

Launch of Planck & Herschel on May 14 2009 from Kourou (Fr. Guiana)

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency --ESA -- with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck is a project of the European Space Agency --ESA -- with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Bond since 1993, Canada since 2001, 1st CSA pre-launch contract 2002-09, post-launch 2010-11, 2011-13 Wednesday, May 11, 2011

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work flawlessly** with great results on ERCSC (~15000 sources, 189 SZ clusters), CIB, SZ, AME & the dusty MW, & much more, so many areas, enabled by so many frequencies. more Galaxy Feb 2012, primary CMB & pol TBD, Jan 2013, 14

Planck

Focal plane

HFI cut view

HFI performance

Thermal performance

- 100 mK HFI detectors behave exactly as during ground tests. Set for minimum Helium flow, enough for 5 sky coverages (until ~Jan 2012 +-x)
- **CosmicRays: Glitch** rate at ~80/min on each bolometer=>thermal fluctuations
 - contribute to 1/f noise (significant CSA-HFI role in discovering and characterizing the effect)
- Sensitivity and Beams: a little better than Blue Book widely used for forecasts. (CR thermal fluctuations make it a little higher than ground measurements). Anticipated "aggregated" sensitivity (100-217 GHz) for 30 months is 0.33 microK-deg ie, ~1000 years of WMAP (60-94 GHz = 10.8 microK-deg in 1 yr) + >2 smaller beam
- **CarbonMonoxide lines** in 100 and 220 GHz complicates modelling, a problem becomes a strength? with separation of components, could get an all-sky CO map

LFI performance

 Sensitivity and Beams: ~ Blue Book widely used for forecasts. Beams to - 20 db understood.

1.0

WMAP 5yr & LFI 4 surveys

dots: WMAP 9ve

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work flawlessly** with great results on ERCSC (~15000 sources, 189 SZ clusters), CIB, SZ, AME & the dusty MW, & much more, so many areas, enabled by so many frequencies. more Galaxy Feb 2012, primary CMB & pol TBD, Jan 2013, 14

PlanckEXT, EXT=many observatories & expts enabling the astro

XMM Herschel Fermi WMAP GBT BLAST ACT SPT AMI CBI CBASS QUIET SDSS IRAS CO/HI-maps, ...

at Planck2011 (Paris, Jan 10-14) & the AAS: 25 papers & the ERCSC were unveiled

the quest for the primordial within the primary CMB requires exquisite foreground removal, the quest for Milky Way maps & extended source maps requires accurate CMB etal removal

- the TBD of Planck vintage 98: signal separation Striping
- dust (thermal+spinning PAH)
- synchrotron
- bremsstrahlung
- dusty+radio galaxies
- kinetic SZ-
- thermal SZ-PRIMARY

10

7 veils(v)+CMB

STRIPING

SYNCHROTRON

FREE-FREE

GALAXIES

CLUSTERS AT/

CLUSTERS Y-SX

PRIMARY AT

DUST

the nonlinear *primary* anisotropies 17 kpc <u>secondary</u> (19 Mpc) COSMI WEB anisotropies •linear perturbations: scalar/density, tensor/ N •nonlinear gravity wave evolution F

- tightly-coupled photon-baryon fluid: oscillations $\delta_{\gamma} \nabla_{\gamma} \pi_{\gamma}$
- viscously damped
- polarization π_{γ}
- gravitational redshift Φ SW d Φ/dt

13.7Gyrs

t

time

Lsound/

•weak lensing

•thermal SZ

z=0

reionization

10Gyrs

z ~ 10

today

A

0

N

fluctuations in the early universe "vacuum" grow to all structure

evolve from early U vacuum potential and vacuum noise fluctuations in the early universe "vacuum" grow to all structure

fluctuations in the early universe "vacuum" grow to all structure

pressure intermittency in the cosmic web, in cluster-group concentrations probed by tSZ

data Aug 13 09 to Jun 7 10: all-9-frequency maps + maps-CMB produced & delivered to consortium Aug 2 10

F. R. Bouchet: "The Planck High Frequency Instrument Sky"

PLANCK conference 2011, January 10th, Paris

- 15000 sources. Reliability > 90% (using MC) with photometric accuracy <30%, no completeness stats and not flux limited.
- => radio/submm extragalactic sources, Galactic sources, +
- Have to take care at 100 GHz of possible CO.

