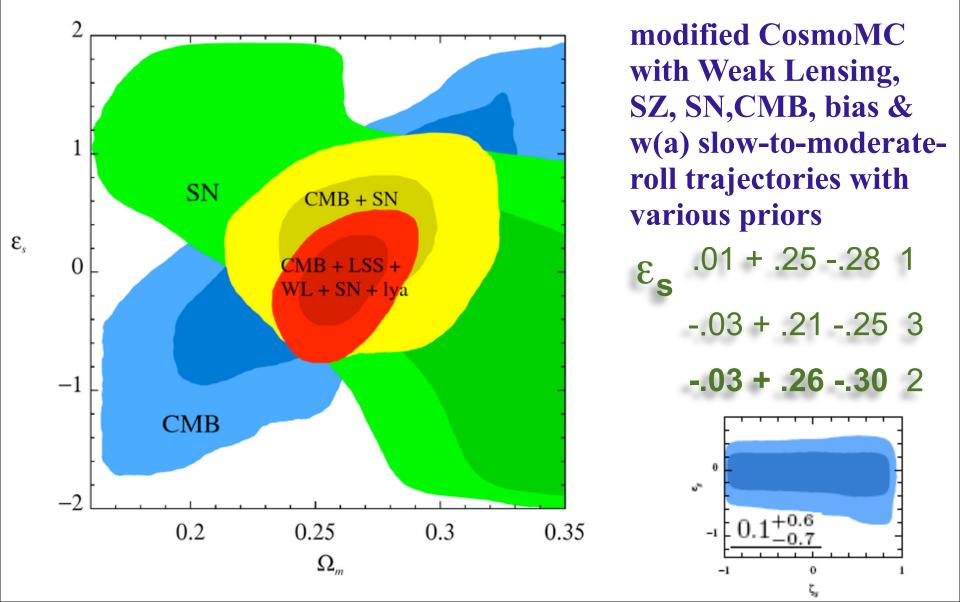

$$+\frac{2\zeta_s}{3}\left[\sqrt{1+(\frac{a}{a_{eq}})^3-2(\frac{a_{eq}}{a})^3(\sqrt{1+(\frac{a}{a_{eq}})^3-1)}}\right]^2$$
 where

$$a_{eq} \equiv (\frac{\Omega_{m0}}{1-\Omega_{m0}})^{\frac{1}{3[1-0.36\varepsilon_s(1-\Omega_{m0})]}}$$

$$a_s \geq 0$$


$$\sqrt{|\epsilon_V|} = \sqrt{|\epsilon_s|}[1+\zeta_s((\frac{a}{a_{eq}})^{\frac{3}{2}}-1)] \qquad -1<\zeta_s<1$$
• ~15% thawing, 8% freezing, with flat priors

sample W(z)-trajectories for $V(\psi)$, back-integrate now to then


measuring ε_s a_s ζ_s scaling+tracking SNeunion+CMB

 $_{wmap5+acbar+cbi5yr+b03+} + WL_{cfhtls+cosmos} + LSS_{sdssRG+2dF} + Lya)$

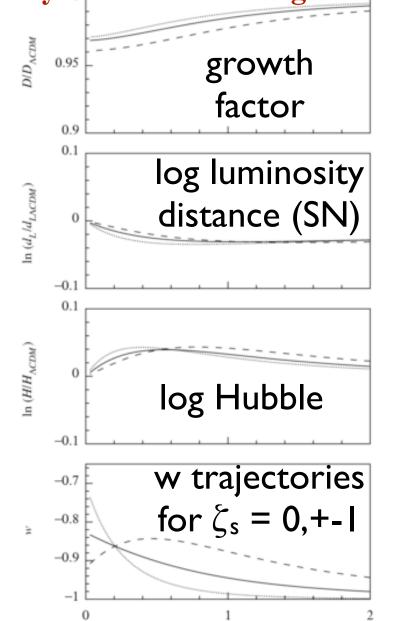
measuring $\varepsilon_s \zeta_s$ $a_s=0$ tracking (SNeunion+CMB

 $_{wmap5+acbar+cbi5yr+b03+} + WL_{cfhtls+cosmos} + LSS_{sdssRG+2dF} + Lya)$

Why can't we measure the change of the slope, i.e., the effective mass of the potential? w changes but the luminosity distance is 2 integrals of it.

