

Bayesian CMB foreground separation with a correlated log-normal model

N. Oppermann & T.A. Enßlin

Separation problem for diffuse foregrounds

()

Prior model

1) Log-normal prior for foreground components:

- Several physical components: $s^{(\alpha)}$
- Observations at different frequencies: $d^{(v)}$
- Components have different frequency spectra: $R^{(v,\alpha)}$
- Observational noise: $n^{(v)}$

d = Rs + n

Bayesian reconstruction of all signal components:

 $P(s|d) = \frac{P(d|s)P(s)}{P(d)}$

State-of-the art: Use Gaussian prior for CMB, flat prior else.

 $P(\log(s))$ Gaussian

- *s* always positive
- Fluctuations varying over orders of magnitude (Galactic plane and halo)
- 2) Allow for correlations, both within one component and across components

 $\langle s_x^{(\alpha)} s_y^{(\beta)} \rangle_{(s)} \neq 0$

3) Gaussian CMB prior

Test cases

log-normal components:

CMB-like synchrotron-like free-free-like

frequency spectra:

Bottom line:

The isotropic correlated log-normal model leads to more accurate foreground reconstructions than a model with flat priors, even if the model assumptions are only approximately fulfilled.

dust-like