- 915 cold cores in catalog ECC (7-17K, 1.4<beta<2.8), 10783 (C3PO) seen in maps, most within 2kpc Herschel follow-up, some done
- precursors of pre-stellar cores, up to 1e5 Msun
- Cold Clumps aka cold cores in groups & filaments, on edges of H1/IRAS loops

Wednesday, May 11, 2011

Herschel ATLAS is a key legacy survey of 550 sq deg, 300 sq deg & lots of science done

gastrophysics

= gastrointestinal disorder? or

= gourmand's paradise?

in paris, the latter @planck2011

Example 3 Beauty in complex information, but how best to measure it - compress into fewer bits of high Quality (cf. entropy) what art our science should/must be

ISMer-cosmologist cross talk is good and increasing, stimulated by Planck etal

n(M)dM, morphology of filaments, clustering/power spectra, "bulk/turbulent flows" SIMPLICITY in COMPLEXITY? but so much chemistry etc

Wednesday, May 11, 2011

Aquila curvelet N_{H2} map (cm⁻²) 10²¹ 10²²

André et al. 2010, A&A special issue

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

 Galactic dust and templates. MW maps! - see extra emission from 'dark gas' component not in HI or CO, could be H₂ that survives when CO does not. (linear response to templates of all sorts. Planck & Herschel maps beautiful. Tdust vs dust depth/N_H trend) the PlanckEXT extinction model will rule (sometime)

Fig. 4. Spectrum of G160.26-18.62 in the Perseus molecular cloud. The

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

Spinning dust - AME clearly seen in Perseus and rho-Ophiuchus regions with a spectrum pulled out in excellent agreement with Draine & Lazarian theory from the 90s, a long journey from the OVRO AME discovery & a leap forward

Delta T over Tea Toronto May 1987: first dedicated CMB conference, exptalists+theorists, primary+secondary **\Delta T/T**

an early CITA/CIFAR collaboration, 65 participants

e.g., Bond, Carlberg, Couchman, Efstathiou, Kaiser, Page, Silk, Tremaine, Unruh; Bennett, Halpern, Lange, Mather, Wilkinson, ...

A tentative list of topics organized according to angular scale, with theory and observation intertwined, is:

• very small angle anisotropies - VLA results, secondary fluctuations via the Sunyaev-Zeldovich effect, primeval dust emission, and radio sources

• small angle anisotropies - current results, optimal measuring strategies, statistical methods for small signals in larger noise, which universes can we rule out, the <u>reheating issue</u>, future detectors and techniques, <u>CMB map statistics</u>, <u>polarization</u>

• intermediate and large angle anisotropies - $5^{\circ} - 10^{\circ}$ results, future experiments at $\sim 1^{\circ}$, COBE and other large angle analyses, theoretical $C(\theta)'s$ and their angular power spectra, Sachs-Wolfe effect in open Universes, the isocurvature CDM and baryon stories, $\Delta T/T$ from gravitational waves, the cosmic string story.

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

radio source counts Planck, ACT, SPT, WMAP

- Radio src counts consistent with ACT/SPT (at higher flux range), & WMAP, lower than prior model. there is spectral steepening above 70 GHz.
- IR src possible evidence for cold dust component in local IR galaxies (T<20K).

dusty gals Planck, ACT, SPT, ACTxBLAST, Herschel

gg-clustering term is much more important than for clusters, resolution needed to see both,

Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

exquisite information on Galactic foregrounds from the Green Bank telescope (H from 21 cm) & other data, and the Planck point sources +CMB, allows one to dig out an underlying CIB

Planck-HFI Raw maps 26.4 sq. deg.

