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Abstract

This electronic submission to EPAPS contains appendices detailing mat-
ters of restricted interest. The modified Schaefer /Kohler surface used to gen-
erate Hy + Hy conformations is described in detail. The Gaussian basis set
is described, and small corrections to the MRD-CI ab initio Hy energies are
discussed. The conical intersection of the Hy ground state with the first ex-
cited state is discussed, and the position of this conical intersection is mapped
out over a large fraction of the Hy conformation space. Additional plots of
the new BMKP analytic Hy surface are presented, showing some additional
comparisons of the surface with ab initio energies.

APPENDIX A: MODIFIED SCHAEFER/K(“)HLER FORMULA

The Schaefer and Kohler! formula was used to generate high-accuracy energies to con-
strain our fitted surface in the Hy + Hy van der Waals region. Their formula was designed
only for an equilibrium H; molecule size of 1.449 a,; however, non-equilibrium H, sizes
were also needed to constrain our analytic Hy surface. We thus considered Hy molecules
of sizes chosen from {0.6, 0.8, 1.0, 1.2, 1.449, 1.75, 2.1, 2.6, 3.4 a,}, but with fewer inter-
molecular distances and fewer orientations for sizes other than 1.449 q, (and lower weight
in the fit). Our ab initio energies indicated that the position of the van der Waals well
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and its repulsive wall varied with the size of the Hy, molecules; to approximate this effect,
the Schaefer and Kohler! formula was modified slightly, such that its repulsive wall joined
smoothly onto that from the ab initio energies. The original Schaefer and Kohler!' surface
is written in terms of functions of the intermolecular separation R multiplied by functions
of the orientation angles 61, 5, and ¢, where cos 6, = 7, - B/(r,R) , cos 0y = —7, - B/(ryR)
and cos ¢ = (7, x R) - (7, x R)/(|7, x R||7 x R|). The original formula was modified in two
ways.

(i) The modified Schaefer/Kohler formula which takes into account molecules with non-
equilibrium separation was constructed by replacing R in their equations with a shifted
value

Ry, = R+ 0.4max{0.0 a,, 2.8 ap — (1, + 1)} — 1.0max{0.0 a,, D¢y — D}, (A1)

where D is the shortest of the distances from an atom (or from the mid-point of an Hp
molecule) to the closest point on the line segment joining the atoms of the other Hy molecule,
and D,, is defined as follows. If max{r,,7} < 1.5 a,, then D., = D. Otherwise, for the
same orientation and separation R, consider a reference case in which the two Hy molecules
have a size of 1.5 a, (slightly above the equilibrium separation); D, is defined to be the
value of D for this reference case. Thus the first shift in equation (Al) applies for small
molecules, and the second shift for large molecules (provided that the molecules are angled
at least somewhat toward each other). Note that conformations were discarded altogether
if the shortest distance B between atoms in different molecules was too small, namely,
B < 3.5 a, for r, = rp, = 1.449 a,, B < 4 a, for 1.2 a, < {15, 7} < 1.75 ay, B < 5 a, for
max{r,, 7y} = 3.4 a,, and B < 4.5 a, otherwise.

(ii) For small molecules, the anisotropic part of the Schaefer/Ko6hler surface was reduced,
leaving the isotropic part unchanged, so that small molecules behave as if they were more
nearly spherical. This was accomplished by applying reduction factors f; and fy; to the
anisotropic terms:

Vit = Vooo(Rsk)
+ f1f2[a200 Voo (Rsk) + 222 Voo (Rsk) + G224 Vasa(Rsk)]
x sin? @ sin? 6, cos 2¢
+ f1 f2[b220 Vaoo (Rsk) + bazaVasa (Rsk) + baga Vaoa (Rsr)]

X c0s 0 cos 05 sin B sin Oy cos ¢ (A2)
+ f1 falca20Vazo (Rsk) 4 C222Vaoo (Rok) + €204 Vooa(Rsk)]
X [1.5 cos® B; — 0.5][1.5 cos® B — 0.5]
+d202Vaoa (Rsx) (f1[1.5cos? @) — 0.5] + f2[1.5 cos® 6y — 0.5])
where the reduction factors f; and f; are given by
fi=min{1.0, r,/(1.449 a,)}  and  fo, = min{1.0, r/(1.449 a,)} (A3)
(and agg, - .., dse are constants in the Schaefer/Kohler formula obtained from Clebsch-