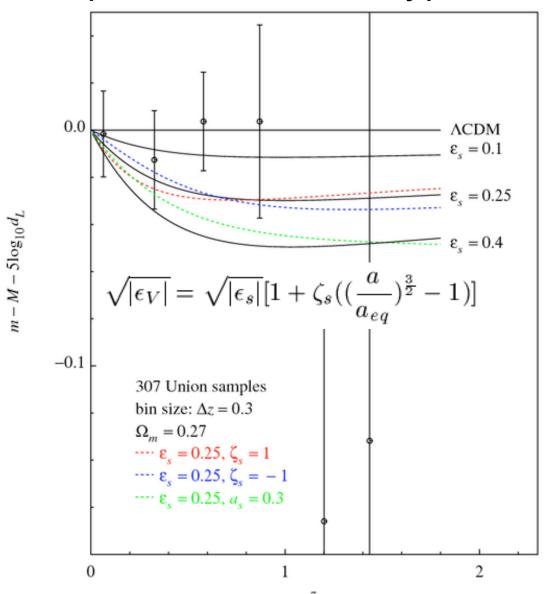
we fit w(z) for tracker potentials very well

$$\sqrt{|\epsilon_{V}|} = \sqrt{|\epsilon_{s}|} \left[1 + \zeta_{s} \left(\left(\frac{a}{a_{eq}}\right)^{\frac{3}{2}} - 1\right)\right]$$


$$-0.6 - V = 8V_{0} (\phi/M_{p})^{-2} - V = V_{0} + \frac{1}{2}m^{2}\phi^{2} - V = V_{0}(1 + \cos\frac{\phi}{f})$$

$$V_{0} = 2.8\rho_{m0}, f = 0.16M_{p}, m^{2}M_{p}^{2} = 16\rho_{m0}$$

$$d\phi/dt|_{z=3} = 0$$


$$\varepsilon_{V}|_{z=3} = 0.25$$

$$-0.8 - 0.8 - 0.25$$

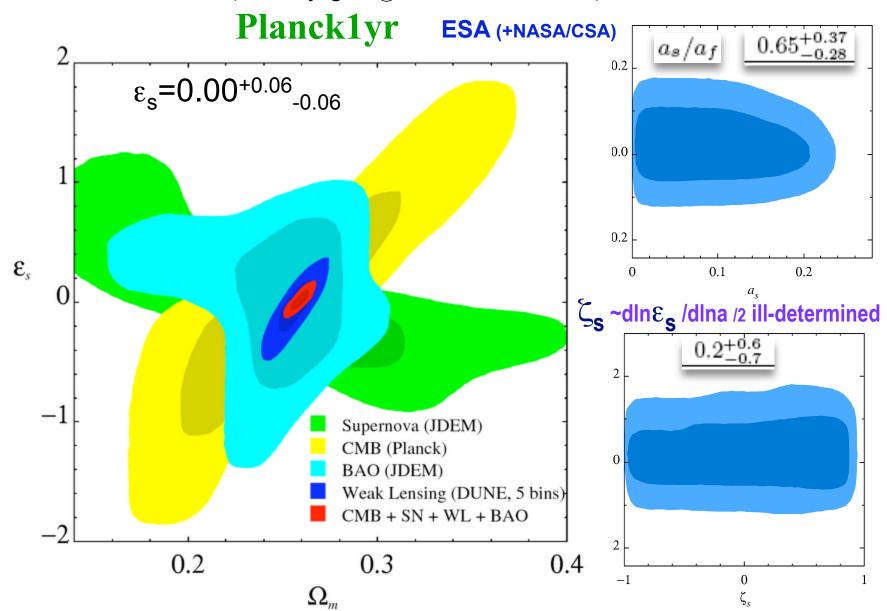
Why we can measure the 1st but not the 2nd derivative of the log-potential.

potential reconstruction very partial

DE interaction & 5th force?

```
e.g., action ~ F(\phi,R)+L_m, Jordan frame, cf. Einstein frame action F=M_P^2/2 R,
 Jordan-Brans-Dicke/scalar-tensor F=f(\phi)R/2 + d\phi d\phi/2 - V(phi), dilaton f=e^{2\phi/M}P
         conformal transformation \Omega^{-2}= dF / dM<sub>P</sub><sup>2</sup>/2 R to Einstein frame
       order parameter field \psi=-sqrt(6) ln \Omega (replaces \phi phi if \Omega^{-2}(\phi) only)
                                    \psi couples to \rho_{\rm m}-3p<sub>m</sub>
   chameleon is the dilaton-motivated one (Khoury and Weltman 04,..., Kaloper 07)
                 general dilaton-motivated coupling \exp(2\beta_i \psi)L<sub>mi</sub>
phantom mimic: \rho_{\rm m} has a correction to a<sup>-3</sup>, interpret it as an addition to DE w,
                          which can give an apparent w < -1
          solar system tests are an issue. strong constraints on beta i
```

 m_i (psi) (modified mass, dynamical (very low energy) higgs + std one). couples to ρ_m

