PRIMARY @ 2012?

CMB ~2012: Planck2.5+WMAP9+SPT/ACT/Quiet+Bicep/QuAD/Keck/ABS +Ebex/Spider

PRIMARY END @ 2012?

CMB ~2011+ Planck1+WMAP9+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider

Wednesday, June 9, 2010

PRIMARY END @ 2012?

CMB ~2009+ Planck1+WMAP8+SPT/ACT/Quiet+Bicep/QuAD/Quiet +Spider+Clover

Wednesday, June 9, 2010

How the First Cosmic Light Illuminates the Dark Universe

the dark seen from the 70s, 80s, 90s, 00s

** the high resolution frontier: the insides of clusters via SZ (SuZie,..., Acbar, QUaD, ... CCAT, CARMA++,ALMA,GBT,... ACT, SPT, Planck)

the polarization frontier: down the damping tail, through Planck (and ACTpol, SPTpol, ...)

the CMB computational horizon: simulations & Monte Carlos

the CMB computational horizon: optimal de-nuisanced maps from large-format arrays; algorithmic advances, foreground/source issues

** Theory of inflation & dark energy: the non-Gaussian frontier (beyond f_{NL} templates -4< f_{NL} <80 now to $f_{NL} \sim \pm 5$ Planck; will Gravity Wave B be big enough to detect r(k)? DE w ($z|V(\psi),IC$) trajectories

beyond the SM: in quest of the sub-dominant & the anomalous

** the polarization frontier: the quest for B-modes and primordial gravity waves - small-sky (Bicep, KECK, Spider), Planck+small-sky, need for a CMBpol??

CBI pol to Apr	'05 @Chile Cl	312	Ç	Juiet1	Quiet2
		QUaD @SF	> (C	⊉Chile	1000 HEMTs
Boom03@LDB		Bicep @S	SP	Bicep2	Keck/Spud@SF
WMAP @I DASI @SP CAPMAP	_2 to 2010	Plan 52 + H 9 fr	ck09.4 bolometers IEMTs @L2 requencies		EBEX ABS@ @LDB Chile Spider 2312 bolos @LDB
2004	2006	BLAST 2008	Herschel	LHC	2011 Bno
2005 Acba	2 ar to Jan'06, (007 08f @SP 1	SPT 000 bolos	2009 BLAST	pol Clover @Chile
	SZA @Cal	- Change	ACT 3000 bolos		Polarbear 300 bolos @Cal/Chile
		APEX ~400 bolos @Chile	3 freqs @CH SCU 12000	hile BA2 bolos	ACTpol ALMA CCAT@Chile
	GDT	JC		Г @Hawaii	LMT@Mexico

Wednesday, June 9, 2010

⇒ exquisite & increasingly precise determination of cosmic parameters

dark matter abundance Ω_m =0.268 +.012 -.012

standard inflation space: n_s dn_s/dlnk r =T/S @k-pivots WHAT IS PREDICTED?

Smoothly broken scale invariance by nearly uniform braking (standard of 80s/90s/00s) r~0.03-0.5 large field inflation (field moves > Planck mass) or highly variable braking r tiny

small field inflation (field moves < Planck mass => r<.007) Bond, Kofman, Prokushkin,Vaudrevange 07, Roulette Inflation with Kahler Moduli and their Axions Barnaby, Bond, Zhiqi Huang, Kofman 09, Preheating after Modular Inflation

monodromy (V=cosine+linear) & fibre inflation give larger r

current r constraints (95%CL) - prior sensitive
r < 0.16 (no running, all data sets)
r < 0.32 (no running, CMB-only data sets)
r < 0.27 (with running, all data sets)</pre>

inflation consistency -*n*t ≈r/8 ≈2ε(k) 1-n_s ≈2ε+d/nε/d/nHa

Wednesday, June 9, 2010

Spider-24d (fsky) cf. Planck-2.5yr. QUIET/KECK/ABS/EBEX... similar

standard inflation space: $n_s dn_s/dlnk r = T/S$ @k-pivots What can be observed? forecasting QU not EB Spider $2\sigma_r \sim 0.02$ for $0.02 < f_{sky} 0 < 0.15$ Planck2.5yr $2\sigma_r \sim 0.02 => \sim 0.05$ (foregrounds)

Marzieh Fahrang, Bond, Dore & Netterfield 2010

What is predicted? ??? 0<r<0.5, -12<log(r)<-0.3

compress data onto non-top-hat k-modes Planck2.5 7 knot forecast with inflation consistency; input r=0.12 m²φ²

compress data onto non-top-hat k-modes

Window functions for the δr/r* response to relative uncertainties in EE,BB power spectra: complementarity of Planck & small-sky Spider *etal*

Wednesday, June 9, 2010

Standard Parameters of Cosmic Structure Formation

is the dark energy "vacuum potential energy" ?

expansion \Rightarrow Einstein's cosmological constant is best fit so far cannot reconstruct the quintessence potential, just the slope \mathcal{E}_s & ~hubble drag

is the dark energy "vacuum potential energy" ?

TEST: within errors, energy-density does not change with expansion constant is best fit so far

CMB DATA ANALYSIS **Computing Life with** ~3000 detectors ACT ~200 GB/night **WMAP - 50 GB/7 yrs,** Planck 2-4 TB total 2 weeks of ACT=all of Planck + huge Monte Carlo simulation needs hydro etal 25M+5M hours/year

GPC: 3780 nehalem nodes=30240 cores 306 TFlops debut as #16 in Top500 TCS: 104 P6 nodes=3328 cores 60 TFlops debut as #53 in Top500 ->80 1.4 Pbytes storage GPUs@UofT & CMB? NERSC > 100000 cores (DOE Planck access) NCSA > 300000 IBM cores

IBM

CMB gets entangled in the cosmic web

aka the descent into the real astronomy of **IGM/ISM** weather, dust storms & turbulent times

CMB gets entangled in the cosmic web

aka the descent into the real astronomy of **IGM/ISM** weather, dust storms & turbulent times

CMB gets entangled in the cosmic web

aka the descent into the real astronomy of **IGM/ISM** weather, dust storms & turbulent times

- Ist adiabatic (no star formation).
- 2nd + gas cooling + star formation +CR
- 3rd + "AGN" feedback as well. Note pushing out of gas, softening of cluster cores

Cooling+SFR+Feedback 2*256³ ~20 hours on 96 cores (out of 30240)

- Ist adiabatic (no star formation).
- 2nd + gas cooling + star formation +CR
- 3rd + "AGN" feedback as well. Note pushing out of gas, as softening of cluster cores

Cooling+SFR+Feedback 2*256³ ~20 hours on 96 cores (out of 30240)

- Ist adiabatic (no star formation).
- 2nd + gas cooling + star formation +CR
- 3rd + "AGN" feedback as well. Note pushing out of gas, as softening of cluster cores

Cooling+SFR+Feedback 2*256³ ~20 hours on 96 cores (out of 30240)

- Ist adiabatic (no star formation).
- 2nd + gas cooling + star formation +CR
- 3rd + "AGN" feedback as well. Note pushing out of gas, as softening of cluster cores

Cooling+SFR+Feedback 2*256³ ~20 hours on 96 cores (out of 30240)

Variations in SZ with feedback

Battaglia, Bond, Pfrommer, Sievers, Sijacki 2010

the high resolution frontier: SZ power spectra

ACT@5170m

why Atacama? driest desert in the world. thus: cbi, toco, apex, asti, act, alma, quiet, clover CBI205040m