Gordan coefficients and from the definitions of spherical harmonics as a function of # and ¢).
Note that Diep and Johnson? computed rigid-rotor Hy + H, potentials for Hy molecule sizes
of both 1.449 a, and 1.402 a,; their figures 11 and 12 suggest that the latter case is slightly
less anisotropic, in qualitative agreement with our above assumption.
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Note that this modified version of the Schaefer/Kéhler formula does not have continuous
derivatives and is thus not suited for use as an actual H, surface. In addition, since no
information was available to us on how the depth of the van der Waals well might change
for non-equilibrium H,; molecules, we had to assume that the depth of the van der Waals
well was independent of the Hy molecule size (and simply give lower weight in the fit to van
der Waals points generated with non-equilibrium H, molecules). However, this modified
formula is adequate for generating constraining conformations at discrete distances, to give
a general guide as to the position of the van der Waals well for our H, fit.

APPENDIX B: THE MRD-CI CALCULATIONS
1. The Gaussian basis set used

As in our earlier work®, we used the same (9s3p1d)/[4s3pld] Gaussian basis set as Sieg-
bahn and Liu®*, with 19 basis functions per hydrogen atom, yielding 76 basis functions in all
for Hy. For purposes of testing the basis correction, Boothroyd et al.® used the (9s3p)/[4s3p]
basis set obtained by omitting the d-function; for testing Hs, Boothroyd et al.?® also used a
(9s3p2d)/[4s3p2d] Gaussian basis set, which was obtained by taking the (9s3p)/[4s3p] basis
set and adding two d-functions, with exponents optimized to a few pFj, in complete CI
calculations on the H, molecule at a separation of 1.4 a,. These basis sets are presented
below in Table I, along with the (8s2pld)/[4s2pld] basis set used by Schwenke®S.

2. Small corrections to the MRD-CI energies

Using different basis sets, different SCF types, different configuration selection thresholds,
and/or different CI reference sets for a given Hy conformation yielded MRD-CI energies that
differed systematically, though by relatively small amounts. Extrapolation to zero threshold
(performed automatically by the MRD-CI program) and the Davidson correction to full CI
are both standard procedures. The London-type basis correction is reasonably well justified,
and makes a significant improvement in the accuracy. In addition, we made two small ad
hoc corrections (detailed below), functions of the extrapolation threshold and the SCF type,
to improve consistency among the various cases; these latter two corrections were typically
smaller than the random errors in the energies, and could have been omitted with only minor
effect on the final energy values.

a. Correction to the extrapolation to zero threshold

The systematic energy differences between three different CI configuration selection
thresholds were used to estimate a small ad hoc systematic correction (i.e., a small mod-
ification to the MRD-CI program’s extrapolation to zero threshold). Most of the single-
root, energies had a configuration selection threshold of T = 10 puEj, (referred to as “T'10”
cases) and/or T = 2 uFE) (“T2”), and a few hundred also had T = 0.4 uE), (“T.47);



the multiple-root energies were 7'10, with 7'2 also computed for a few hundred conforma-
tions. The MRD-CI program used the truncated-CI energies E(T") and E(27) to obtain
an extrapolated energy F., = E)\(T) = E\(2T). The size of the resulting extrapolation
AE.(T) = E(T) — E, to zero threshold averaged about 9.6, 3.1, and 1.1 mE},, respectively,
for single-root 710, T2, and T.4 cases (somewhat less for multiple-root cases); estimated
extrapolation uncertainties were roughly 0.5, 0.2, and 0.1 mE},, respectively. A slightly im-
proved extrapolation is possible® using E)(3T) and E)(47) (which were also computed, and
give some indication of the non-linearity of the extrapolation), by adding a correction of
—0.25A34, where A3y = E\(3T) + E)\(4T) — 2E,,. Since the extrapolation to zero thresh-
old is generally quite linear, this correction was small: it had an rms size of 0.09, 0.04,
and 0.02 mFE}, respectively, for 710, T2, and T.4 cases, and reduced the rms difference
between 1753 cases with differing thresholds from 0.42 to 0.41 mFE},. In a manner similar
to Boothroyd et al.®, consistency between different threshold cases could be significantly
improved (rms difference reduced from 0.41 to 0.30 mE}) by adding an ad hoc systematic
correction Az as a function of the size of the extrapolation:

Ar = pS max{ [ Apin, min[ AE(T), [P Anaz |} — [0S (B1)

where p©&°® = 0.13, 0.065, and 0.06 and " = 0.87, 0.072, and 0.15 mFE}, for closed, open,
and mixed SCF cases, respectively; f™ = 3/2, 1/2, and 1/6 for 710, T2, and T4 cases,
respectively; Anin = 1.5 mE, and A, = 10.5 mE,. The rms size of this correction was
0.42, 0.13, and 0.06 mE}, respectively, for 710, T2, and 7.4 cases (comparable to the size
of the estimated errors in the extrapolation to zero threshold, and somewhat smaller than
the total estimated uncertainties).

b. SCF-type correction

Small but not completely negligible systematic differences were found in energies com-
puted using molecular orbitals from different SCF types. Consistency could be improved
significantly by applying a small ad hoc correction, estimated by comparing MRD-CI en-
ergies computed using different SCF types. Since closed shell SCF is expected to be best
suited to describe Hy, the correction Agcp was applied (as a function of Hy geometry) to
the open and mixed shell cases (in a manner similar to Boothroyd et al.?):

—2.35 3 —2.35
Ascn = =P con (2mmin{ EZ T 2 Jenp (- E)

/N max{l— 42 , O} , (B2)
0

where p is the sum of the sizes of the “best Hy molecules” (i.e., the sum of the two end-
segments of the shortest non-branching path connecting the four H atoms); k% = 0.65
and 0.60 mFE), for open and mixed shell SCF, respectively; n®® = 0.60 mE}, for open shell
SCF, vanishing for mixed shell; and £ is as defined above for Ar. This is the most ad
hoc of the corrections, but it was applied to relatively few points (since most points used
closed-shell SCF). The rms size of this correction was 0.26 and 0.23 mE}, for open and mixed



shell SCF, respectively; it reduced the differences rms(closed — open) from 0.60 to 0.44 mE},
(698 cases), rms(closed — mixed) from 0.48 to 0.42 mE}, (527 cases), and rms(open — mixed)
from 0.31 to 0.28 mE}, (672 cases). (Both the corrections and the improvements in the rms
differences are larger for small p, i.e., for compact geometries.) These rms differences give an
estimate of the combined “random” errors introduced by the extrapolation to zero threshold
and the correction to full CI.

APPENDIX C: POSITION OF THE H; CONICAL INTERSECTION

Since our highest-symmetry ab initio points were among the first ones to be computed
with multiple roots, it soon became clear that the ground state and the first excited state
were degenerate for most equilateral-pyramid conformations (three atoms in an equilateral
triangle, with the fourth atom directly above the center — C3, symmetry). Shifting the
position of the fourth atom from the center-line of the equilateral base, or distorting the
shape of the base, lifts the degeneracy. The H; London equation exhibits a cusp as one
passes through an equilateral-pyramid geometry, just as the H3 London equation has a cusp
at the conical intersection equilateral-triangle H3 conformations. Another similarity between
H, and Hj is an “anomaly” at small sizes. Multiple-root ab initio energies computed at
compact geometries for the BKMP2 H3 PES” demonstrated that sufficiently small equilateral
triangles ceased to represent conical intersections of the H3 ground and excited states (the
non-degenerate A} root dips below the degenerate E’ roots at small sizes). In the Hy surface,
for equilateral pyramids with base sizes smaller than 2 a, a similar thing happens for some
pyramid heights, as shown in Figure 1. The region of conformation space where equilateral
pyramids do not have a degenerate ground state energy (and thus do not lie on the conical
intersection with the first excited state) is shown in Figure 2.

