

Magnetic fields in the Milky Way and their signature in polarization observations

Niels Oppermann

GBT Dark Energy workshop, Beijing, 2013-12-12

Outline

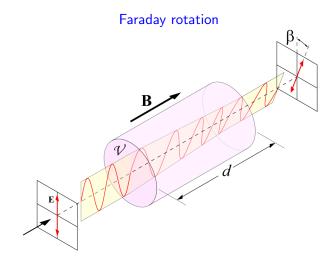
- Relevant observables
- Current knowledge
- Correlations and helicity
- Possible advancements using 21 cm surveys

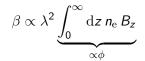
<ロ>

Synchrotron radiation

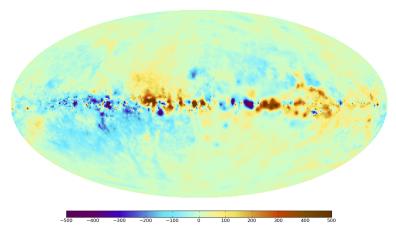
 $\begin{array}{l} \text{for } n_{\mathrm{CRE}}(E) \propto E^{-\gamma}:\\ P(\lambda) \propto \lambda^{\frac{\gamma-1}{2}} \int \mathrm{d}z \, n_{\mathrm{CRE}} \, B_{\perp}^{\frac{\gamma+1}{2}} \mathrm{e}^{2i\left(\arctan\left(\frac{B_y}{B_x}\right) + \frac{\pi}{2}\right)} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで





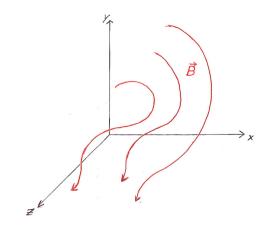
Faraday rotation



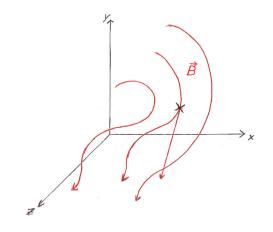
Oppermann et al. (2012)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

all-sky map of Galactic contribution to Faraday depth in \mbox{rad}/\mbox{m}^2

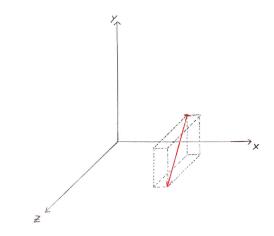


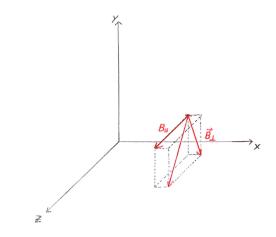
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



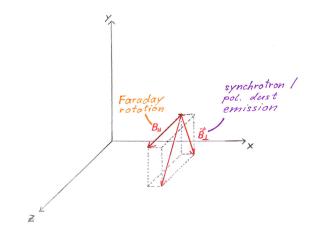
▲□▶ ▲□▶ ▲目▶ ▲目▶

æ

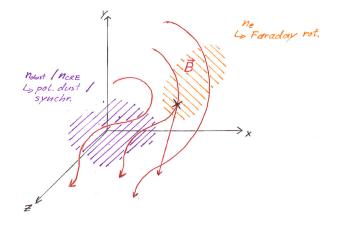




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

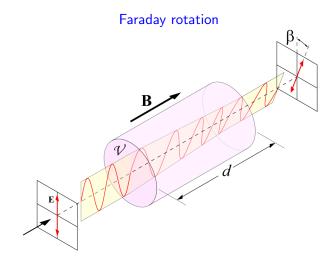


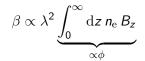
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

