

# Jamboree 2014

#### 12:20 PM — Introduction

| Norman Murray                              | CITA                                                                                                           |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| murray@cita.utoronto.ca                    | Introduction to CITA                                                                                           |
| John Dubinski<br>dubinski@cita.utoronto.ca | <b>Computing at CITA</b><br>I will briefly describe the computing resources and services<br>available at CITA. |

#### 12:30 PM — Theoretical Astrophysics

| Peter Martin<br>pgmartin@cita.utoronto.ca          | Interstellar medium: from extragalactic foregrounds to star formation                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Norman Murray<br>murray@cita.utoronto.ca           | Galaxy and Star formation<br>Cosmological zoom-in simulations by several groups over<br>the last year have made great progress in reproducing the<br>cosmic star formation rate, the stellar mass to halo mass<br>ratio as a function of redshift, and the Kennicutt-Schmidt<br>relation, none of which were captured by previous genera-<br>tions of simulations. I will describe what has allowed this<br>to happen. |
| <b>Ue-Li Pen</b><br>pen@cita.utoronto.ca           | <b>Pulsar VLBI Scintellometry</b><br>I describe pulsar VLBI as a new tool to achieve unprece-<br>dented astrometric precision of 50 picoarcseconds on pulsar<br>emission, and potential implications for gravitational wave<br>detection and the ISM.                                                                                                                                                                  |
| <b>Chris Thompson</b><br>thompson@cita.utoronto.ca | Topics in Astrophysical Radiation and FluidsI am working on a variety of problems related to compactstars, gamma-ray bursts, supermassive black holes, planetformation, and accretion disks.                                                                                                                                                                                                                           |

| Matt Russo<br>mrusso@cita.utoronto.ca<br>Yevgeni Kissin | <ul> <li>When Protostellar Winds Meet Protoplanetary Disks</li> <li>It's well known that some young stars have strongly magnetized winds but their direct interaction with protoplanetary disk material is largely unexplored. My work looks at how the wind's field can mix with a thin layer of disk material and be amplified at greater depths, with implications for the accretion rate and the density profiles in which planets form and migrate.</li> <li>High field magnetic white dwarfs</li> <li>White dwarfs with strong magnetic fields are quite common but their formation mechanism is unclear. A long</li> </ul> |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kissin@astro.utoronto.ca                                | term dynamo at the base of the convective envelope can<br>generate the required magnetic fields.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Ramandeep Gill</b><br>rgill@cita.utoronto.ca         | <b>Relativistic plasmas near compact objects</b><br>My research focuses on various aspects of relativistic plas-<br>mas near black holes in the context of GRB prompt emis-<br>sion and jet physics, AGNs, and neutron stars in the context<br>of magnetar outbursts. I'm also interested in understand-<br>ing the mode structure and damping of plasma waves in<br>relativistic plasmas and how that leads to particle acceler-<br>ation. Devising new techniques to constrain the properties<br>of axion-like particles is one focus of my research.                                                                           |
| Niels Oppermann<br>niels@cita.utoronto.ca               | <b>Statistics of magnetic fields</b><br>Magnetic fields are (thought to be) present everywhere in<br>the Universe, however, they are observationally elusive. I<br>will talk about ways to improve constraints on Galactic and<br>extragalactic magnetic fields using observations together<br>with rigorous statistical analyses.                                                                                                                                                                                                                                                                                                |
| <b>Quang Nguyen Luong</b><br>qnguyen@cita.utoronto.ca   | <b>Star formation in extreme galactic environments</b><br>Molecular cloud complexes (100 pc scale) are the places<br>where most star formation occurs. By combing large-scale<br>observations across all wavelengths, I investigate the de-<br>pendency of star formation rates of MCCs on its mass and<br>and density. We suggest that there should be two modes of<br>star formation also present in Galactic environment: star-<br>burst and normal mode.                                                                                                                                                                      |
| Ian Parrish<br>iparrish@cita.utoronto.ca                | <b>Plasma Astrophysics</b><br>I am interested in a wide variety of astrophysical plasma<br>processes. In terms of objects, my interests include galaxy<br>clusters, accretion disks, the solar wind, and extrasolar<br>planets. In terms of processes, these include convection,<br>thermal instability, black hole feedback, and particle accel-<br>eration.                                                                                                                                                                                                                                                                     |

|                           | "Stars, Black Holes, and Education"                            |
|---------------------------|----------------------------------------------------------------|
| Linda Strubba             | Linda Strubbe studies the tidal disruption of stars by mas-    |
| linda@cita.utoronto.co    | sive black holes; she is also very involved in science edu-    |
| iniua@cita.utofonto.ca    | cation, including an Order-of-Magnitude Problem Solving        |
|                           | course at U of T this semester, and a workshop in Nigeria.     |
|                           | Early solar system history: follow the meteorites              |
| Emmanuel Jacquet          | I study protoplanetary disks using constraints from chon-      |
| ejacquet@cita.utoronto.ca | drites. Most of my latest research bears on their mysterious   |
|                           | chondrules.                                                    |
|                           | The Secular Character of Extra-solar Multi-planet Sys-         |
|                           | tems                                                           |
|                           | For non-resonant multi-planet systems, the eccentricity be-    |
| Christa Van Laerhoven     | haviour of each planet is dominated by secular interactions.   |
| cvl@cita.utoronto.ca      | The underlying secular structure of a system can be deter-     |
|                           | mined without knowing the planets' eccentricities, making      |
|                           | it a useful tool for characterizing interactions between plan- |
|                           | ets.                                                           |