In contrast to the H; surface, for the H, surface the conical intersection between ground
state and first excited state is by no means confined to conformations with Cs, symmetry.
When we looked at the worst points in one of our earlier fits, we found that many of them
were on or near conical intersections. However, in general the London equation either had
a cusp nearby but in the wrong position, or had no cusp in the vicinity at all — this was
what was leading to the large errors relative to the ab initio energies. We went to some
effort to map out the positions of the conical intersection, in the hopes that it might be
simple enough to incorporate into the fitted surface. Unfortunately, the conical intersection
turns out to lie on a rather complicated 3-dimensional hypersurface in the 6-dimensional
conformation space of Hy. Mapping out a reasonable portion of the conical intersection
required computation of 13356 ab initio points (with multiple roots).

We characterize the conical intersection as follows. Let two H-atoms lie on the z-axis
equidistant from the origin, with separation r; (note that r; need not be the shortest distance
in the conformation). Let the third atom lie on the y-axis, at a position ys. Let the fourth
atom lie in the z-y plane, at a distance z, from the the y-z plane defined by atoms one
through three. Then there may be zero, two, four, or six positions ¥y, of the fourth atom
that lie on the conical intersection — which thus may be mapped out as a function of three
of these four coordinates 71, y3, x4, and y4. It is not completely certain that such geometries
can characterize the entire conical intersection, particularly for smaller geometries where



a different excited state can intersect with the ground state (e.g., the “anomalous” region
discussed above, a cut through which is shown in Fig. 2); mapping out the conical intersection
in complete detail is beyond the scope of this paper.

Figure 3 illustrates the position of the conical intersection for planar conformations, at six
values of the coordinate ;. Formally, the conical intersection continues out towards infinity
while asymptotically approaching the dotted lines (i.e., approaching an equilateral triangle
with a fourth atom approaching +oo along the triangle’s line of reflection symmetry — at
infinity, this yields the Hs conical intersection). Note the qualitative difference in shape at
the smallest r; value — as 1 is reduced from 2.1 to 1.75 a,, the two nearly-horizontal solid
lines forming a “funnel-shape” at r; = 2.1 a, presumably move closer together and pinch
off near y3 = 3 a, to yield the closed curve plus “cup-on-its-side” shape at r; = 1.75 a,.
Although it is not obvious from Figure 3, we have checked that in fact squares are not on
the conical intersection (at least for squares with sides longer than 1 a,), though they can be
close enough to show a local “bump” in the energy as one passes through a square geometry.

Figure 4 illustrates the position of the conical intersection for non-planar conformations
at a value of r; = 2.6 a,, in terms of the position of the fourth atom in the z-y plane for
various values of the position y3 of the third atom. For y3 = 0, the first three atoms form
a straight line on the z-axis, and the conical intersection lies on a circle in the z-y plane
centered at the origin. As ys is increased, a bulge pushes out of the right-hand side of this
locus and grows larger; the left-hand side shifts rightwards somewhat and eventually flattens
out. At some point (between y3 = 1.5 and 1.6 a,), a “bean-shaped” locus also appears
farther to the left, and grows larger as y3 increases. As ys approaches the equilateral-
triangle position y3 = 7,1/2/3 = 2.251666 a,, the right-hand side of the original locus
moves off to infinity, leaving a vertical locus along that defined by the apexes of equilateral
pyramids; the left-hand side of the “bean-shaped” locus moves off to minus infinity, while
its right-hand side approaches the vertical line of the original locus except for a fair-sized
“bubble” around x4 = 0. As y3 increases beyond the equilateral-triangle position, the point
(x4 = +00,ys = y3) where the two loci touch moves in rapidly from infinity, yielding a
single “distorted oval” locus around the origin. As ys is increased towards infinity, this oval
grows wider until it approaches a circle of radius r;1/2/3 centered on the origin, i.e., with
the fourth atom forming an equilateral triangle with the first two atoms — the Hj conical
intersection again.

Figure 5 illustrates the conical intersection for non-planar conformations at a somewhat
smaller value of 1 = 2.1 a,. The behavior is qualitatively similar; however, if one reduced
r1 below ~ 2 a,, the behavior would change qualitatively, as is clear from Figures 2 and 3.