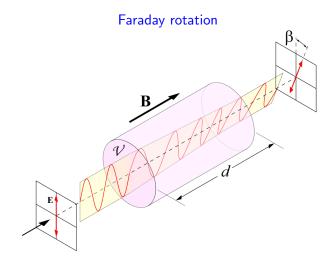


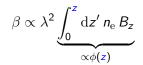
・ロト ・聞ト ・ヨト ・ヨト

æ









◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

・ロト・日本・日本・日本・日本・日本

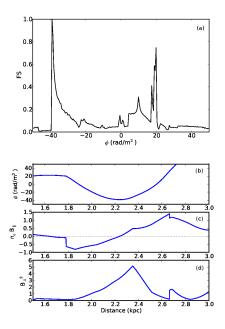
$$P(\lambda) \propto \lambda^{\frac{\gamma-1}{2}} \int_0^\infty \mathrm{d}z \, n_{\mathrm{CRE}} \, B_\perp^{\frac{\gamma+1}{2}} \mathrm{e}^{2i\left(\arctan\left(rac{B_y}{B_x}
ight) + rac{\pi}{2}
ight)} \, \mathrm{e}^{2i\,\lambda^2\int_0^z \mathrm{d}z'\, n_\mathrm{e}(z')\,B_z(z')}$$

$$\begin{split} P(\lambda) \propto \lambda^{\frac{\gamma-1}{2}} \int_0^\infty \mathrm{d}z \, n_{\mathrm{CRE}} \, B_{\perp}^{\frac{\gamma+1}{2}} \mathrm{e}^{2i\left(\arctan\left(\frac{B_y}{B_x}\right) + \frac{\pi}{2}\right)} \, \mathrm{e}^{2i\,\lambda^2 \int_0^z \mathrm{d}z' \, n_{\mathrm{e}}(z') \, B_z(z')} \\ = \int_0^\infty \mathrm{d}z \, p(z) \, \mathrm{e}^{2i\,\lambda^2 \, \phi(z)} \end{split}$$

$$P(\lambda) \propto \lambda^{\frac{\gamma-1}{2}} \int_0^\infty \mathrm{d}z \, n_{\mathrm{CRE}} \, B_{\perp}^{\frac{\gamma+1}{2}} \mathrm{e}^{2i\left(\arctan\left(\frac{B_y}{B_x}\right) + \frac{\pi}{2}\right)} \, \mathrm{e}^{2i\,\lambda^2 \int_0^z \mathrm{d}z' \, n_{\mathrm{e}}(z') \, B_z(z')}$$
$$= \int_0^\infty \mathrm{d}z \, p(z) \, \mathrm{e}^{2i\,\lambda^2 \, \phi(z)}$$
$$= \int_{-\infty}^\infty \mathrm{d}\phi \, p(\phi) \, \mathrm{e}^{2i\,\lambda^2 \, \phi(z)}$$

$$P(\lambda) \propto \lambda^{\frac{\gamma-1}{2}} \int_0^\infty \mathrm{d}z \, n_{\mathrm{CRE}} \, B_{\perp}^{\frac{\gamma+1}{2}} \mathrm{e}^{2i\left(\arctan\left(\frac{B_y}{B_x}\right) + \frac{\pi}{2}\right)} \, \mathrm{e}^{2i\,\lambda^2 \int_0^z \mathrm{d}z' \, n_{\mathrm{e}}(z') \, B_z(z')}$$
$$= \int_0^\infty \mathrm{d}z \, p(z) \, \mathrm{e}^{2i\,\lambda^2 \, \phi(z)}$$
$$= \int_{-\infty}^\infty \mathrm{d}\phi \, p(\phi) \, \mathrm{e}^{2i\,\lambda^2 \, \phi(z)}$$

$$\Rightarrow \quad p(\phi) = \int_{-\infty}^{\infty} \mathrm{d}\lambda^2 \,\mathrm{e}^{-2i\,\lambda^2\phi}$$

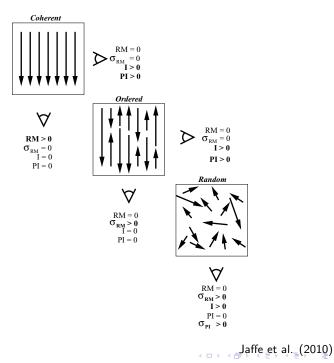


Bell et al. (2011)

Outline

- Relevant observables
- Current knowledge
- Correlations and helicity
- Possible advancements using 21 cm surveys

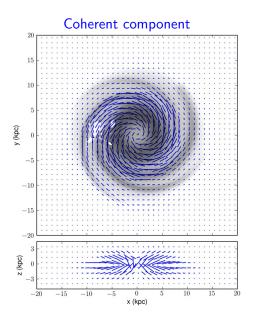
<ロ>



no Q

- parametric models
- see Jansson & Farrar (2012a,b)
- fit to WMAP synchrotron map and extragalactic RMs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Random components

• $B_{\text{ordered}} \approx 1.35 B_{\text{coherent}}$

• $B_{\rm isotropic} \approx B_{\rm ordered}$

 $\Rightarrow \ B^2_{\rm ordered} + B^2_{\rm isotropic}$ $> B_{\rm coherent}^2$

Jansson et al. (2012)

Outline

- Relevant observables
- Current knowledge
- Correlations and helicity
- Possible advancements using 21 cm surveys

<ロ>

How random is random?

