

 Synergy between Clusters & other cosmological probes bond@KITP11

 cluster/gp system: since 80s delivered valuable "LSS" constraints

 mid-80s Xtra power ξ_{CC} ξ_{Cg} => xCDM, x=Λ

 P_{ρρ}(k~1/4h⁻¹Mpc) aka **σ**₈^{cls} via **n**_{cl} major LSS constraint (with shape) on

 post-COBE. BJ98 CMB+**σ**₈^{cls} gave x=Λ pre-SN98. & in BOOMerang98+

Use physical observables rather than funneling through halo Mass i.e., not **n**cluster(Mhalo **Z**) but $n_{cluster}(Y_{SZ}, M_{lens}, Y_X, L_X, T_X, \sigma_v^2, L_{cl,opt}, Rich, ...)$ **z**, gold-sample, thresholds) + $C_L^{SZ}(cuts)$ + $\xi_{cc}(r|n_{cl})$ + f_{gas} these all deliver valuable cosmic gastrophysics. **Can they deliver fundamental physics:** dark energy EOS?? σ_8 even? primordial non-Gaussianity??? complex systems => theory/obs dispersion/systematics assessment is critical => mock sims for robust measures

Sunyaev-Zeldovich Simulations and ACT, Planck and SPT Cluster Observations

Sunyaev-Zeldovich Simulations and ACT, Planck and SPT Cluster Observations

400 Mpc ΛCDM WMAP5 gas density Gadget-3 SF+ SN E+ winds +CRs 512³ BBPSS10 BBPS1,2,3,4,5

BBPS1,2,3,4,5 BBPSS10 Hydro Sims include all effects -except of course those not included (10+10+20 256³ SPH gas+DM) (1+1+1 512³ gas+DM) ACDM + ... => Thou Shalt Mock Analytic and semi-analytic treatments cannot intuit the complexity & must be fully calibrated with sims for a useful phenomenology *turbulent* internal bulk flows, asphericity, clumping of density & pressure, cosmic web far-field connection thru filaments, FEEDBACK of Entropy& Energy & Momentum from stars, black holes, cosmic rays, ... Ina(x,InH)

ρ_g(x,t)

a~e⁻⁶⁷⁺

a~1

pressure intermittency in the cosmic web, in cluster-group concentrations probed by tSZ

cosmic web of nearby superclusters from 2mass+

cosmic web of 60000 nearby galaxies

thermal SZ clusters some nearby wellknown clusters from Perseus to Virgo Shapley Supercluster <overdensity> ~5

M~10^{16.8} M_•

Friday, 26 April, 13

Universal Pressure profile: dIn Eth(<r)/dIn r

& cluster ENTROPIES: coarse-grained information Universal Entropy Profile? sort of, but inference from observations is difficult

GNFW-fit(M,z) accuracy <10% extends Arnaud universal profile PUPPY

CBL	ool to Apr'05 @Chile	CRI2 thermal	SZ clusters		
		QUaD @	@SP	Planck PSZ,	cnts, ymap
	53+35 cls (>=40)	23	0 cls => 1227	861 confirmed, 1 683 known,	78 by Planck + most z<.4,
		Planck09.4		many ~ 10 ¹⁵ M _{sun} 0. <z<0.8< td=""></z<0.8<>	
			52+ bolometer + HEMTs @L2	s sector	
		Deichourth 10	9 frequencies		
	WMAP @L2 to 2010	100 cl cosmolog	y, 400 with S/N > 5	Menanteau+12	2. Hasselfield+12
2004	2006	now, 747 summe	er 2013 2500 deg²	ACT Celestial Equ	ator cls, 68 (49+19
	2005	2007	224 (=> 747)	502 sa dea =>91 i	b , 1 Z~1.1 10'³Misun n 952 deg ² , 0.1 <z<1.3< th=""></z<1.3<>
>96 OVRO	Acbar@SP ~1 blind SZA@Cal	AMIBA 6 cls	SPT 1000 bolos @SPole	100% purity for No significant evidence M _{SZ} -N ₂₀₀ weak correla	• S/N>5. 60% > 4.5 e of SZ/BCG offset tion, large scatter
/BÌMĂ	3 cls (z>1), >	?	ACT(2	3+68~91 cls	
array		THE P	3000 bolos		SPTpol
30 CIS	7+1 cls >=50+25	APEX	3 freqs @C	Chile	ACTpo
80s -90s Ryle	5	~400 bolos ~25 cls	@Chile	SCUBA2	ALMA
OVRO	GBT	Nustang	Ŧ.	12000 bolos	CCAI@Chile
	4 cls (~2	5 CLASH)	J	CMT @Hawaii	LMT@Mexico