Figure 6 illustrates the conical intersection for non-planar conformations at a large value
of r1 = 4.0 a,. There is a qualitative difference from smaller r; values, in that there is
no second “bean-shaped” locus; as y4 passes through the equilateral-triangle position, the
original locus (grown infinitely large to the right) “flips over” to the left and shrinks back
down from infinity. However, this qualitative difference is to some extent an artifact of the
choice of coordinates. If, instead of choosing cuts in the planes y3 = constant, one had
chosen to look at cuts in the planes y3 — y, = constant, the behavior would be qualitatively
similar for all r; 2 2 a, (as may be seen by considering cuts parallel to the dashed lines in
Fig. 3).

We have given an overview of the geometry of the position of the H, conical intersec-



tion. Given the complexity of the geometry of the conical intersection, providing a full
characterization of its geometry is beyond the scope of this paper.

APPENDIX D: MORE OF THE SURFACES’ WORST FEATURES

This section contains three additional figures, further illustrating some of the “wiggles”
in the fitted analytic surfaces relative to the ab initio energies.

Figure 7 shows a case (small 7, = 0.8 a,, large 7, = 5.0 a,, with small intermolecular
separations R) where the adopted 400-parameter surface “Ad” does somewhat better than
either the 785-parameter surface “A” from which it was obtained or the best surface without
London cusp-rounding “G” (especially for “parallel” orientations). Note that the energy
plotted on the vertical axis is the Hy 4+ Hy interaction energy for the given Hy-molecule
sizes, i.e., the total energy E minus the energy E..s of separated molecules of sizes r, and ry.
The energy scale of this plot is expanded enough that errors of order 1 mE}, in the ab initio
energies are clearly visible by comparing a point to its neighbors. Note that the plots shown
here contain extra-closely-spaced ab initio points for illustrative purposes, that were not
included in the set of fitted points.

Figure 8 shows an example of a case (1, = 1.4 a,, 1, = 3.4 a,) where surfaces “Ad”
and “A” are completely smooth at the places where the surface “G” (without London cusp-
rounding) has spurious cusps of order 20 mFE}, (at R ~ 1.2 and 1.1 a,, respectively, for
“Y-shape” and “crossed” orientations of the Hy molecules).

Figure 9 presents an example of an Hs + H case, showing not only the ground state
ab initio energies but also the first and second excited state energies (though the second
excited state lies offscale for this figure). It is a T-shaped conformation based on a linearly
symmetric Hz. The energy scale on the vertical axis is the interaction energy between a single
H atom and a linear symmetric H3 which has the given interatomic separations A = B. In
Figure 9, all three surfaces “Ad”, “A”, and “G” do about equally well in fitting a conical
intersection, since in this case the surface “G” has no London cusp.
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TABLES

TABLE I. The Gaussian basis sets.

............. Our basis sets?®............. vevvu.....Schwenke’s basis set?..........
Type Exponent (a,~?) Coefficient Type Exponent (a,™?) Coefficient
s 837.22 0.000112 s 402.0099 0.000198
123.524 0.000895 60.24196 0.001531
27.7042 0.004737 13.73217 0.007919
7.82599 0.019518 3.904505 0.031747
2.56504 0.065862 1.282709 0.100619
0.938258 0.178008
s 0.372145 1.0 S 0.465544 1.0
s 0.155838 1.0 s 0.181120 1.0
S 0.066180 1.0 S 0.072791 1.0
P 2.1175 1.0 P 1.5 1.0
P 0.77 1.0 D 0.375 1.0
P 0.28 1.0
d 1.0 1.0 d 1.0 1.0
d°¢ 1.76 1.0
d° 0.62 1.0

