

CIEAD: Art is a Coordeniat & Crowite

CIFAR: Art is a Cosmologist & Gravitator

Art is forever young

DUKE

FE NEEDE MAEN MARCO

NO ON

Cosmic Photons, Phonons & Neutrinos in the Universe at Large

Dick Bond CIFAR CANADIAN INSTITUTE ADVANCED RESEARCH

FOR

"To me every hour of the light and dark is a miracle. **Every cubic inch of** space is a miracle." - Walt Whitman

IN EVERY teaspoon of air ~5 cubic cm Ordinary Matter ~amu /nm³ 4.8% O₂ N ; H,He

THE DARK

Dark Matter ~amu $/m^3$ 26.0 ± 1% compressed in MilkyWay ~0.3 amu $/cm^3$; for LHC@CERN-type relics ~ 1 every 10 cm

Dark Energy \sim vacuum potential density \sim 3 amu /m³ 69.2 ± 1.0% inflaton-phonon condensate

THE LIGHT

cosmic radiation

the 1st light of the universe 412 photons/cm³ 0.005% cosmic **neutrinos** ~ cosmic **photons** Energy fraction > 0.47% ~ stars cosmic gravity waves << cosmic photons

THE VACUUM

Higgs@CERN vacuum origin of mass

vacuum fluctuations in phonons origin of all cosmic structure we see the vacuum is under gravitational strain, differentially accelerating

Cosmic Photons, Phonons & Neutrinos in the Universe at Large

Dick Bond CIFAR CANADIAN **CITA** INSTITUTE ADVANCED ICAT RESEARCH

FOR

Canadian Institute for Theoretical Astrophysics L'institut Canadien d'astrophysique théorique

"To me every hour of the light and dark is a miracle. **Every cubic inch of** space is a miracle." Walt Whitman

IN EVERY teaspoon of air ~5 cubic cm Ordinary Matter ~amu /nm³ 4.8% O₂ N ; H,He

THE DARK

Dark Matter ~amu $/m^3$ 26.0 ± 1% compressed in MilkyWay ~0.3 amu $/cm^3$; for LHC@CERN-type relics ~ 1 every 10 cm

Dark Energy

 \sim vacuum potential density \sim 3 amu /m³ 69.2 ± 1.0% inflaton-phonon condensate

THE LIGHT

cosmic radiation

S_{U,γ+ν} ~10^{88.6} cf. Sth,cl~10⁷⁶ cf. SG,DE~10^{121.9}

the 1st light of the universe 412 photons/cm³ 0.005% 5.2 bits/ γ cosmic **neutrinos** ~ cosmic **photons** Energy fraction > 0.47% ~ stars cosmic gravity waves << cosmic photons $5.0 \text{ bits/v} (N_{eff}/3.046)$

THE VACUUM

Higgs@CERN vacuum origin of mass

vacuum fluctuations in phonons origin of all cosmic structure we see the vacuum is under gravitational strain, differentially accelerating

Milky Way in infra-red: half a billion stars, a disk galaxy

COMPLEXITY of here & now

the primordial light, released 13.8 billion years ago, 380,000 yrs after the "Big Bang"

7 veils

Milky Way 2013 in dust grain, radio-wave, carbon monoxide emissions; plus stellar, X-ray, gamma ray, cosmic ray emissions ...

The Planck one-year all-sky survey

[c] ESA, HFT and LFT consortia, July 2010

May 14, 2009 French Guiana

Bond since 1993, Canada since 2001, 1st CSA pre-launch contract 2002-09, post-launch 2010-11, 2011-15

Planck+Herschel Launch May14 09 French Guiana

1.5m telescope,

HFI bolometers @6freq <100mK,

LFI HEMTs@3freq,

some bolometers & all HEMTS are polarization sensitive

- Left earth at ~10 km/s, 1.5 million km in 45 days, cooling on the way (20K, 4K, 1.6K, 0.1K 4 stage). @L2 on July 2 09; Survey started on Aug 13 09
- spun@1 rpm, 40-50 minutes on the same circle, covered all-sky in ~6 month
- kicked out of L2 Oct13
- 5 HFI all-sky surveys (to Jan 2012) 29 months
- 8 LFI surveys 48 months
- Oct14 T,Q,U all-data, refined final set late 2015