## 1:15 PM — General Relativity

|                           | Numerical Relativity                                        |
|---------------------------|-------------------------------------------------------------|
|                           | My goal is to understand gravity through computer simu-     |
|                           | lations of Black Holes and Neutron stars. This involves de- |
| Harald Pfeiffer           | veloping computer codes to simulate these systems; simu-    |
| pfeiffer@cita.utoronto.ca | lating them; analysing the output (including graphics); us- |
|                           | ing the results to learn about how gravity works; using the |
|                           | results to help detect and understand gravitational waves   |
|                           | from black holes and Neutron stars.                         |
|                           | Perturbed Black Holes                                       |
|                           | Black hole perturbation theory governs motion and wave      |
| Aaron Zimmerman           | generation near black holes, and plays a central role in    |
| azimmer@cita utoronto ca  | gravitational wave science. I'll talk about my recent work  |
| uziminer Sena.atoronto.cu | on perturbed black holes, focusing on the "ringdown"        |
|                           | phase which follows the birth of a black hole, for example  |
|                           | following the merger of compact objects.                    |
|                           | Precessing binary black hole systems                        |
|                           | Binary black holes are expected be the main sources for     |
|                           | gravitational wave signals for gravitational wave detectors |
|                           | such Advanced LIGO and Virgo which are scheduled to         |
| Sergei Ossokine           | come online next year. In systems where the black hole spin |
| ossokine@cita.utoronto.ca | is misaligned with the angular momentum, the plane of the   |
|                           | orbit will precess, producing interesting dynamics and im-  |
|                           | printing this behaviour on the gravitational waveform. I    |
|                           | will briefly summarize work on characterizing these sys-    |
|                           | tems in numerical relativity and Post-Newtonian theory.     |

|                            | Finding gravitational waves from compact-object bina-         |
|----------------------------|---------------------------------------------------------------|
|                            | ries                                                          |
|                            | Gravitational waves are a form of radiation predicted by      |
| Provide Kumar              | Einstein's theory of general relativity. The network of       |
| r layush Kullar            | LIGO-Virgo observatories is preparing to detect gravita-      |
| prkullar@clta.utorolito.ca | tional waves from astrophysical binaries of black holes       |
|                            | and/or neutron stars. My work is aimed at improving           |
|                            | and devising novel techniques to increase the sensitivity of  |
|                            | gravitational wave searches.                                  |
|                            | Binary Neutron Stars with Arbitrary Spins in Numerical        |
|                            | Relativity                                                    |
| Nick Tacik                 | I will discuss my work on creating constraint satisfying ini- |
| tacik@cita.utoronto.ca     | tial data used to simulate the inspiral and merger of binary  |
|                            | neutron stars with arbitrary spins. I'll also show results    |
|                            | from several evolutions of highly spinning systems.           |

### 1:35 PM — Cosmology

|                           | The Entropic Universe                                         |
|---------------------------|---------------------------------------------------------------|
|                           | Cosmic Information Theory and Analysis (CITA) is a uni-       |
|                           | fying theme in exploring how our Universe morphed from        |
|                           | a coherently smooth Hubble-patch within a vast landscape      |
| Dick Bond                 | into the intricate evolving complexity of the cosmic web.     |
| bond@cita.utoronto.ca     | Sample problems from the great generation epochs of In-       |
|                           | formation quantity, i.e., (non-equilibrium) entropy, in post- |
|                           | inflation heating, the cosmic infrared background, and the    |
|                           | shocking web of groups and clusters, continue to puzzle       |
|                           | and fascinate.                                                |
|                           | Modelling and measuring CMB anomalies                         |
| 7hiai Uuana               | I will talk about primordial CMB anomalies from modu-         |
|                           | lated preheating models and our new stacking methods          |
| zqnuang@cna.utoronto.ca   | that can be used to test anomalies, systematics and fore-     |
|                           | ground residuals in CMB maps.                                 |
|                           | Structure Formation                                           |
|                           | I will discuss how we use large cosmological simulations      |
| Marcelo Alvarez           | to understand how tiny fluctuations produced in the early     |
| malvarez@cita.utoronto.ca | universe led to the large scale structure we see today, and   |
|                           | how we create mock observations of the simulated universe     |
|                           | for comparison to the actual one.                             |
|                           | Doing particle physics with maps of the universe              |
| Dan Croon                 | Cosmology was once known as the 'poor man's particle ac-      |
| draman Maita utaranta az  | celerator'. With advances in both theory and experiment,      |
| uigicen@cita.utoronto.ca  | cosmology today offers windows into the laws of nature        |
|                           | that may never be accessible to a terrestrial experiment.     |