thermal SZ clusters

Planck ESZ + prior-SZ: 189 => 200 clusters

plus compilation of first generation SZ clusters (Douspis et 11)

pressure intermittency in the cosmic web, in cluster-group concentrations probed by tSZ

thermal SZ clusters PSZ: 189 cls for cosmology constraints.

 σ_8 =0.77±0.02 Ω_m =0.29±0.02 *cf. primary* σ_8 =0.826±0.012

ACT12 Hasselfield+12 15 carefully chosen cls

optical dynamical information used (i.e., not X-ray)

 σ_8 =0.829±0.024 Ω_m =0.292±0.025 WMAP7+ACT(cls)

cf. ACT10 9 confirmed clusters (Sehgal+10) using cluster abundances => mass calibration still too uncertain (e.g. σ_8 =0.82±0.05 to 0.85±0.12). attempt at Dark Energy equation of state, but little leverage

SPT similar results with ~20 clusters Benson+12

thermal SZ clusters

SPT Reichardt+12 different approach cf. ACT Hasselfield+12 X-ray mass proxy cf. dynamical mass proxy (lower bound for $\sigma 8$, Ωm) multi-scale S/N likelihood cf. Profile Based Amplitude Analysis single filter 5.9' not matched θ_{500} corrected ACT and SPT at most mild tension (ACT SZ scaling priors - very broad, would that we knew them better)

thermal SZ clusters

SPT Reichardt+12 different approach cf. ACT Hasselfield+12 X-ray mass proxy cf. dynamical mass proxy (lower bound for $\sigma 8$, Ωm) multi-scale S/N likelihood cf. Profile Based Amplitude Analysis single filter 5.9' not matched θ_{500} corrected ACT and SPT at most mild tension (ACT SZ scaling priors - very broad, would that we knew them better)

thermal SZ clusters Benson@ESLAB13: SPT has 440 clusters with measured redshifts and SPT S/N > 4.0 full 2500 sq deg catalog in summer 2013

Weak Lensing Mass Calibration

M500(Yx) = (1.02 +/- 0.08) M500(WL) M500(SPT) = (1.00 +/- 0.08) M500(WL)

0.7<(MX/Mtrue)₅₀₀<1 prior; 0.8 default

thermal SZ clusters

SPT Reichardt+12 different approach cf. ACT Hasselfield+12 X-ray mass proxy cf. dynamical mass proxy (lower bound for $\sigma 8$, Ωm) multi-scale S/N likelihood cf. Profile Based Amplitude Analysis single filter 5.9' not matched θ_{500} corrected ACT and SPT at most mild tension (ACT SZ scaling priors - very broad, would that we knew them better)

Planck2013 XX

0.7<(MX/Mtrue)₅₀₀<1 TOP HAT HARD prior; 0.8 default **best theory can do blindly on bX**: not the distribution to use because of sample selection and sub-sample processing

Friday, 26 April, 13

pressure intermittency in the cosmic web, in cluster-group concentrations probed by tSZ

SZ power spectrum from ymaps Planck2013 XXI

MILCA tSZ map

Adapted component separation algorithms: NILC & MILCA on all HFI channels 100-857 GHz @ 10' res SEXtractor + MMF and MHW + SEXtractor detected clusters number & flux consistent with PSZ catalogue tSZ + clustered CIB + Point sources