Planck 1.3yr Frequency Maps Mar13

30-353 GHz: $\delta T [\mu K_{CMB}]$; 545 and 857 GHz: surface brightness [kJy/sr]

Planck's primordial light unveiled, March 21, 2013

reveals the SIMPLICITY of primordial cosmic structure 7⁺ numbers, 3 densities, 2+1 early-Universe inflation

Temperature changes in micro-degrees Google "Planck Satellite 2013 results" yields ~ 1 million links

Google "gravity waves from inflation 2014" yields ~ 0.3 million links"

Lumpy

L'enfance de l'Univers dévoilée

LE MONDE | 21.03.2013 à 11h27 • Mis à jour le 21.03.2013 à 13h44

gravity waves from inflation

http://www.nytimes.com Space Ripples Reveal Big Bang's Smoking Gun By DENNIS OVERBYEMARCH 17, 2014

Planck13+ reveals primordial sound waves BAO in matter at a~e⁻⁷~1/1100

harmonic analysis of the 'music of the spheres' => inharmonious, coloured noise in the CMB

harmonic analysis of the 'music of the spheres' => inharmonious, coloured noise in the CMB

SIMPLICITY at a~e⁻⁷~1/1100 => at a~e⁻⁶⁷⁻⁶⁰~1/10³⁰⁺²⁵

Planck2013 CMB map

reveals primordial sound waves in matter

=> learn **Contents** & **Structure** at 380000 yr, a~e⁻⁷ => infer the structure far far earlier a~e⁻⁶⁷⁻⁶⁰

Early Universe STRUCTURE: phonons/strain @ a~1/10³⁰⁺²⁵

"red" noise in phonons/strain: 2 numbers at a~e⁻⁶⁷⁻⁵⁵

InPower_s~In22.0x10⁻¹⁰ ±0.025 n_s =0.9608±0.0054 5σ from 1

TBD: Full Mission + Polarization, Planck2014-15 + ACTpol, Spider,.

BICEP2 r <0.12 r=0.20+.07-.05

7⁺ numbers

-0.014±0.009 95% CL on running dn_s/dlnk, running of running, r = Tensor-to-Scalar ratio (GW), isocurvature modes for axions (<3.9%), baryons, neutrinos, curvatons (<0.25%)

small shift in the pie chart make-up of the Universe

Before Planck

After Planck

OTA 1967, Cambridge B²FH 57, WFH 67, sn

OTA 1967, Cambridge B²FH 57, WFH 67, sn

0.0226 +- 0.0006 wmap3+acbar+cbi+... LSS 0.0233 +- 0.0005 wmap5+acbar+cbi+b03+.+WL+LSS+SNI+Lya 0.02217 +- 0.00033 Planck13+CMBLensing 0.02214 +- 0.00024 Planck13+WP+hiL+BAO

Compton cooling of high pressure / entropy electrons by the CMB thermal SZ effect Planck2013 1227 clusters, SPT 224 =>747cls, ACT 91 cls PSZ: 1227 clusters, 861 confirmed, 178 by Planck + 683 known, rest in class 1, 2, 3

cf. X-ray sample from ROSAT+ All-sky distribution of MCXC clusters ~1600 (Piffaretti et 10) REFLEX, BCS, SGP, NEP, MACS, CIZA, 400SD, 160SD, SHARC, WARPS, EMSS