Raw maps

- CMB
- ERCSC point sources

Raw maps

- CMB
- ERCSC point sources
- Galactic dust

CIB maps @ 10 arcmin

Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

clustering of luminous infrared galaxies at high redshift: starbursts, dust-shrouded AGNs, etc

- Planck measures the CIB anisotropies from 10 arcmin to 2 degrees at 217, 353, 545 and 857 GHz
- Half of power comes from z<0.8 at 857 GHz and z<0.9 at 545 GHz. 1/5 and 2/3 come from z >3.5 at 353 GHz and 217 GHz
- Results depends strongly on the HI data & Toronto GBT results

consistent with $\xi gg \sim r^{-1.8}$ (or even r^{-2}) & linear bias, but halo model with 2-halo dominant, *sources are exactly what*? shot noise not (really) measurable with Planck, need higher res expts cf. *ACTxBLAST, BLASTxBLAST, SPT/ACT CL separation, Herschel (higher)*

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

CIB - clustering term clearly detected at 217-857 GHz, with diminishing correlation as band separation increases. imaged (BLAST, ACTxBLAST, Planck agree, Herschel a little higher). Source halo model fits the spectra, so does usual galaxy clustering with <bias>. source population is exactly what? => uncertain interpretation

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

ambient/blank-field tSZ effect from clusters & gps

SZ - 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters (no deficit, assuming universal profile), apparent SZ deficit for optical clusters (jury out on cause, but seen in ACTxSDSS-LRGs as well)

ESZ 20 new + 169 in X/Opt cats

(& ~80% new in SZ, Ethermal view)
PlanckXMM dedicated time on newbies ~95% reliable, validation, S/N ~ 6 cut
+ cross-correlate with X/SDSS cats, Y-"M" scaling OK in shape, puzzle in amp for optical maxBCG/LRG

new SZ cluster detections reported

by ACT (~50), SPT (~50), AMI, .. more coming

A2319

Wednesday, May 11, 2011

Planck sees the rarest & most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to $1.5 \times 10^{15} M_{sol}$. 90% of the RASS above M

> 9 × 10¹⁴ M_{sol} detected by blind ESZ, 5/21 of new Planck clusters have M > 9 × 10¹⁴ M_{sol}.

Feb10 targets for XMM-Newton - **25 candidates** observed: DDT time, eg, pilot 10 targets from 62% of sky coverage, in 4 < S/N < 6 range (EZ > 6); high S/N (>5) programme 15 targets. **21 confirmed** \rightarrow **~85%** success rate; **17 single clusters, most** disturbed; **2 double systems; 2 triple (super***cluster)* systems; 0.09 < z < 0.54

N. Aghanim

Cosmology From 17,000 Feet: Results From the Atacama Cosmology Telescope

V.Acquaviva ^{1,2} R. Dunner⁴ P.Ade³ T. Essinger-Hileman⁶ R.P. Fisher⁶ P.Aguirre⁴ M. Amiri⁵ I.W. Fowler⁶ J. Appel⁶ A. Hajian⁶ E. Battistelli^{7,5} M. Halpern ⁵ J. R. Bond⁸ M. Hasselfield ⁵ B. Brown⁹ C. Hernandez-Monteagudo ^{13,2} B. Burger ⁵ G. Hilton 11 M. Hilton 14, 15 I. Chervenak¹⁰ S. Das ^{29,6,1} A. D. Hincks⁶ M. Devlin² R. Hlozek¹² S. Dicker² K. Huffenberger^{16,6} W. B. Doriese ¹¹ D. Hughes¹⁷ I. Dunkley 12,6,1 I. P. Hughes¹⁸

¹ Princeton University Astrophysics (USA)
² University of Pennsylvania (USA)
³ Cardiff University (UK)
⁴ Pontifica Universidad Catolica de Chile (Chile)
⁵ University of British Columbia (Canada)
⁶ Princeton University Physics (USA)
⁷ University of Rome "La Sapienza" (Italy)
⁸ CITA, University of Toronto (Canada)
⁹ University of Pittsburgh (USA)
¹⁰ NASA Goddard Space Flight Center (USA)
¹¹ NIST Boulder (USA)
¹² Oxford University (UK)
¹³ Max Planck Institut fur Astrophysik (Germany)
¹⁴ University of KwaZulu-Natal (South Africa)