SZ power spectrum from ymaps are consistent with cluster counts cosmology Planck2013 XXI

SZ 1pt PDF and 3 point (bispectrum) from ymaps are consistent Planck2013 XXI

SZ power spectrum from ymaps thermal SZ clusters

SZ power spectrum from ymaps thermal SZ clusters

kinetic SZ: $\Delta T/T = \int n_e v_{e||} / c \sigma_T dlos$ $\sim \int J_e \cdot dr$ spectrally degenerate with primary anisotropies $\int kSZ(\theta, \phi) d\Omega \sim M_{gas} V_{bulk} / DA^2$

Compton-y map: Feedback = AGN or Starburst E-feedback + radiative cool + SN energy + wind + (CR)

kinetic SZ map (log): Feedback = AGN or Starburst E-feedback + radiative cool + SN energy + wind + (CR)

iset to the second s

b dipole

kashlinsky+

ACT x BOSS direct detection of the kSZ effect:

Hand+ 2012 arXiv/1203.4219 $<\Delta T n_{gal} >$ using 7,500 brightest of 27291 luminous BOSS galaxies 220 sq deg overlap with ACT equatorial strip 3x110 sq deg 2008-10 data. <z>~0.5.

Planck13 X MCXC 1750 X-rays cls Meta Catalogue of X-ray detected Clusters made for Planck <z>~0.18, <v_radial> = 72 +- 60 km/s monopole blind search < 254 km/s 95% CL no super-bulk flow aka the Dark Flow ~1000 km/s

Friday, 26 April, 13

kSZ dipole < 2 o uMMF on HFI with MCXC

kinetic SZ map (log): Feedback

= AGN or Starburst E-feedback + radiative cool + SN energy + wind + (CR)

pair-wise velocities (momenta) statistic from ACT x Opt-CIs/Gps ~BOSS bright galaxies

PUPPY and our hydro sims agree: slower falloff than Arnaud+ X-ray UPP; although there are mass and redshift bin variations, universality is pretty good; variance in pressure profiles is wide **pressure clumping is not small**, important for SZ- a consequence of merging history **Universal Entropy Profile?** not as good as PUPPY. obs cf. theory needs work rare clusters are still consistent with std ACDM; some highly non-eq, bullet el Gordo ++ **O**8^{SZ}_{vs} **O**8 tension from P1.3, ACT&SPT CL, P1.3 SPT ncl; ACT ncl ok broad scaling bias priors **Σm_v~0.2 ev a possibility; mass bias ~1.45 needed;** and/or X-ray selection bias Use physical observables rather than funneling through halo Mass i.e., not **n**cluster(Mhalo Z) but $n_{cluster}(Y_{SZ}, M_{lens}, Y_X, L_X, T_X, \sigma_v^2, L_{cl,opt}, Rich, ...]$ **z**, gold-sample, thresholds) biases in gas fraction + $C_L^{SZ}(cuts)$ + $\xi_{cc}(r|n_{cl})$ + f_{gas} estimation => variance large => not robust these all deliver valuable cosmic gastrophysics. **Can they deliver fundamental physics:** dark energy EOS?? σ_8 even? primordial non-Gaussianity??? X cf. opt, sphericalize?? but nice ymap stats CL^{SZ} PDF, 3pt, counts, X cf. opt, ... complex systems => theory/obs dispersion/systematics assessment is critical => mock sims for robust measures kSZ detected, but dark flow constrained

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Bond since 1993, Canada since 2001, 1st CSA pre-launch contract 2002-09, post-launch 2010-11, 2011-15 Friday, 26 April, 13