- correlation structure of the magnetic field
- cross-correlation of the field components

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\langle B_i(\vec{x}) B_j(\vec{x}') \rangle = M_{ij}(\vec{x}, \vec{x}')$

$$\langle B_i(\vec{x}) B_j(\vec{x}') \rangle = M_{ij}(\vec{x}, \vec{x}')$$

assumptions

statistical homogeneity:

$$M_{ij}(\vec{x}, \vec{x}') = M_{ij}(\vec{x} - \vec{x}')$$

 $\Leftrightarrow \quad M_{ij}(\vec{k}, \vec{k}') = (2\pi)^3 \ \delta^{(3)}(\vec{k} - \vec{k}') \ f_{ij}(\vec{k})$

$$\left\langle B_{i}(\vec{x}) B_{j}(\vec{x}') \right\rangle = M_{ij}(\vec{x},\vec{x}')$$

assumptions

statistical homogeneity:

$$M_{ij}(\vec{x}, \vec{x}') = M_{ij}(\vec{x} - \vec{x}')$$

 $\Leftrightarrow \quad M_{ij}(\vec{k}, \vec{k}') = (2\pi)^3 \ \delta^{(3)}(\vec{k} - \vec{k}') \ f_{ij}(\vec{k})$

statistical isotropy and solenoidality: $f_{ij}(\vec{k}) = \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) M_N(k) - i \epsilon_{ijk} \frac{k_k}{k} M_H(k)$

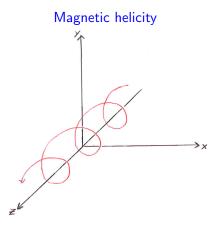
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

in helicity basis

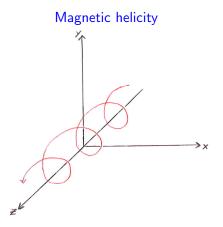
$${\hat{\mathrm{e}}}_{\pm}=rac{1}{\sqrt{2}}\left(i{\hat{\mathrm{e}}}_{ heta}\pm{\hat{\mathrm{e}}}_{\phi}
ight)$$

$$\left\langle B_{+}(\vec{k}) B_{+}^{*}(\vec{k}') \right\rangle = (2\pi)^{3} \, \delta^{(3)}(\vec{k} - \vec{k}') \, (M_{N}(k) + M_{H}(k)) \\ \left\langle B_{-}(\vec{k}) B_{-}^{*}(\vec{k}') \right\rangle = (2\pi)^{3} \, \delta^{(3)}(\vec{k} - \vec{k}') \, (M_{N}(k) - M_{H}(k)) \\ \left\langle B_{+}(\vec{k}) B_{-}^{*}(\vec{k}') \right\rangle = 0$$

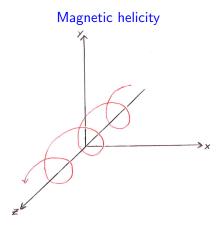
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣



Why bother?



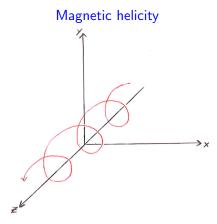
Why bother?

 Galactic magnetic field (probably) generated by dynamo

イロト 不得 トイヨト イヨト

э

left-handed vs. right-handed

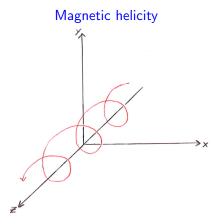


Why bother?

