Inflation = phenomenology of a collective mode, the phonon, fundamental field but composed of many fundamental fields. in linear theory phonon~ \sum fundamental; in nonlinear theory, phonon~ $\ln(\rho a^{3(1+w)})/3(1+w) = \zeta_{NL}$ Geometrical view, a theory of condensed strain & strain waves $\varepsilon_{ij} = [1/2 \ln^{(3)}g]_{ij}$, phonons~Trace (ε), gravity waves ε^{TT} .

Inflaton = phonon condensate, fluctuations are phonons. relativistic negative-pressure EOS.

Stochastic inflation works: ballistic trajectories for fields q_X with kicks from sub-horizon waves dW_X causing nearby trajectories to deviate, ζ_{NL} like dE+pdV a near-adiabatic invariant, sourced by stress*strain-rate & energy currents (regularizer between nearby X).

fundamental scalar fields (inflaton, isocons) & effective potentials & kinetic energies

 ε = -3/2 dln ρ /dln a³ =1 defines End of Inflation, but not a magic boundary, dragged trajectories break into (spatially independent) oscillations. weak point-to-point coupling until ...

HEATING: how to damp coherent ballistic trajectories into high-k entropy. old, eg SBB87 Γ (KE+PE). still used! post KLS93: via inflaton self-couplings; isocon-inflaton field couplings, gauge fields FFdual, fermion-bar fermion

new picture: ballistic until the shock-in-time = huge time-localized non-eq entropy generation; slow S-evolution after which is V-dependent. only weak-coupling of nearby points before. ULSS & LSS & SSS modulator field ζ_{NL} (modulator(x)), e.g. modulator = $\chi_i(x)$, g(x)

nonG from post-inflation but pre-entropy generation ballistic trajectories can lead to pre-shockin-time caustics and other phase space convergences in the deformations (!) Zeldovich map-ish eg $\partial \ln a / \partial \chi_i(x)$, $\partial \ln a / \partial g(x) \Rightarrow P[\ln a(x), t_{shock} | \chi_i(x), g(x), t_{end-of-inflation}]$

spikes persist with flattened effective potentials only the potential bowl at the bottom matters

calculating ballistic evolution to caustics gives the spikes in perfect agreement with full nonlinear lattice simulations (now being done for a suite of flattened potentials to better deal with the shock-in-time)

> nonG from post-inflation but pre-entropy generation ballistic trajectories can lead to pre-shockin-time caustics and other phase space convergences in the deformations (!) Zeldovich map-ish eg $\partial \ln a / \partial \chi_i(x)$, $\partial \ln a / \partial g(x) => P[\ln a(x), t_{shock} | \chi_i(x), g(x), t_{end-of-inflation}]$

field smoothing over χ HF over \sim 50 e-folds of HF structure

$$<\mathbf{F}_{NL}|\chi_{b+}\chi_{>h}> \sim \beta_{\chi}(\chi_{>h})\chi_{b} + \mathbf{f}_{\chi}(\chi_{>h})\chi_{b}^{2} + ...$$

 $1/4 \lambda \phi^4 + 1/2 g^2 \phi^2 \chi^2$

cf. $F(x) = F_G(x) + f_{NL^*} F_G^2(x)$

 $f_{NL}^{equiv} = \beta \chi^2 f_{\chi} \left[P \chi / P \phi \right]^2 (k_{pivot}) \text{ Local } f_{NL} = 2.7 \pm 5.8 \text{ Planck1.3}$ => constrain $f_{\chi}^3 \chi > h^2 (P \chi / P \phi \sim 2\varepsilon => relaxed limit)$

control variable = χ >h => super-bias, intermittent, extended source-like rare event tails

bispectrum & 3-point ~ fsky,patches³ => not overly constraining & standard f_{NL} method is not how to pattern-search for intermittent power bursts

Bond, Braden, Frolov, Huang13

intermittency from steep threshold functions acting on a slightly red curvature field (gravitational potential) lead to very-large-scale splotch "anomalies"

cf. the more localized Lagrangian space **intermittency** from steep cluster-threshold functions acting on the **density field**. **Cluster-patches** lead to pressure intermittency and SZ sources in the CMB

control variable = χ >h => super-bias, intermittent, extended source-like rare event tails T (nuk)

control variable = χ >h => super-bias, intermittent, extended source-like rare event tails

control variable = χ >h => super-bias, intermittent, extended source-like rare event tails

control variable = χ >h => super-bias, intermittent, extended source-like rare event tails

Alvarez, Bond, Huang, Stein, Braden, Frolov14

correlated zeta_inf^2

uncorrelated zeta_isoc^2

Chaotic Billiard Model Smoothed on R=16Mpc

Gaussian Spike Model Smoothed on R=32Mpc

Gaussian Spike Model Smoothed on R=32Mpc

Gaussian Spike Model Smoothed on R=32Mpc

Alvarez, Bond, Huang, Stein, Braden, Frolov14

8.80

1.11

4.15

4.34

10015

....

....

1.13

1 10 -15 -18

Intermittent

Gaussian spike model smoothed on K=32Mpc

-100 -075 -050 -025 000 025 050 075 100

the Cosmic Web of Clusters, seen thru tSZ Compton cooling of high pressure electrons by the CMB effect Lightcone Simulation of Clusters > 1.5x10¹³ M_{sun} to z=1.3 in projected pressure

Alvarez, Bond, Hajian, Stein, Battaglia, Emberson,..2014

~5 hours on 256 cores on SciNet, 30000 core IBM GPC

END

linear regime of zero-modes: $\phi_0(t+T) = \phi_0(t)$ $\chi_0(t+T) =$ $\chi_0(t) \exp[\mu_0 T]$ \Rightarrow spikes are log χ_i spaced