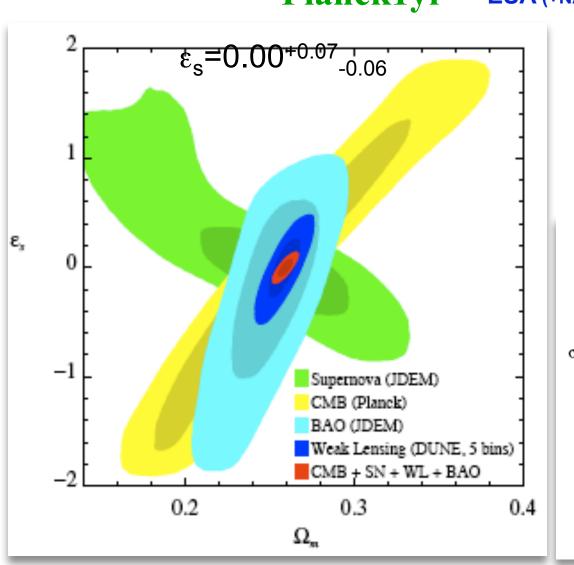

INFLATION NOW

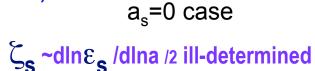
PROBES THEN

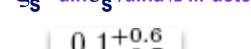
Beyond Einstein panel: LISA+JDEM

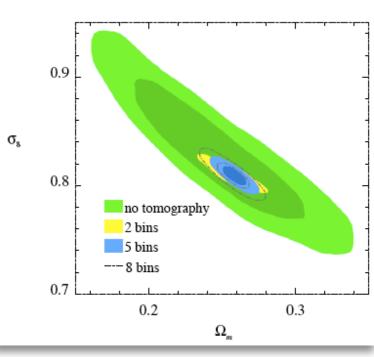
Forecast: **JDEM-SN** (2500 hi-z + 500 low-z)

+ **DUNE-WL** (50% sky, gals @z = 0.1-1.1, 35/min²) +




Beyond Einstein panel: LISA+JDEM


Forecast: **JDEM-SN** (2500 hi-z + 500 low-z)


+ **DUNE-WL** (50% sky, gals @z = 0.1-1.1, 35/min²) +

Planck1yr ESA (+NASA/CSA)

Inflation now summary

- the data cannot determine more than 2 w-parameters (+ csound?). general higher order Chebyshev or spline expansion in 1+W as for "inflation-then" $\varepsilon = (1+q)$ is not that useful. Parameter eigenmodes show what is probed
- Any w(a) leads to a viable DE model. The w(a)= $w_0+w_a(1-a)$ phenomenology requires baroque potentials
- Philosophy of HBK08: backtrack from now (z=0) all w-trajectories arising from quintessence ($\epsilon_s > 0$) and the
 - phantom equivalent (ϵ_s <0); use a 3-parameter model ϵ_ϕ =(1+w(a))3/2 = ϵ_s $f(a/a_{\Lambda eq}; a_s/a_{\Lambda eq}; \zeta_s)$ to well-approximate even rather baroque w-trajectories, as well as thawing & freezing trajectories.
 - We ignore constraints on Q-density from photon-decoupling and BBN because further trajectory extrapolation is needed. Can include via a prior on Ω_0 (a) at z_dec and z_bbn.
- For general slow-to-moderate rolling 2 "dynamical parameters" (a_s , ε_s) & Ω_Q describe w to a few %. In early-scaling-exit, the information stored in a_s is erased by Hubble drag over the observable range & w can be described by a single parameter ε_s . for baroque w-trajectories, add a 3rd param ζ_s (dln ε_s /dlna/2) not-determined now & then. freeze-out w at high z, 4th param $-0.00^{+0.09}_{-0.13}$
 - prior-dependence e.g. $sqrt(\mathcal{E}_s)$, a near 0, $\mathcal{E}_s > 0$ since $\epsilon_{\phi} < 0$ of phantom energy, negative kinetic energy is baroque
- Apr08 observations well-centered around a cosmological constant ϵ_s =-0.03+-0.28 a_s < 0.36 (z_s>2.0) cf. $\epsilon_{\phi 0}$ = -0.00 +/- 0.09 if constant, $\epsilon_{\phi 0}$ = -0.015 +/- 0.30 if a-linear model
- in Planck1yr-CMB+JDEM-SN+DUNE-WL future ε_s to +-0.07, a_s to <0.21 (z_s >3.7)
- cannot reconstruct the quintessence potential, just the slope ε_s & hubble drag info
- late-inflaton field is < Planck mass, but not by a lot
- DE may couple to matter, 5th force constraints are strong, maybe best hope in determining more about DE (chameleon example of dilaton a la Khoury and Weltman 04)