L. Infante ⁴ K.D. Irwin ¹¹ N. Jarosik ⁶ R. Jimenez ¹⁹ J.B. Juin ⁴ M. Kaul ² J. Klein ² A. Kosowsky ⁹ J.M. Lau ^{20,6} M. Limon ²¹ Y.T. Lin ^{22,1,4} R. Lupton ¹ T.A. Marriage ^{1,6} D. Marsden ²

P. Mauskopf ³ F. Menanteau ¹⁸ K. Moodley ¹⁴ H. Moseley ¹⁰ B. Netterfield ²⁴ M.D. Niemack ^{11,6} M.R. Nolta ⁸ L.A. Page (PI) ⁶ L. Parker ⁶ B. Partridge ²⁵ H. Quintana ⁴ B. Reid ^{19,1} N. Sehgal ^{20,18}

K. Martocci^{23,6}

J. Sievers ⁸ D. Spergel ¹ S.T. Staggs ⁶ O. Stryzak ⁶ D. Swetz ² E. Switzer ^{23,6} R.Thornton ^{26,2} H. Trac ^{27,1} C.Tucker ³ L. Verde ¹⁹ R. Warne ¹⁴ G. Wilson ²⁸ E. Wollack ¹⁰ Y. Zhao ⁶

¹⁵ South African Astronomical Observatory
¹⁶ University of Miami (USA)
¹⁷ INAOE (Mexico)
¹⁸ Rutgers (USA)
¹⁹ Institute de Ciencies de L'Espai (Spain)
²⁰ KIPAC, Stanford (USA)
²¹ Columbia University (USA)
²² IPMU (Japan)
²³ KICP, Chicago (USA)
²⁴ University of Toronto (Canada)
²⁵ Haverford College (USA)
²⁶ West Chester University of Pennsylvania (USA)
²⁷ Harvard-Smithsonian CfA (USA)
²⁸ University of Massachusetts, Amherst (USA)
²⁹ BCCP UC Berkeley and LBL (USA)

ACT equatorial data (2008-10)

23 Galaxy Clusters Found by ACT via SZ Signal

Marriage et al 2010 (1010.1065)

Optical Observations Menanteau et al 2010 (1006.5126)

With the ACT equatorial strip, >50 clusters.

Cosmic Parameters from 9 confirmed clusters (Sehgal et al.2010) using cluster abundances => mass calibration still too uncertain (e.g. σ_8 =0.82±0.05 to 0.85±0.12). attempt at Dark Energy equation of state, little leverage

$E_{e,th}(\langle r_{\Delta} \rangle) - M(\langle r_{\Delta} \rangle)$ relation, where

$M(<R_{\Delta})/V(<R_{\Delta})=\Delta \rho_{crit}, \Delta=2500, 500, 200$

Planck sees the rarest & most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to $1.5 \times 10^{15} \text{ M}_{sol}$. 90% of the RASS above M > 9 × 10¹⁴ M_{sol} detected by blind ESZ, 5/21 of new Planck clusters have M > 9 × 10¹⁴ M_{sol}.

cross-correlate with the 13,104 optical "brightest cluster galaxies" from the Sloan Digital Sky Survey, estimate cluster size and mass by richness = number of galaxies in the cluster

Wednesday, May 11, 2011

Planck sees the rarest & most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to 1.5×10^{15} M_{sol}. 90% of the RASS above M

 $> 9 \times 10^{14}$ M_{sol} detected by blind ESZ, 5/21 of new Planck clusters have M $> 9 \times 10^{14}$ M_{sol}

cross-correlate with the *13,104* optical "brightest cluster galaxies" from the Sloan Digital Sky Survey, estimate cluster size and mass by richness = number of galaxies in the cluster

Wednesday, May 11, 2011

Planck sees the rarest & most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to $1.5 \times 10^{15} M_{sol}$. 90% of the RASS above M > 9 × 10¹⁴ M_{sol} detected by blind ESZ, 5/21 of new Planck clusters have M > 9 × 10¹⁴ M_{sol}.