Universal Entropy Profile? sort of, but inference from observations is difficult

biases in gas fraction estimation in clusters

SZ observations of age in 2010-2011 2011 PEP Planck early results XII: Cluster Sunyaev-Zeldovich optical scaling relations SDMW@cifar13 Planck Early Results XI: Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations Planck Early Results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters Planck early results. IX. XMM-Newton follow-up for validation of Planck cluster candidates Planck Early Results VIII: The all-sky Early Sunyaev-Zeldovich cluster sample 189+ cls Planck Early Results. VII. The Early Release Compact Source Catalog 2010-11 ACT The Atacama Cosmology Telescope: Detection of Sunyaev-Zel'dovich Decrement in Groups and Clusters Associated with Luminous Red Galaxies The Atacama Cosmology Telescope: Sunyaev Zel'dovich Selected Galaxy Clusters at 148 GHz in the 2008 Survey The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps The Cosmic Background Imager 2 Taylor+ 2013 Combined CBI, SZA, BIMA, and OVRO analysis of the thermal Sunyaev-Zel'dovich Effect in A1689 Alison+ B@cifar13 < 2011 Subdegree Sunyaev-Zel'dovich Signal from Multifrequency BOOMERanG observations < 2011 High resolution CMB power spectrum from the complete ACBAR data set 2010-12 also many SPT cluster papers 2010-13 Battaglia, Bond, Pfrommer, Sievers: theory & hydro sims with feedback Simulations of the Sunvaev-Zel'dovich Power Spectrum with AGN Feedback BBPSS B@cifar13 Exploring the magnetized cosmic web through low frequency radio emission BBPS 2013 On the Cluster Physics of Sunvaev-Zel'dovich and X-ray Surveys IV: Density and Pressure Clumping due to Infalling Substructures BBPS3 B@cifar13 2013 On the Cluster Physics of Sunvaev-Zel'dovich Surveys III: Information Theoretic View of Clusters and their Non-equilibrium Entropies BBPS5 B@cifar13 < 2011 Galaxy Cluster Astrophysics and Cosmology: Questions and Opportunities for the Coming Decade white paper

2010-12 MUSTANG2 on GBT proposals Planck cluster followup to 35σ in 1 hr @10" B@cifar13 48 **2013 CCAT sims**

Burst of papers in 2012 Planck, ACT, SPT, theory Planck Early Results XXVI: Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray *luminous and massive galaxy cluster at z~1* Planck Intermediate Results. I. Further validation of new Planck clusters with XMM-Newton Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters Planck intermediate results. VI: The dynamical structure of PLCKG214.6+37.0, a Planck discovered triple system of galaxy clusters Planck Intermediate Results. V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect PUPPY Planck intermediate results. X. Physics of the hot gas in the Coma cluster PUPPY Planck intermediate results. VIII. Filaments between interacting clusters Planck Intermediate Results. XI: The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel'dovich Array Observations of ACT SZE-selected Clusters from the Equatorial Strip The Atacama Cosmology Telescope: ACT-CL J0102-4915 "El Gordo," a Massive Merging Cluster at Redshift 0.87 The Atacama Cosmology Telescope: Dynamical Masses and Scaling Relations for a Sample of Massive Sunyaev-Zel'dovich Effect **Selected Galaxy Clusters** Evidence of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB **Temperature Distribution** The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect Subaru weak-lensing measurement of a z = 0.81 cluster discovered by the Atacama Cosmology Telescope Survey The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data On the Cluster Physics of Sunyaev-Zel'dovich and X-ray Surveys III: Measurement Biases and Cosmological Evolution of Gas and Stellar Mass Fractions BBPS3 On the Cluster Physics of Sunyaev-Zel'dovich Surveys II: Deconstructing the Thermal SZ Power Spectrum BBPS2 On the Cluster Physics of Sunyaev-Zel'dovich Surveys I: The Influence of Feedback, Non-thermal Pressure and Cluster Shapes on

Friday, 26 April, 13

Y-M Scaling Relations BBPS1

Burst of papers in 2013 Planck Planck Intermediate Results. XIII. Constraints on peculiar velocities Planck 2013 results. XXI. Cosmology with the all-sky Planck Compton parameter y-map Planck 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts Planck 2013 results. XXIX. Planck catalogue of Sunyaev–Zeldovich sources

thermal SZ clusters

