the Shock-in-Times of Entropy/Information Generation in Post-inflation Preheating Dick Bond CIFAR@CITA with CITA aka Cosmic Information Theory & Analysis

Thursday, 5 April, 12

Coherent Inflation with Quantum Jitter to Hot Big Bang, an Incoherent Particle Soup

how (most of) the entropy in matter

=> GUT plasma/quark soup => $S(\gamma, \nu)$ was

generated (through a shock-in-time) via nonlinear coupling of the inflaton to new interaction channels g, % a ultimately to standard model degrees of freedom ∃ a role for decaying particles, 1st order phase transitions?

exactly who, what, where, when, why? we search for fossil "non-Gaussian" structures from this period with Planck +WMAP9

non-Gaussianity (WMAP, Planck, LSS) spiky nG preheating

current Hubble patch ~10 Gpc speed limit horizon

isocon

χ(x) or **g**(σ(**x**) or..

φ inflaton

preheating patch (~1cm)

Parametric Resonance $g^2/\lambda \sim 1$

10 Gpc

1000 Gpc

Roulette Inflation: a statistical mini landscape (one of very many) of the early U origins of observed cosmic structure: holey U: sizes/shapes of geometrical structures such as holes in a dynamical extradimensional (6-7D) space settling into a stable bit of extra-dim at each point in our 3D space; braney U: motions of lower-dimension subspaces

Roulette Inflation: a statistical mini landscape (one of very many) of the early U origins of observed cosmic structure: holey U: sizes/shapes of geometrical structures such as holes in a dynamical extradimensional (6-7D) space settling into a stable bit of extra-dim at each point in our 3D space; braney U: motions of lower-dimension subspaces

pre-heating patch (<1cm-now, <10⁻³⁰ cm-then)

Barnaby, Bond, Huang, Kofman 2009 s m quantum R diffusion N spatial jitter 🕇 drift let there be heat 8

www.youtube.com/watch?v=FW__su-W-ck&NR=1

Roulette Inflation: a statistical mini landscape (one of very many) of the early U origins of observed cosmic structure: holey U: sizes/shapes of geometrical structures such as holes in a dynamical extradimensional (6-7D) space settling into a stable bit of extra-dim at each point in our 3D space; braney U: motions of lower-dimension subspaces

pre-heating patch (<1cm-now, <10⁻³⁰ cm-then)

A visualized 2D slice in lattice simulation

www.youtube.com/watch?v=FW su-W-ck&NR=1

coherent inflaton => incoherent mode cascade of fields thru a shock-in-time to thermal equilibrium

but Statistical Simplicity

Density PDF~ log-normal after initial transient Frolov10

Velocity components ~ Gaussian PDF

Normalized Probability

non-Gaussianity (WMAP, Planck, LSS) spiky nG preheating

B+Braden11

but Statistical Simplicity

box L=10m and N=1024³

FT(In density) PDF ~ log-normal after initial transient

but Statistical Simplicity

box L=10m and N=1024³

FT(In density) PDF ~ log-normal after initial transient

coherent inflaton => incoherent mode cascade of fields thru a shock-in-time to thermal equilibrium

 $S_{Ui} \sim 0$; $S_{Utot,m+r}/n_b \sim 1.66 \times 10^{10}$ bits/b; $s_{\gamma}/n_{\gamma} = 5.2$ bits/Y = 2130/411; $s_{\nu} = 21/22 s_{\gamma}$

Studying the Cosmic en-TANGO-ment the dance of U=RUS of phase & probability: $\varrho(U) = \varrho(S,R) = \varrho(R|S) \varrho(S)$ Universe =System(s)+Reservoir =Signal(s)+Residual noise =Effective (F) Theory+Hidden variables=Data+Theory, observer(s)+observed Classical nonequilibrium Shannon (relative) entropy $S_{fi} = -\int dq \left[P_f(q) \ln P_f(q) / P_i(q) \right] + \left[P_f(q) - P_i(q) \right]$ -KL divergence $P_f(q)$ probability density functional distribution function \leftarrow quantum (von Neumann) S= -Tr $\rho \ln \rho$ density matrix

coarse graining & entropy "production" (*S=0 pure state*) max S constrained by "measurements" of theorists on the medium parameters q = Field variables \Rightarrow Correlation Functions

Measurements: e.g., constraints (information) on Correlators marginalize higher order correlators (i.e., unknown) \Rightarrow **S**

Bayes dS <0 as System knowledge P(q|D,T) = P(D|q,T)P(q|T)P(T)/P(D|T)Gaussian distribution=max-entropy distⁿ fn given 2-pt correlation fn $S = (Trace In C + N_{dof} In 2pi + N_{dof})/2 = \langle In V_{p-space} \rangle + N_{dof}/2$ =Shannon entropy subject to the constraint $\int dq P_f \, \delta q^i \delta q^j = C^{ij}$ $In=log_e$ measure info in nats, $Ib=log_2$ measure info in bits $C(k) = \langle |In\rho|^2(k) \rangle$ but want discrete state counting or relative entropy $S_{fi} = (Trace In C_f C_i^{-1})/2 = \langle In V_{p-space,f} / V_{p-space,fi} \rangle f$