|                           | Inflation: Theory and Observation                                 |
|---------------------------|-------------------------------------------------------------------|
|                           | The paradigm of inflation solves some classical problems          |
|                           | of the hot Big Bang scenario while also providing a natural       |
| Joel Meyers               | mechanism for generating primordial cosmological fluctu-          |
| jmeyers@cita.utoronto.ca  | ations with the properties that we observe. It is unlikely        |
|                           | that data will ever reveal exactly which model of inflation       |
|                           | accurately describes our past, nowever, we can use obser-         |
|                           | the early universe                                                |
|                           | CHIME                                                             |
|                           | CHIME<br>CHIME is a novel Canadian radio telescone being built in |
|                           | BC which is designed to map the Universe across (nearly)          |
| Richard Shaw              | the entire sky from $z = 1-3$ using the 21cm line. This effort is |
| irs65@cita.utoronto.ca    | challenging on all fronts: observationally, theoretically and     |
|                           | computationally, but should yield exciting new constraints        |
|                           | on dark energy, and the large scale structure of the Uni-         |
|                           | verse.                                                            |
|                           | Calibration of Cosmological 21cm Experiments                      |
|                           | Cosmological 21cm experiments require calibration with            |
|                           | unprecedented levels of precision due to the large dy-            |
| Liam Connor               | namic range between the redshifted 21cm emission and our          |
| connor@cita.utoronto.ca   | galaxy's radio foregrounds. I will discuss our effort to cal-     |
|                           | ibrate the Canadian Hydrogen Intensity Mapping Experi-            |
|                           | ment (CHIME) and more generally about calibration algo-           |
|                           | fitnmics of 21cm experiments.                                     |
| Philippe Berger           | Now PhD student working on CHIME                                  |
|                           | Megnetic Fields from the Ferly Universe                           |
|                           | I am interested in the connection between early universe          |
| Takeshi Kobayashi         | cosmology and microphysics. As an example I will show             |
| takeshi@cita.utoronto.ca  | how our universe can be magnetized (or not) in its earliest       |
|                           | moments.                                                          |
|                           | The Universe on Large and Small Scales                            |
|                           | I will discuss my ongoing PhD research that focuses on            |
|                           | studying the universe on both large and small scales at both      |
| JD Emberson               | early and late times. Recently, this has included studying        |
| emberson@cita.utoronto.ca | the dynamics of infalling subhalos within the Milky Way,          |
|                           | researching the effects of AGN feedback on the kSZ sig-           |
|                           | nal, and using galaxy catalogues as a cosmological probe          |
|                           | of neutrino masses.                                               |

|                                              | N-body Neutrino Simulations                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Cosmological observations currently provide the best con-                                                                                                                                                                                                                                                                                                        |
| Dorol Inmon                                  | straints on neutrino masses and potentially could tell us                                                                                                                                                                                                                                                                                                        |
| Derek Inman                                  | whether neutrinos are Dirac or Majorana particles. I sim-                                                                                                                                                                                                                                                                                                        |
| inmand@cita.utoronto.ca                      | ulate cosmological neutrinos using the CUBEP3M code in                                                                                                                                                                                                                                                                                                           |
|                                              | order to better understand how neutrinos are affected by                                                                                                                                                                                                                                                                                                         |
|                                              | large scale structures.                                                                                                                                                                                                                                                                                                                                          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                  |
|                                              | Gravitational Lensing of the CMB                                                                                                                                                                                                                                                                                                                                 |
|                                              | <b>Gravitational Lensing of the CMB</b><br>The gravitational deflections of CMB photons as they tra-                                                                                                                                                                                                                                                             |
| Alox Van Engelon                             | <b>Gravitational Lensing of the CMB</b><br>The gravitational deflections of CMB photons as they tra-<br>verse the Universe affect the statistics of the observed CMB                                                                                                                                                                                             |
| Alex Van Engelen                             | <b>Gravitational Lensing of the CMB</b><br>The gravitational deflections of CMB photons as they tra-<br>verse the Universe affect the statistics of the observed CMB<br>in a subtle but characteristic way. We apply estimators for                                                                                                                              |
| Alex Van Engelen<br>engelen@cita.utoronto.ca | <b>Gravitational Lensing of the CMB</b><br>The gravitational deflections of CMB photons as they tra-<br>verse the Universe affect the statistics of the observed CMB<br>in a subtle but characteristic way. We apply estimators for<br>the distribution of lensing matter to CMB data (in particu-                                                               |
| Alex Van Engelen<br>engelen@cita.utoronto.ca | <b>Gravitational Lensing of the CMB</b><br>The gravitational deflections of CMB photons as they tra-<br>verse the Universe affect the statistics of the observed CMB<br>in a subtle but characteristic way. We apply estimators for<br>the distribution of lensing matter to CMB data (in particu-<br>lar, ACTpol data), which can provide insight on the growth |