CRI	nal ta AnriOE Ochila	cons thermal S	SZ clusters		
	por to Apr 05 @Chile		SP	Planck PSZ,	cnts, ymap
Ę	53+35 cls (> =40)			861 confirmed 1	178 by Planck +
		230	cls => 1227	683 known,	most z<.4,
- PART - C		Planck09.4		many ~ 10 ¹⁵ M _{sun} 0. <z<0.8< td=""></z<0.8<>	
		5	2+ bolometers		
-111A	and the second	+	- HEMTs @L2		
		9	frequencies	•	
		Reichardt+12, Be	enson@ESLAB13		
		100 cl cosmology,	400 with S/N > 5	Menanteau+12	2, Hasselfield+12
2004	2006	now, 747 summer	2013 2500 deg ²	ACT Celestial Equ	ator cls, 68 (49+19
	2005	2007 22	P4 (=> 747)	502 sq deq =>91 i	b , 1 Z \sim 1.1 10 ¹⁰ Wisun n 952 dea ² () 1<7<1.3
	2005	2007	SDT		
>06	Acbar@SP	AMIBA	1000 bolos	100% purity for	' S/N>5. 60% > 4.5
	~1 blind SZA@Cal	6 cls	@SPole	Msz-N ₂₀₀ weak correla	tion, large scatter
<i>Y</i>BIMA	3 cls (z>1), z	?	ACT(23	+68~91 cls	
array	ΔMI —	- The state	3000 bolos		SPTnol
38 cls	7+1 ala >=50+25		3 freqs @C	hile	
80c 00	(T+1 CIS >= 50+25	~400 bolos(c	Chile		Actpu
Ryle	. Con	~25 cls		SCUBA2	ALMA
OVRO	GBT	Mustang	F. Ma	12000 bolos	CCAT@Chile
	4 cls (~2	25 CLASH)	J	CMT @Hawaii	LMT@Mexico

SZ power spectrum from ymaps thermal SZ clusters

Hajian, Battaglia, Spergel, Bond, Pfrommer, Sievers 2013 Planck + WMAP9 x ROSAT (RBC subset of MXCC)

Compton cooling of high pressure / entropy electrons by the CMB thermal SZ effect Planck2013 1227 clusters, SPT 224 =>747cls, ACT 91 cls PSZ: 1227 clusters, 861 confirmed, 178 by Planck + 683 known, rest in class 1, 2, 3 cf. X-ray sample from ROSAT+ All-sky distribution of MCXC clusters ~1600 (*Piffaretti et 10*) REFLEX, BCS, SGP, NEP, MACS, CIZA, 400SD, 160SD, SHARC, WARPS, EMSS **Tension: primary** vs. clusters $= 0.77 \pm 0.02 (\Omega_{\rm m} = 0.29 \pm 0.02)$ $\boldsymbol{\sigma}$ 8SZ = 0.812 +- 0.010 cl+WMAP9 σ 8SZ = 0.812 +- 0.008 cl+Planck2013 cf. 0 *primary* **σ**₈=0.826±0.012 $\sum m_v = 220 \pm 90 \text{ meV}$ gastrophysical problem with cls? P13+Planck(cls)+BAC or higher *v* mass relief of tension? 0.8 0.7<M_x/M_{true}<1 LSS Clusters | CMB 0.95 0.0 Planck თ₈(Ω_W/0.27)^{0.3} 0.85 WMAP 4 MaxBCG WL o Planck SPT 0 0 0.75 X-rays* ACT

0.2

0.4

0.6

0.8

Σm,

1.0

1.2

1.4

0.0

The ACT Collaboration ACT, now ACTpol, => Advanced ACTpol

CITA CARDIFT UNVESTIGAT

🐻 🚟 Berkeley 👲 🖳 🐜 🛞 🗞 Penn 🛞

 $\langle \bigcirc \rangle$

Advanced ACTPol (AdvACT) Observations

- ~20,000 deg² survey (f_{sky}~0.5) with complete LSST overlap as well as DES, ALMA, and other observatories located in Chile
- Substantial overlap with spectroscopic surveys (SDSS, PFS, DESI)