A Shocking End to Post Inflation Mean Field Dynamics

Shock-in-space t = const $v_{bulk}^2 > c_s^2 \Rightarrow v_{bulk}^2 < c_s^2$

supersonic \Rightarrow subsonic

Characteristic spatial scale Jump Conditions: $\Delta T^{\mu\nu}$ **Randomizing** Shock Front: ΔS **Mediation**: width via viscosity or collisionless dynamics **post-shock evolution,** slow, of temperature, etc. **Shock-in-time** x = const (deviations for nonG) < ρ > >> δρ \Rightarrow < ρ > << δρ

Homogeneous \Rightarrow Fluctuations

Characteristic temporal scale Jump Conditions: $\Delta T^{\mu 0}$ **Randomizing** mode cascade & Particle Production: ΔS **Mediation**: width via gradients and nonlinearities **post-shock evolution**, slow, of fluctuations

the Shock-in-time: entropy production, <In(density-contrast)>⁻¹,In(density*a^{3(1+w)})

true thermal equilibrium far off

& on to coupling to standard model degrees of freedom

non-Gaussianity (WMAP, Planck, LSS) spiky nG preheating B+Braden11

Gaussian random field entropy (from band-limited quantum fluctuations) there is indeed a spike of entropy production at the shock front.

$$V(\phi,\chi)=1/2 m^2 \phi^2 + 1/2 g^2 \phi^2 \chi^2$$

dS/dt(t,g) => the Shock-in-time: entropy production rate δlna_{shock} (g($\sigma(\mathbf{x})$) => modulated non-Gaussianity from preheating! $V(\phi,\chi)=1/2 m^2 \phi^2 + 1/2 g^2 \phi^2 \chi^2$ 3 In(a) 0.9 0.8 (normalized) 2.8 0.7 0.6 In(a/a_{end} 2.6 0.5 0.4 dS/d(mt) 2.4 0.3 shock @ In ashock Δ shock= mediation width 0.2 2.2 0.1 2 200 250 50 150 300 100 modulated non-G gM_P/m Kofman03 Dvali, Gruzinov+Zaldarriaga03 $V(\phi,\chi) = 1/2 \text{ m}^2 \phi^2 + 1/2 \text{ g}^2 \phi^2 \chi^2$

B+Braden12

Thursday, 5 April, 12

Thursday, 5 April, 12

the Shock-in-Times of Post-inflation Preheating B+Braden12

Initial State = Nearly Homogeneous Inflaton

low entropy (coherent φ + vac fluctuations), information encoded in a few parameters

Preheating

Instabilities result in nonlinear transition to an incoherent state, resonances? KLS 94, 97,e.g. Tkachev, Felder, Garcia-Bellido, ...

the shock-in-time is the sharp mediator between the linear & the highly nonlinear transition a fascinating non-Gaussianity can arise if there is a spatial modulator field varying the shock time

(Near Adiabatic) Transition Regime

Complex slowly evolving nonlinear, nonequilbrium state e.g. Micha and Tkachev 2004, turbulence analogy??? *the evolution is NOT a Kolmogorov-like turbulent cascade to higher modes*

Final State = Thermal Equilibrium

= maximum spreading of information in modes subject to energy & particle number constraints. How to couple to standard model dofs to accelerate the power spectrum evolution to a thermal bose-einstein distribution function?

coherent inflaton => incoherent mode cascade of fields thru a shock-in-time to thermal equilibrium $S_{Ui}\sim 0$; $S_{Utot,m+r}/n_b \sim 1.66 \times 10^{10}$ bits/b; $s_v / n_v = 5.2$ bits/Y = 2130/411; $s_v = 21/22 s_v$

Conclusions

BB12 new language for preheating using complex information measures: the shock-in-time = randomization front, an efficient entropy source Spatial block RenormGp smoothing indicates that PDF's of fluctuations around local values evolve slowly post-shock

nearly Gaussian PDF for Inpk & Vk hydro/phonon regime

Observable preheating **nonGaussianities** can be encoded in the spatial

structure of the shock-in-time, characterized by $\ln a_{shock}(x)/a_{end}$

narrow mediation width. reasonable case made that $\approx \ln a_{final}(X)/a_{end}$

generalized nonG from shock-in-time(x | couplings, isocon, ...) TBD fully explore the potential surface dependence => the variety of preH nonG B²FH12 phenomenology CMB cold spot /quadratic constraints for preheating nG's; constrain/detect with PlanckEXT; explore more short-astro-distance exotica of high-k spiky potential pits whence opens up the large number of particle dofs & standard model? can this kick in earlier, aka warm inflation. anyway, we are having fun with the high k drain

end