end

Dick Bond

Inflation Then $\varepsilon(k) \sim r/16$

= mode expansion in lnHa ~ lnk

be blind: all $\varepsilon < 1$ trajectories give

allowed potential & kinetic energies

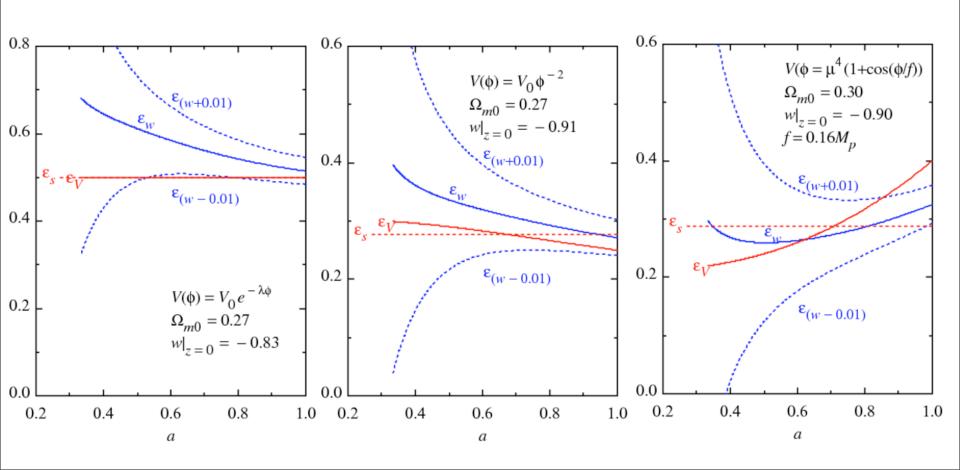
~10 good e-folds $k\sim10^{-4} Mpc^{-1}$ to ~ 1 Mpc^{-1}

~ 10+ parameters? H(φ), V(φ)

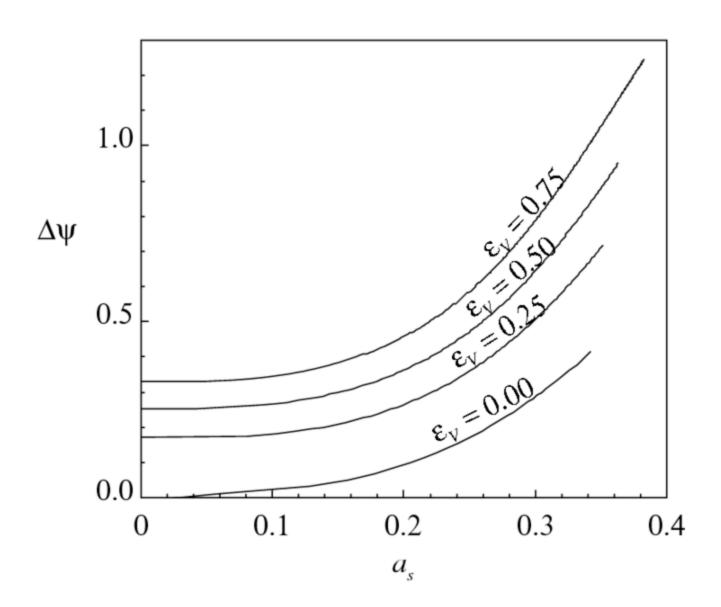
Bond, Contaldi, Huang, Kofman, Vaudrevange 08

Inflation Now all ϵ_{ϕ} < 1 trajectories give allowed potential

& kinetic energies but... do not be blind:... ~1 good e-fold. only ~2params


get ε_s = $(dlnV/d\psi)^2/4$ @ pivot pt

Huang, Bond & Kofman 08


ε_ν trajectories are slowly varying: why the fits are good

Dynamical $ε_w$ = $ε_φ$ $ε_s$ / $ε_{φ-approx}$ cf. shape $ε_V$ = (V'/V)² (a) /(16πG)

& ε_s is ε_v uniformly averaged over 0<z<2 in a

the quintessence field is below the reduced Planck mass