IIVEFORD IASuutu 🎆 🞯 NIST 🌐

Stony Brook

Berkeley 🔮 🖳 🔤 🏵 Penn 😳

AdvACT: Power Spectra

Carnegie Mellon University IIAVERFORD IAS Anna 🎇 🐼 NIST 🤀

S/N B-mode detections for r > 0.01 are measured in independent frequency bands (90 & 150 GHz) and on many patches across the sky => cross-checks Error bars before and after foreground cleaning Varying amplitudes of the gravitational lensing signal for different values of the sum of the neutrino masses

P13: r from TT < 0.12 95% CL

Berkeley 👷 🛄 📷 🍘 🛱 Penn 🎯 🎯

UBC

Error bars above shown for r = 0.2 BICEP2 => r=0.20 +.07-.05 - fgnds

Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee

K.N. Abazajian, K. Arnold, J. Austermann, B.A. Benson, C. Bischoff, J. Bock, J.R. Bond, J. Borrill, E. Calabrese, J.E. Carlstrom, C.S. Carvalho, C.L. Chang, H.C. Chiang, S. Church, A. Cooray,
T.M. Crawford, K.S. Dawson, S. Das, M.J. Devlin, M. Dobbs, S. Dodelson, O. Doré, J. Dunkley, J. Errard, A. Fraisse, J. Gallicchio, N.W. Halverson, S. Hanany, S.R. Hildebrandt, A. Hincks, R. Hlozek, G. Holder, W.L. Holzapfel, K. Honscheid, W. Hu, J. Hubmayr, K. Irwin, W.C. Jones, M. Kamionkowski, B. Keating, R. Keisler, L. Knox, E. Komatsu, J. Kovac, C.-L. Kuo, C. Lawrence, A.T. Lee, E. Leitch, E. Linder, P. Lubin, J. McMahon, A. Miller, L. Newburgh, M.D. Niemack, H. Nguyen, H.T. Nguyen, L. Page,
C. Pryke, C.L. Reichardt, J.E. Ruhl, N. Sehgal, U. Seljak, J. Sievers, E. Silverstein, A. Slosar, K.M. Smith, D. Spergel, S.T. Staggs, A. Stark, R. Stompor, A.G. Vieregg, G. Wang, S. Watson, E.J. Wollack,

W.L.K. Wu, K.W. Yoon, and O. Z

Snowmass2013: v, inflation, dark energy, .. cosmology experiments are fundamental to fundamental physics; => US P5 recommendation DOE labs support CMB experiments

"Provide increased particle physics funding of CMB research and projects, as part of the core particle physics program, in the context of continued multiagency Partnerships."

ultra-Ultra Large Scale Structure of the Universe

Horizons: the ultimate-speed constraint on light & information

ultra-Ultra Large Scale Structure of the Universe

Horizons: the ultimate-speed constraint on light & information

Art is forever young

So... aloha & Party-on Art!

FILE NEEDED AND MODES

NO ON

DUK

bicep2 GW xtra

harmonic analysis of the 'music of the spheres' => inharmonious, coloured noise in the CMB

Bond, Braden, Huang, Frolov, Vaudrevange 2014

Power Deviation from fiducial $\langle \zeta | T \rangle \langle \zeta | T \rangle + \langle \delta \zeta \delta \zeta | T \rangle - \langle \zeta \zeta | free \rangle$ byproduct, cf. quadratic $P_{\zeta\zeta}$ reconstruction, extra C_s/C_{tot} & regularizer $P^{(i)}_{\zeta\zeta}$

Quadratic expansions in mode functions: which function to expand (In *P*ζζ), which modes (cubic B-spline), number?, priors on amplitudes, etc. maxL solutions with Fisher/Hessian errors are Wiener-filtered maps! here MCMC <power> trajectory, 1 sigma mean+fluctuation trajectories

no strong evidence for oscillation patterns, cutoffs, local features; a change on large L<100 scales PS: running of P_s is a bad fit