cross-correlate with the 13,104 optical "brightest cluster galaxies" from the Sloan Digital Sky Survey, estimate cluster size and mass by richness = number of galaxies in the cluster

Planck sees the rarest & most massive clusters over the whole sky: small/moderate redshifts (86% with z<0.3); masses to $1.5 \times 10^{15} \text{ M}_{sol}$. 90% of the RASS above M > 9 × 10¹⁴ M_{sol} detected by blind ESZ, 5/21 of new Planck clusters have M > 9 × 10¹⁴ M_{sol}.

cross-correlate with the 13,104 optical "brightest cluster galaxies" from the Sloan Digital Sky Survey, estimate cluster size and mass by richness = number of galaxies in the cluster

Wednesday, May 11, 2011

Dick Bond: Synergy between Clusters & other cosmological probes kitp11/03

Ncluster (Ysz, Mlens, Yx, Lx, Tx, Lcl, opt, Rich, ... **z**, gold-sample, thresholds) + $C_{L}^{SZ}(cuts)$ + $\xi_{cc}(r|n_{cl})$ will deliver valuable cosmic gastrophysics for sure. Will it deliver fundamental physics e.g., the dark energy EOS, primordial non-Gaussianity??? σ₈ even?

cluster/gp system used since 80s: Xtra power ξ_{cc} $\xi_{cg} => xCDM$ $P_{\rho\rho}(.25h/Mpc)$ aka σ_8 via n_{cl} are we really ready for prime time? mock-ing!! Wednesday, May 11, 2011 25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: **HFI & LFI work**

near-future cosmology => PlanckEXT

EXT=many observatories & expts enabling the cosmology/astro XMM Herschel Fermi WMAP GBT BLAST ACT SPT AMI CBI CBASS QUIET SDSS IRAS CO/HI-maps,... cosmology: n_s(k), GW r(k), nonG f_{NL}++, ρ_{de}(t), m_v, strings, isocurvature,... n_e(t) ACTpol, SPTpol, eRosita, PanStarrs, DES, LSST, GBT, CCAT, *ABS, Spider, EBEX, Keck, CHIME, EUCLID,* ... ⊂ EXT

HIGH RESOLUTION POWER SPECTRUM FROM ACT

Dunkley+.2010

HIGH RESOLUTION POWER SPECTRUM FROM ACT: NEW RESULT!

primordial (lensed) CMB + veils, the veils = radio sources, the ClB, tSZ and kSZ (& Milky Way dust and synchrotron at lower multipoles)

Dunkley+.2010

Standard Parameters of Cosmic Structure Formation

'low-L' part of ACT's power spectrum

Standard Parameters of Cosmic Structure Formation

new parameters: trajectory probabilities for early-inflatons & late-inflatons (partially) blind cf. informed "theory" priors

Wednesday, May 11, 2011

compress data onto non-top-hat k-modes

cosmology forecasts for PlanckEXT $n_s(k)$, GW r(k), nonG f_{NL}++, $\rho_{de}(t)$, m_v, strings, isocurvature, ...

current CMB+LSS+WL+SN1a+Lyα **PEXT=**Planck2.5yr + low-z-BOSS + CHIME + Euclid-WL + JDEM-SN *Huang, Bond, Kofman 2010*

$n_s = \pm 0.012 =>\pm 0.002$ (Pext) $lnA_s = \pm 0.03 =>\pm 0.008$ (Pext)

Farhang, Bond, Dore, Netterfield 2011 forecasting QU not EB Spider $2\sigma_r \sim 0.013 \Rightarrow \sim 0.02$ for $0.02 < f_{sky} < 0.15$ Planck2.5yr $2\sigma_r \sim 0.02 \Rightarrow \sim 0.05$ (foregrounds)

quadratic local nonG -10< f_{NL} <74 (+- 5 Planck)

cosmology forecasts for PlanckEXT $n_s(k)$, GW r(k), nonG f_{NL}++, $\rho_{de}(t)$, m_v, strings, isocurvature, ...

current CMB+LSS+WL+SN1a+Lyα **PEXT=**Planck2.5yr + low-z-BOSS + CHIME + Euclid-WL + JDEM-SN *Huang, Bond, Kofman 2010*

