Magnetic fields in the Galactic interstellar medium

Methods, results, and open questions

Niels Oppermann

CHANG-ES meeting, Kingston, 2014-07-24

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ヨー つくぐ

Image credits: 1) D. Darling; 2) N.J. Hammer/MPA; 3) C. Fukushima/TUDelft 🔰 🖓 🔍 🖘 👘 🖓 🔍

Overview

- Theory
- Observation
 - Synchrotron
 - Dust
 - Faraday rotation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Modeling
- Helicity

ヘロン ヘロン ヘビン ヘビン

- 2

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Theory: Magnetic field components

coherent

isotropic random

"ordered random"

э

Synchrotron

$$\begin{aligned} & \text{for } n_{\text{CRE}}(E) \propto E^{-\gamma}: \\ P(\lambda) = Q(\lambda) + i U(\lambda) \propto \lambda^{\frac{\gamma-1}{2}} \int \mathrm{d} z \, n_{\text{CRE}} \, B_{\perp}^{\frac{\gamma+1}{2}} \mathrm{e}^{2i\chi} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Synchrotron

Haslam et al. (1981)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Synchrotron

Hinshaw et al. (2009)

◆□>

Hall (1949)

A ►

Planck Collaboration Int. XIX (2014)

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

æ

Planck Collaboration Int. XXI (2014)

$$d\beta \propto \lambda^2 n_{\rm e}(\vec{x}) B_r(\vec{x}) dr$$
$$\Rightarrow \quad \beta \propto \lambda^2 \int_{r_{\rm source}}^{0} n_{\rm e}(\vec{x}) B_r(\vec{x}) dr$$

< □ > < @ > < ≧ > < ≧ >

æ

Faraday depth:
$$\phi \propto \int_{r_{\text{source}}}^{0} n_{\text{e}}(\vec{x}) B_{r}(\vec{x}) \mathrm{d}r$$

 $\beta = \phi \lambda^2$

41 330 data points

・ロト ・聞ト ・ヨト ・ヨト

Oppermann et al. (2012/2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Oppermann et al. (2012/2014)

・ロト ・ 日 ト ・ モ ト ・ モ ト

3

Oppermann et al. (2012/2014)

・ロト ・ 日 ・ ・ 日 ・ ・ 日

ж

Faraday rotated synchrotron radiation

$$P(\lambda) \propto \int_{-\infty}^{\infty} \mathrm{d}\phi \, p(\phi) \, \mathrm{e}^{2i\,\lambda^2\,\phi(z)}$$

$$\Rightarrow \quad p(\phi) = \int_{-\infty}^{\infty} \mathrm{d}\lambda^2 \, P(\lambda^2) \, \mathrm{e}^{-2i\,\lambda^2 \phi}$$

Faraday dispersion function

Wolleben et al. (2010)

(日)

GMIMS (here: northern, ca. (1.3 - 1.8) GHz)

Oppermann et al. (2012)

GMIMS (here: northern, ca. (1.3 - 1.8) GHz)

~ ~ ~ ~

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□> ◆□> ◆三> ◆三> 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

ref	TRACER ^a	D/H	MODELS ^b	MODEL RESULTS	р
24	149 EGS RMs	Q4 ^c disk	spiral	one reversal	-11.5°
	120 pulsar RMs				
39	WMAP5 / 23GHz;	all	modified log spiral	$B_z = 0.4 \ \mu G$	-30°
	ARCHEOPS 353GHz		$B_z + B_{ran}$		
	I 408MHz				
12	I 408MHz	disk	ASS, log spiral,	B_{reg} : B_{ran} : $B_{ani} = 1:5:4$	-11.5° IN
	WMAP P 23GHz		Bran, compression	Field config as in model 1	
	269 EGS RMs				
16	WMAP5 PI 23GHz	disk	BSS/ASS -S/-A,	no good models,	+35°
	1433 EGS RMs		ring, lit. models	disk and halo separate	
11	WMAP7 PI 23GHz	all	spiral, Bran, Bani,	one reversal $B_{ani} = 1.7B_{reg}$,	-11.5° IN
	≥37000 EGS RMs		Bz	$B_z = 4.6 \ \mu G$ at GC^d	
40	482 pulsar RMs	disk	ASS, BSS, ring	no good models, slight prefer-	
				ence for ASS	
53	1 408MHz	halo	BSS, Bran	$B_{ran} = 0.57 B_{reg}$	-8.5°
	WMAP PI 23GHz				
25	133 pulsar RMs	Q4 ^d	log spirals	QSS/many reversals preferred	
	107 EGS RMs	disk	•••		
15	WMAP3 PI 23GHz	halo	log spirals, B_z	B_z at 25° tilt	-55° d
49	>37000 EGS RMs	all	ASS, BSS, ring	ASS best in disk; odd in halo	-5°
	~				
[54]	WMAP5 PI 23GHz	halo	ASS, BSS, ring,	ASS preferred, $B_{-} = 1 / muG$	$-24^{\circ e}$
			bi-toroidal, B ₇		
38	I 408MHz	all	ASS, BSS, ring	ASS best in disk, odd in halo	-12° IN
	WMAP PI 23GHz				
	I + PI 1.4GHz				
55	354 pulsar RMs	disk	rings with p	one reversal only	-12° IN
41	1373 EGS RMs	disk	ASS, BSS, ring	no single model	0° or
	557 pulsar RMs		combinations	for complete Galaxy	-11.5° IN

^a I = total intensity; PI = polarized intensity; EGS = extragalactic sources; WMAPi = Wilkinson Microwave Anisotropy Probe data over i years.

^b ASS = axisymmetric spiral; BSS = bisymmetric spiral; QSS = quadrisymmetric spiral; -A/-S = (anti-)symmetric with respect to Galactic plane.

^c Qi = ith quadrant of the Milky Way; GC = Galactic Center.

^d taking into account their deviating definition of pitch angle, see Section 2.3

^e actually given as $p = +24^{\circ}$ in the paper, but with the opposite definition of azimuth direction.

Haverkorn (2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

An outside observer

900

•
$$H = \int A \cdot B$$

- produced in many dynamo scenarios
- observed (tentatively) on large scales
- present on small scales?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

・ロト ・聞ト ・ヨト ・ヨト

æ

Junklewitz et al. (2011) Oppermann et al. (2011)

Brandenburg et al. (2014)

æ

▲□> ▲圖> ▲理> ▲理>

Brandenburg et al. (2014) ヘロア 人間ア 人団ア 人団アー

æ

Brandenburg et al. (2014)

æ

◆□> ◆圖> ◆国> ◆国>

Brandenburg et al. (2014) $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \equiv \langle \Box \rangle \rangle \equiv \langle \Box \rangle \rangle \equiv \langle \Box \rangle \langle \Box \rangle \rangle \equiv \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \equiv \langle \Box \rangle \langle \Box \rangle$

Brandenburg et al. (2014)

Brandenburg et al. (2014)

æ

・ロト ・四ト ・ヨト ・ヨト

Thanks.

See you at dinner.