- Galactic magnetic field (probably) generated by dynamo
- ► seed field tiny ⇒ negligible helicity

イロト 不得 トイヨト イヨト

э



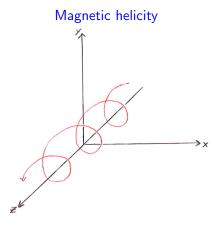
Why bother?

- Galactic magnetic field (probably) generated by dynamo
- ► seed field tiny ⇒ negligible helicity

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

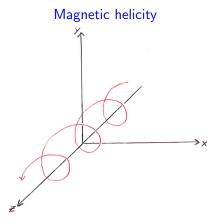
э

helicity conserved



Why bother?

- Galactic magnetic field (probably) generated by dynamo
- ► seed field tiny ⇒ negligible helicity
- helicity conserved
- large-scale helicity observed



Why bother?

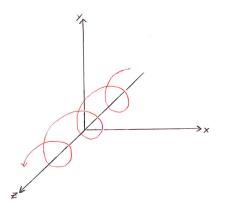
- Galactic magnetic field (probably) generated by dynamo
- ► seed field tiny ⇒ negligible helicity
- helicity conserved
- large-scale helicity observed

 small-scale helicity (of opposite sign) predicted

Outline

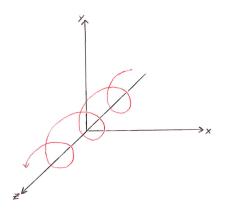
- Relevant observables
- Current knowledge
- Correlations and helicity
- Possible advancements using 21 cm surveys

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶



・ロト ・聞ト ・ヨト ・ヨト

æ

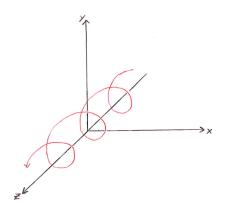


• $\left\langle \frac{\mathrm{d}\chi}{\mathrm{d}z} B_z(z) \right\rangle \leq 0$

(日)、

æ

left-handed vs. right-handed



• $\left\langle \frac{\mathrm{d}\chi}{\mathrm{d}z} B_z(z) \right\rangle \leq 0$ • $\left\langle \frac{\mathrm{d}\chi}{\mathrm{d}\phi} \phi \right\rangle \leq 0$

(日)、

э

left-handed vs. right-handed

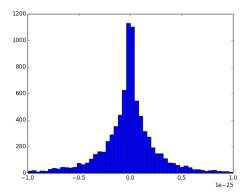
Test for random magnetic field in a box with

•
$$M_N(k) \propto \left(1 + \left(\frac{k}{k_0}\right)^2\right)^{-\alpha/2}$$

• $M_H(k) = \pm M_N(k)$

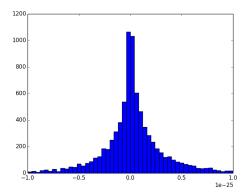
for each line of sight: product of $\int d\phi \frac{d\chi}{d\phi} |P|$ and $\int d\phi \phi |P|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



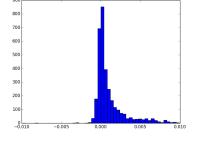
 $M_H(k) = +M_N(k)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

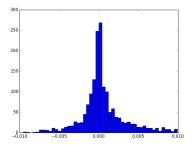


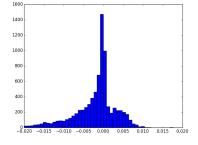
 $M_H(k) = -M_N(k)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



15hr

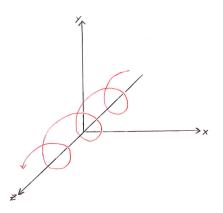




1hr

(ロ)、(型)、(E)、(E)、 E) の(の)

11hr



aternatively:

$$\blacktriangleright \langle E(\phi) B(\phi + \mathrm{d}\phi) \phi \rangle \leq 0$$

left-handed vs. right-handed

more sophisticated:

$$\mathcal{P}(M_N, M_H | P) = \int \mathcal{D}\vec{B} \ \mathcal{P}(P | \vec{B}) \ \mathcal{P}(\vec{B} | M_N, M_H) \ \mathcal{P}(M_N, M_H)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Summary

► Foreground emission sensitive to all three *B*-field components

- Problems for statistical analysis:
 - ▶ no radial localization (only in *φ*-space)
 - distribution of electrons not known
 - non-isotropic magnetic fields