$n_s = \pm 0.012 =>\pm 0.002$ (Pext) $lnA_s = \pm 0.03 =>\pm 0.008$ (Pext)

Farhang, Bond, Dore, Netterfield 2011 forecasting QU not EB Spider $2\sigma_r \sim 0.013 \Rightarrow \sim 0.02$ for $0.02 < f_{sky} < 0.15$ Planck2.5yr $2\sigma_r \sim 0.02 \Rightarrow \sim 0.05$ (foregrounds)

quadratic local nonG -10< f_{NL} <74 (+- 5 Planck)

 $\begin{aligned} & \Omega_{\rm m} = \pm \ 0.012 => \pm \ 0.001 \ ({\rm Pext}) \ 1 - \Omega_{\Lambda de} \ {\rm ie, V}_{\rm de} \\ & \mathsf{W}_{0} = \pm \ 0.06 => \pm \ 0.01 \ ({\rm Pext}) \ {\rm if } \ \mathsf{w}_{a} = 0 \pm 0.14 => \pm \ 0.03 \ \mathsf{w}_{a} \neq 0 \\ & \mathsf{DEslope} \ (\mathsf{dInV}/\mathsf{d\psi})^{2}/4 \ @{\rm pivot } \ a_{eq} = \ 0.0 \pm \ 0.18 => \pm \ 0.03 \ ({\rm Pext}) \end{aligned}$

 $Z_{re} = \pm 1.2 = \ge \pm 0.3 \text{ (Pext)}$ $\Delta \sum m_{\nu} \sim 0.06 \text{ eV}$ $\sigma_8 = \pm 0.016 = \ge \pm 0.002 \text{ (Pext)}$ Planck + ACTPol

future = Planck2.5+CHIME BOSS-BAO+"JDEM-SN+Euclid-WL" 3-parameter W_{de} ($z|V(\psi),IC$) paves even wild late-inflaton trajectories semi-blind W_{de} (z) in many z-bands determines only ~3 eigenvalues

25 papers & a large fraction of the papers at Planck2011 were unveiled for 10 months & 9-freq T data, + a press conference, highlighting: HFI & LFI work flawlessly with great results on ERCSC (~15000 sources, 189 SZ clusters), CIB, SZ, AME & the dusty MW, & much more, so many areas, enabled by so many frequencies. more Veils Feb 2012, primary CMB & pol TBD, Jan 2013, 14, .

SZ - 189 SZ clusters. SZ scaling relations appear as expected for X-ray clusters , apparent SZ deficit for optical clusters (jury out on cause, ACTxSDSS-LRGs too)

CIB - clustering clearly detected at 217-857 GHz, in power spectrum & images Sources in halo model fits the spectra. BLAST, ACTxBLAST, Planck agree, Herschel a little higher, still an interpretation uncertainty.)

Spinning dust - clearly seen in Perseus and rho-Ophiuchus regions with a spectrum in excellent agreement with spinning PAH theory.

Radio sources: Planck counts consistent with ACT/SPT; local IR galaxies: cold dust component.

beautiful Milky Way dust maps, all sky and for selected regions - see extra emission from 'dark gas' not in HI or CO, could be H₂ that survives when CO does not.

ACT+WMAP7: tilted ΛCDM still works well, modest basic 6 parameter improvement, separated power components CIB, tSZ+kSZ; 7+ peaks seen; running =-0.024±0.015; r <0.19 40% stronger, cosmic strings 60% more constrained, primordial Helium (electron number/baryon) 0.313±0.044 cf. ~0.25 BBN,

 $N_{v,eff}$ =4.56±0.75, so 3 OK; CMB lensing @4 σ via 4pt function Das+11 => Ω_{de} @3.3 σ via just CMB Sherwin+11

ACTpol+Planck2.5+SPTpol+ABS+Spider+..n_s(k), GW r(k), nonG f_{NL}++, ρ_{de}(t), m_ν,.. ~25x ACT&Pol, ~1000clusters, CMB lens for DE

END