aThe (9s3pld)/[4s3pld] basis set was taken from Siegbahn and Liu*.
bSchwenke’s (8s2pld)/[4s2pld] basis set: see Refs. 5 and 6.
“This pair of d-functions replaces the single d-function, to get the (9s3p2d)/[4s3p2d] basis set.
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FIG. 1. The lowest three ab initio energies as a function of the pyramid height x4, for an
equilateral pyramid of base size r1 = 1.75 a,. Squares (connected by solid line, to help guide
the eye) indicate the ground state energy, diamonds the first excited state, and small filled circles
(connected by dotted line, to help guide the eye) the second excited state. Insets show close-ups of
regions around triply-degenerate “cross-over” points. Note that for these high-symmetry, relatively
high-energy conformations a pair of degenerate roots may actually yield ab initio energies up to
about 1 mE} apart, due to the errors in the MRD-CI computation.
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FIG. 2. For equilateral pyramids (Cs, symmetry) with base sides m and height z4 (with z4

being the vertical distance above the center of the equilateral-triangle base), the shaded area

indicates the region where the equilateral pyramids do not have a degenerate ground state energy

(and thus do not lie on the conical intersection with the first excited state). The open circles

(connected by the solid line) show the “switch-over” conformations where the ground state was
found to be triply degenerate.
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FIG. 3. Position of the conical intersection for planar conformations (z4 = 0) at six values of 7.
Open circles (connected by solid lines) show the positions where ab initio computations indicate
that the conical intersection occurs. Note that invariance under interchange of atoms 3 and 4
requires that there be reflection symmetry about the line y3 = y4 (dashed lines), and invariance
under reflection in the z-z plane requires that there also be reflection symmetry about the lines
ys = —ya (dot-dashed lines). Vertical (horizontal) dotted lines indicate positions where the third
(fourth) atom makes an equilateral triangle with the first two atoms (which define 7).
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FIG. 4. Position of the conical intersection for non-planar conformations as a function of the
position (z4,y4) of the fourth atom, for 12 positions y3 of the third atom at 7 = 2.6 a,. For
clarity, the larger y3 cases are shown in a separate panel at right; also, the position of the conical
intersection is symmetric under reflection in the plane defined by the first three atoms, i.e., under
T4 — —x4, o only one sign of x4 is plotted for any y3 case. Note that for y3 = 2.251666 a, the
first three atoms form an equilateral triangle.
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FIG. 5. Position of the conical intersection for non-planar conformations at a somewhat smaller
value of r;1 = 2.1 ay; similar to Fig. 4, except that only cases with y4 < ys are plotted. For
ys = 1.818653 a, the first three atoms form an equilateral triangle.
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FIG. 7. An example where the adopted surface “Ad” does somewhat better than “A” or “G”,
for , = 0.8 ay and 7, = 5.0 a, (energy Eye refers to R — o00). Discrete symbols indicate
ab initio energies (double-sized symbols indicate fitted points; others are extra “test” points).
Heavy curves show surface “Ad” (the adopted surface, with 400 parameters), medium curves show
the corresponding 785-parameter surface “A”, and light curves show the 791-parameter surface “G”
(the best of the surfaces that had no London cusp-rounding). The “parallel” case refers to the
case with 7, || 7 L R. The other three are cases with 7y L 7, forming a “+” shape at R = 0; the
“Y-shape” has 7, || R, the “T-shape” (curve not shown) has 7, || R, and the “crossed” case has
7 LR 17,
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FIG. 8. An example where London cusp-rounding eliminates a spurious cusp of significant size
from surface “G”; notation as in Fig. 7.
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FIG. 9. An example where the conical intersection with the first excited state is approximated

reasonably well by a “hill” in the fitted surface. For this “LinH3-T” orientation, the distance Ry, g

—_

is that between a fourth H atom and the central atom of a linear-symmetric H3 (that has interatomic
separations A = B = 1.75 a,), with A I B 1 R'HS_H, forming a T-shape with respect to the
linear H3 (energy Eyer refers to Ru,—uy — 00). Symbols for ab initio energies of the first and
second excited states (in this case, larger and smaller solid triangles, respectively) are indicated
immediately above the middle of the line-type legend (note that all second excited state energies
lie offscale in this figure). As in previous figures, heavy curves show surface “Ad” (the adopted
surface, with 400 parameters), medium curves show the corresponding 785-parameter surface “A”,
and light curves show the 791-parameter surface “G” (the best of the surfaces that had no London
cusp-rounding).
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